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lar optimization for accelerating
reverse intersystem crossing†
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Spin conversion in molecular excited states is crucial for the development of next-generation

optoelectronic devices. However, optimizing molecular structures for rapid spin conversion has relied on

time-consuming experimental trial-and-error, which limits the elucidation of the structure–property

relationships. Here, we report a Bayesian molecular optimization approach that accelerates virtual

screening for rapid triplet-to-singlet reverse intersystem crossing (RISC). One of the molecules identified

through this virtual screening exhibits a fast RISC rate constant of 1.3 × 108 s−1 and a high external

electroluminescence quantum efficiency of 25.7%, which remains as high as 22.8% even at a practical

luminance of 5000 cd m−2 in organic light-emitting diodes. Post-hoc analysis of the trained machine

learning model reveals the impact of molecular structural features on spin conversion, paving the way

for informed and precise materials development.
Introduction

Excitonic spin conversion is a key process driving innovation in
various optoelectronic applications.1–5 In the case of organic
light-emitting diodes (OLEDs), the internal quantum efficiency
is limited by inherent spin statistics that dictate a 1 : 3 ratio of
singlet to triplet excitons from electron–hole recombination,
resulting in amaximum efficiency of 25%. This limitation is due
to the fact that triplet excitons in most organic molecules are
dark states, which are spin-forbidden from decaying radiatively
to the ground states. Researchers have explored the use of
reverse intersystem crossing (RISC), where triplet excitons are
converted into emissive singlet excitons to overcome this
issue.6–18 RISC is driven by ambient thermal energy, resulting in
thermally activated delayed uorescence (TADF) and allowing
OLEDs to achieve internal quantum efficiencies approaching
100%.
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The time constants of RISC are generally in the order of
microseconds,19–22 which presents a challenge in the form of
competing bimolecular recombination processes, such as triplet–
triplet annihilation. Such detrimental processes become increas-
ingly dominant at higher current densities in OLEDs, resulting in
an appreciable decrease in device efficiency, a phenomenon
known as efficiency roll-off.23 Thus, accelerating RISC and
reducing efficiency roll-off are important hurdles to overcome for
the practical use of TADFmolecules in high-performance OLEDs.

Traditionally, TADF materials have been discovered through
time-intensive experimental approaches; however, the advent of
high-throughput virtual screening has offered a signicant
change in the materials design process.24–29 By employing
computationally inexpensive density functional theory (DFT)
and machine learning techniques, researchers can extensively
explore the relevant molecular space for potential TADF mate-
rials with a small singlet–triplet energy gap (DEST). However,
despite these advances, calculating DEST alone remains an
inefficient way to estimate the rate constant of RISC (kRISC) and
narrow down the most promising candidate molecules.

In the simplest physical picture, RISC is driven by a spin–
orbit coupling at the crossing seam between the potential
energy surfaces of singlet and triplet excited states. In cases of
weak spin–orbit coupling in organic molecules, kRISC is expected
to follow the Marcus-type non-adiabatic rate expression:

kRISC ¼ 2p

ħ
jHSOj2ð4plkBTÞ�1

2exp

��EA

kBT

�
(1)

where ħ is the reduced Planck constant, HSO is the spin–orbit
coupling matrix element, kB is the Boltzmann constant, T is the
Chem. Sci., 2025, 16, 9303–9310 | 9303
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temperature, l is the reorganization energy, and EA is the acti-
vation energy required to reach the singlet–triplet crossing
seam30 (Fig. 1A). Accurately calculating these parameters is
challenging, in part because the singlet–triplet crossing seam
oen involves a higher-lying triplet excited state (T2), giving rise
to the spin-vibronic mechanism for rapid RISC.31–36 Explicitly
computing the singlet–triplet crossing seam reproduced
experimental kRISC ranging over ve orders of magnitude in
various TADF molecules, although it requires additional
computational time for the high-delity excited-state
calculations.30

Here we implement a machine learning technique called
Bayesian optimization to computationally screen for TADF
molecules with high kRISC. While conventional machine
learning models for virtual screening require large number of
training datasets, Bayesian optimization iteratively trains
a probabilistic surrogate model with a limited number of
datasets, strategically selecting the next data points to evaluate
based on both exploration of uncertain space and exploitation
of known space.37–42 This dual focus allows Bayesian optimiza-
tion to rapidly identify the optimal molecules with a minimized
number of high-delity excited-state calculations.

In the following section, we describe the development of our
Bayesian optimization-based virtual screening that identied
Fig. 1 (A) Schematic potential energy surfaces of excited states associated
molecules in a six-dimensional space. (C) Comparison of Bayesian molec
random sampling for identifying the molecule with the highest kRISC amo
successful identification after a given number of iterations. (D) Beeswarm
the model output (log10 kRISC). A high Fp (Sub. Pos.) value corresponds
while a low Fp (Sub. Pos.) value corresponds to substitution at the 3,6-p

9304 | Chem. Sci., 2025, 16, 9303–9310
a TADF molecule with experimentally determined kRISC of 1.3 ×

108 s−1. The external electroluminescence quantum efficiencies
of the identied molecule reached 25.7%, which remained as
high as 22.8% even at a practical luminance of 5000 cd m−2.
Results and discussion
Search space generation

Typical TADF molecules contain donor and acceptor units that
mediate low-lying singlet and triplet charge-transfer excited
states (1CT and 3CT) between the spatially separated highest
occupied and lowest unoccupied molecular orbitals (HOMO
and LUMO); such CT states result in a low singlet–triplet
exchange energy, enabling RISC with ambient thermal energy.
Spin ipping in RISC is driven by spin–orbit coupling at the
singlet–triplet crossing seam, where an orbital transition
between 1CT and a triplet local excitation state (3LE) induces
a relativistic interaction capable of spin ipping. To further
enhance spin–orbit coupling and accelerate RISC, one can
advantageously exploit the heavy atom effect of the group 16
and 17 atoms such as S, Se, Br, and I.43–51 With these principles
in mind, we generated a search space of 1.4 thousand mole-
cules, all sharing a common thioxanthone acceptor unit with
vastly different donor units. To ensure synthetic feasibility, we
with RISC. (B) Binarymolecular fingerprints FP for classifying candidate
ular optimization using different descriptor combinations and uniform
ng 200 candidates for pre-training. Each line shows the probability of
plots of the SHAP values for each descriptor, showing their impact on

to substitutions at the 2,7-positions (meta-positions) of thioxanthone,
ositions (para-positions).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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employed a donor–acceptor structural design (Dn–A, n = 1 or 2)
that adheres to a set pattern dictating the substitution positions
and symmetry (Fig. 1B). Each molecule incorporates a single
type of donor unit, classiable into four categories: carbazole
(Cz), 1,8-dimethylcarbazole (MCz), 9,9-dimethylacridane (Acr),
and phenoxazine (Pxz). The molecular weight of the candidates
was limited to less than 1200 g mol−1 due to the need for
thermal evaporation in OLED fabrication. All molecular struc-
tures in the search space are listed in ‘ESI†’.

For each molecule, four quantum chemical properties were
represented as descriptors for a vector search space: EHOMO,
ELUMO, DEST, and HSO, derived from low-cost DFT calculations
with the 6-31G basis set without diffuse and polarization func-
tions, as detailed in ‘Methods’. We also used in-house binary
molecular ngerprints FP as descriptors, which explicitly
represent the number, positions, and categories of donor units
(i.e., Cz, MCz, Acr, or Pxz) to classify candidate molecules in
a six-dimensional space (Fig. 1B).
Pre-training

To identify the most effective combinations of descriptors for
search performance, we tested Bayesian optimization with
different descriptor sets on a search space consisting of 200
molecules; the kRISC values of these molecules were pre-
computed and stored in a database, using high-delity
excited-state calculations including geometry optimization of
the singlet–triplet crossing seam described in ‘Methods’.
Beginning with a randomly selected molecule, the corre-
sponding kRISC value was retrieved from the database to train
a Gaussian process surrogate model;52 an acquisition function
was then used to select a molecule in the search space based on
the expected improvement criterion for the next evaluation.
This procedure continued iteratively until the molecule with the
highest kRISC in the 200 molecules was found.

Fig. 1C compares the search performance of the Bayesian
molecular optimization with different descriptor sets to that of
uniform random sampling. This comparison evaluates the
cumulative probability of nding the molecule with the highest
kRISC as a function of the number of iterations, derived from 100
independent trials of the Bayesian optimization procedures,
each with a different starting molecule. Essentially, Bayesian
optimization outperforms uniform random sampling; however,
its performance is highly dependent on the descriptor sets. In
all 100 independent Bayesian optimization trials, the descriptor
set (DEST, HSO) consistently found the highest kRISC within 82
iterations, whereas (EHOMO, ELUMO) required up to 148 itera-
tions. Supercially, the superior performance of (DEST, HSO) is
not surprising, given their physical relationship to kRISC. What
is surprising, however, is that the DFT calculations of these
descriptors rely on overly broad approximations to remain cost-
effective, whose results may not even qualitatively align with
those of the high-delity calculations for kRISC. Such circum-
stances suggest that the surrogate model captures the complex
correlation between the descriptors and kRISC.

Combining FP with the descriptors further improves the
performance of Bayesian optimization, locating the maximum
© 2025 The Author(s). Published by the Royal Society of Chemistry
point within only 55 iterations using (DEST, HSO, FP). Incorpo-
rating FP offers an additional advantage of chemical interpret-
ability, allowing us to quantify the impact of molecular features
on kRISC based on the trained surrogate model, as will be dis-
cussed later.
Shortlisting and analysis

Having established the effective descriptor set (DEST, HSO, FP),
we proceeded to examine the full search space of 1.4 thousand
candidate molecules. Starting with the pre-trained data for the
200 molecules, 100 additional iterations of Bayesian optimiza-
tion led to the identication of 78 candidate molecules with
quantum-chemically calculated kRISC over 107 s−1, an order of
magnitude higher than that of the seminal TADF molecule
2,4,5,6-tetra(carbazol-9-yl)isophthalonitrile (4CzIPN).6 At the
end of the optimization, the trained surrogate model achieved
a coefficient of determination (R2) of 0.91 and a root mean
squared error (RMSE) of 0.88 in predicting log10 kRISC, as veri-
ed through tenfold cross-validation. The trained model
suggests 129 molecules with predicted kRISC exceeding 108 s−1,
corresponding to 9% of all the candidate molecules. We then
assessed the synthetic feasibility of these molecules and
selected MCz-p2 for further experimental evaluation, as will be
discussed later. We note that the model was able to reidentify
3,6-bis(1,3,6,8-tetramethylcarbazol-9-yl)thioxanthone (MCz-
TXT),46 previously reported with an exceptionally high kRISC of
1.1 × 108 s−1.

To extract chemical knowledge from the trained machine
learning model, we assessed the descriptor importance using
Shapley additive explanations (SHAP). This method assigns
a SHAP value to each descriptor, quantifying its contribution to
the model output by fairly distributing the difference between
a given output and the average across all descriptors.53 Fig. 1D
presents a series of beeswarm plots of the SHAP values for each
descriptor in the trained model. A positive SHAP value indicates
that a specic descriptor value, represented by the color,
increases the model output (i.e., log10 kRISC) above the average,
whereas a negative SHAP value indicates that it decreases the
output below the average. A wider spread of the SHAP values for
DEST and HSO in Fig. 1D suggests that these two descriptors are
the most inuential. However, the relationship between the
descriptor values and the SHAP values appears to be nonlinear,
implying that a smaller DEST and a larger HSO do not necessarily
equate to a higher kRISC. These results highlight the limitations
of the low-cost DFT outputs, and the importance of accounting
for the spin-vibronic effects through the high-delity calcula-
tions of singlet–triplet crossing seams in predicting kRISC. For
FP, a simpler pattern emerges in the SHAP plots: the presence of
MCz positively correlates with the output, whereas the other
descriptors (Cz, Pxz, and Acr) tend to correlate negatively with
the output. The SHAP plots for FP also indicate that two
substitutions, especially at the 3,6-positions (para-positions) of
thioxanthone, are more benecial for enhancing kRISC than one
substitution or those at the 2,7-positions (meta-positions).

To understand the mechanism responsible for the trends in
the importance of FP for kRISC, excited-state energy landscapes
Chem. Sci., 2025, 16, 9303–9310 | 9305
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Fig. 2 (A) Molecular structures of seven thioxanthone derivatives with their relative excitation energies of S1, T1, and T2 calculated at the
optimized S1 geometry, T1 geometry, and S1/T2 crossing seamwhere the two states are equal in energy and relativistically coupled by a weakHSO.
(B) HOMO and LUMO of thioxanthone at C2v symmetry.
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were established for seven model molecules by the high-delity
TD-DFT calculations (Fig. 2A and S1† for relevant FP). Four
molecules, MCz-m1, MCz-m2, MCz-p1, and MCz-p2, share
common MCz donor units, but possess different substitution
numbers and positions. The calculated adiabatic DEST of MCz-
p1 is smaller than that of MCz-m1 by increasing the substitu-
tion number from one to two and changing the meta-substitu-
tion to para-substitution, resulting in a lower EA (the activation
energy to reach the minimum-energy singlet–triplet crossing
seam from equilibrium T1) and thus a higher kRISC of MCz-p2
(Table 1). Furthermore, the singlet–triplet crossing seam of
MCz-p2 comprises more distinct orbital characters (1CT and
3LE) compared toMCz-m2 (1CT and 3CT + 3LE) (Fig. S2†), which
is responsible for a higher HSO of MCz-p2, consistent with El-
Sayed's rule.54 Additional calculations reveal that the 3,6-posi-
tions of thioxanthone are located at the nodes of its HOMO
(Fig. 2B), leading us to interpret that the para-substitution of
donor units suppresses p-conjugation and thus maintain
a relatively pure 3LE on the thioxanthone unit, as in MCz-p2,
resulting in higher kRISC.

The effect of the structural modication of the donor units is
also evaluated in MCz-p2, Cz-p2, Acr-p2, and Pxz-p2 with the
same substitution numbers and positions (Fig. 2A). Removal of
the electron-donating methyl groups from MCz-p2 results in
a blue-shied S1 of Cz-p2, which explain its larger DEST between
9306 | Chem. Sci., 2025, 16, 9303–9310
S1 (1CT) and T1 (3LE) and lower kRISC (Table 1, Fig. 2A and 3
ESI†). In contrast, Acr-p2 and Pxz-p2, with more electron-rich
donor units, possess a red-shied S1 (1CT) and T1 (3CT) with
a smaller DEST, due to weak electron exchange coupling asso-
ciated with the spatially separated orbitals comprising these CT
excited states. However, as the 1CT and 3CT undergo a red shi,
their energy separation with the higher-lying 3LE increases, and
thus the minimum-energy singlet–triplet crossing seam
comprises CT characters, rather than LE, for both singlet and
triplet states (Fig. S2†). The resultant lack of orbital change at
the crossing seam suppresses spin–orbit coupling, as corrobo-
rated by the lower HSO and kRISC of Acr-p2 and Pxz-p2 than that
of MCz-p2 (Table 1). These quantum chemical interpretations
of the seven model molecules are in good agreement with the
general trends in the FP importance shown in Fig. 1D.

Experimental validation

To experimentally validate the virtual screening results,MCz-p2
with a quantum-chemically calculated kRISC of 2.94 × 108 s−1

and a model-predicted kRISC of 1.11 × 108 s−1 was synthesized.
The photophysical properties ofMCz-p2 were evaluated in a N2-
purged toluene solution. Under a steady-state photoexcitation
condition, MCz-p2 exhibited a sky-blue emission with
a maximum peak wavelength of 485 nm (2.56 eV) (Fig. 3A and
Table 2), as consistent with the S1 excitation energy (ES1 = 2.52
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Quantum chemically calculated excited-state properties

Molecule ES1
a (eV) ET1

b (eV) DEST
c (eV) EA

d (eV) le (eV) HSO
f (cm−1) kRISC

g (s−1)

MCz-m1 2.550 2.341 0.262 0.264 0.227 2.32 1.10 × 105

MCz-m2 2.334 2.254 0.161 0.191 0.134 1.44 9.20 × 105

MCz-p1 2.724 2.518 0.261 0.269 0.169 3.96 3.05 × 105

MCz-p2 2.524 2.257 0.110 0.121 0.0953 6.11 2.94 × 108

Cz-p2 2.614 2.305 0.380 0.452 0.235 3.74 1.96 × 102

Acr-p2 2.374 2.308 0.0424 0.100 0.0292 0.599 1.13 × 107

Pxz-p2 1.993 1.994 0.0181 0.0896 0.00669 0.385 1.47 × 107

a Vertical S0–S1 excitation energy at the optimized S1 geometry. b Vertical S0–T1 excitation energy at the optimized T1 geometry. c Adiabatic energy
gap between S1 and T1 at their respective optimized geometries. d Activation energy from the optimized T1 state to the minimum-energy singlet–
triplet crossing seam. e Reorganization energy from the optimized T1 state to the optimized S1 state.

f Spin–orbit coupling matrix element between
S1 and T2 at the minimum-energy singlet–triplet crossing seam. g Rate constant of RISC calculated by using eqn (1).
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eV) calculated by TD-DFT. The emission is characterized by
a broad, unstructured spectrum originating from the predom-
inantly 1CT state. The photoluminescence (PL) quantum yield
was measured to be 82%, which was reduced to 63% when
measured in air. This reduction indicates the contribution of
triplet excited states to the emission since the triplet states can
be at least partially quenched by atmospheric O2.

Transient PL decay measurements of MCz-p2 conrmed
both prompt and delayed uorescence components, with time
Fig. 3 (A) Steady-state absorption and PL spectra of MCz-p2 in a tolue
solution exposed to UV light. (B) Transient PL decays of MCz-p2 measu
shows the fit of the transient PL decay to eqn (2) in ‘Methods’. The inset
measured at varying temperatures. The inset in (C) represents the temp
equation. (D–F) Current density–voltage–luminance characteristics (D)
teristics (F) of the fabricated OLEDs. The inset in (F) is a photograph of a

© 2025 The Author(s). Published by the Royal Society of Chemistry
constants (sPF and sDF) of 1.4 ns and 852 ns, respectively (Fig. 3B
and Table 2). In comparison to this sub-microsecond sDF of
MCz-p2, typical TADF materials exhibit sDF in the microsecond
to millisecond time range, e.g. 2.8 ms for the seminal TADF
molecule 4CzIPN.6 Further kinetic analysis of the transient PL
decay (described in ‘Methods’) revealed that the RISC ofMCz-p2
is indeed on the order of nanoseconds with an exceptionally
high kRISC of 1.3 × 108 s−1, in good quantitative agreement with
the model-predicted kRISC of 1.11 × 108 s−1. We note that the
ne solution (10−5 M). The inset in (A) is a photograph of the MCz-p2
red with picosecond pulsed excitation at 375 nm. The blue line in (B)
in (B) is the log–log representation. (C) Transient PL decays of MCz-p2
erature-dependence of kISC and kRISC with their fits to the Arrhenius
, EL spectra (E), and external quantum efficiency-luminance charac-
n OLED using MCz-p2 working at high luminance (>5000 cd m−2).

Chem. Sci., 2025, 16, 9303–9310 | 9307
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Table 2 Experimental excited-state properties of MCz-p2

lPL
a (nm) FPL

b (%) sPF
c (ns) sDF

d (ns) kr
e (s−1) knr

f (s−1) kISC
g (s−1) kRISC

h (s−1) DEST (eV)

485 82 1.4 852 5.3 × 106 1.2 × 106 5.8 × 108 1.3 × 108 0.010i/0.050j

a Photoluminescence (PL) peak wavelength. b PL quantum yield. c Time constant of prompt uorescence. d Time constant of delayed uorescence.
e Rate constant of radiative decay of the S1 state to the S0 state.

f Rate constant of non-radiative decay of the S1 state to the S0 state.
g Rate constant of

intersystem crossing (ISC) of the S1 state to the T1 state.
h Rate constant of reverse intersystem crossing (RISC) of the T1 state to the S1 state.

i Energy
gap between the S1 and T1 states, estimated from the kRISC/kISC ratio, assuming the equilibrium between the S1 state and the three T1 sublevels.
j Energy gap between the S1 and T1 states, estimated as the difference between activation energies of RISC and ISC.
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rapid RISC of MCz-p2 can be retained in a solid-state host
matrix 3,30-bis(carbazol-9-yl)biphenyl (mCBP) (Table S1 and
Fig. S4†), though the emission is slightly red-shied to
a maximum peak wavelength of 495 nm, indicating a stabiliza-
tion of a 1CT state in a higher dielectric environment of mCBP
than toluene.

We measured the temperature-dependent transient PL
decays of MCz-p2 in toluene (Fig. 3C). The decay kinetics
suggest that the delayed uorescence is attributed to a ther-
mally activated process, as evidenced by the increase of sDF with
decreasing temperature. Using the Arrhenius equation, the
corresponding activation energies of ISC and RISC were esti-
mated to be 0.001 eV and 0.051 eV, respectively. The difference
between these activation energies gives DEST of 0.050 eV. An
estimate of DEST was also obtained from the kRISC/kISC ratio,
yielding a value of 0.010 eV (Table 2). We note that the former
estimate is reasonably closer to the calculated value of 0.110 eV
(Table 1).

The electroluminescence properties of MCz-p2 were also
evaluated to demonstrate the practical implications of high
kRISC in OLED performance (Fig. 3D–F). The details of the OLED
structures and fabrication procedures are described in
‘Methods’. The fabricated OLEDs were conrmed to have MCz-
p2 as the only source of electroluminescence with a maximum
peak wavelength of 495 nm (Fig. 3E). The measured external
quantum efficiency reached a maximum of 25.7% (Fig. 3F),
corresponding to an internal quantum efficiency of 85.7%,
assuming a light-outcoupling efficiency of 30% for a bottom-
emission OLED. Crucially, a high external quantum efficiency
of 22.8% was retained even at a practically high luminance of
5000 cd m−2. The suppression of efficiency roll-off was further
quantied by the critical current density (J80%) at which the
external quantum efficiency decreases to 80% of its maximum.
A J80% of 19 mA cm−2 was recorded for the MCz-p2 device,
indeed higher than 8.2 mA cm−2 observed for a device using
4CzIPN as an emitter. These results are attributed to the higher
kRISC of MCz-p2, which maintains a comparatively low triplet
exciton concentration and thus suppresses bimolecular
recombination processes at high luminance.
Conclusions

We have shown that the coupling of Bayesian optimization and
quantum chemical calculations provides a promising tool for
identifying novel TADF molecules capable of rapid triplet-to-
singlet conversion. A relevant molecule has been
9308 | Chem. Sci., 2025, 16, 9303–9310
experimentally demonstrated to exhibit a high kRISC of 1.3× 108

s−1. Furthermore, the post-hoc interpretation of the machine-
learning model reveals how the molecular structures inuence
excited-state energies, spin–orbit couplings, and ultimately
kRISC, offering valuable chemical insights for future materials
design.

Bayesian optimization is poised to become an empowering
tool for materials scientists in both academic and industrial
settings by mitigating costly evaluations. Its efficient and scal-
able nature can further expedite the development of spin-
conversion materials for organic optoelectronics, as demon-
strated in this study, as well as in broader applications such as
photocatalysis, uorescent bioimaging, and photodynamic
therapy.
Methods
Quantum chemical calculations

All of the quantum chemical calculations were performed in
vacuum. For the low-cost calculations of the descriptors, the
geometries of T1 were optimized for each molecule using spin-
unrestricted DFT with the LC-BLYP functional and the 6-31G
basis set, as implemented in the Gaussian16 program.55 Using
the optimized T1 geometries, single-point TD-DFT calculations
were performed with the LC-BLYP functional and the 6-31G
basis set within the Tamm–Dancoff approximation to obtain
descriptors: EHOMO, ELUMO, and DEST. Based on these low-cost
TD-DFT calculations, a descriptor HSO was obtained using the
Breit–Pauli spin–orbit Hamiltonian with an effective charge
approximation, as implemented in the PySOC program.56 The
range-separation parameter of the LC-BLYP functional was set
to 0.15 bohr−1 to balance the Hartree–Fock exchange with the
DFT exchange for the CT states in the donor–acceptor systems.

For the high-delity calculations of kRISC using eqn (1), the
geometries of the S1, T1, and singlet–triplet crossing seam were
optimized for each molecule using the TD-DFT with the LC-
BLYP functional and the 6-31+G(d) basis set within the
Tamm–Dancoff approximation, as implemented in the
GRRM17 program,57 which refers to the energies and gradients
calculated by the Gaussian16 program. The minimum-energy
singlet–triplet crossing seam was calculated between S1 and
T2 for all molecules except for mol-00003 (its molecular struc-
ture is given in ‘ESI†’), where the calculations converged
between S1 and T3. The range-separation parameter of the LC-
BLYP functional was non-empirically optimized for each
molecule to minimize the differences between the HOMO
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc01903f


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 7
:0

9:
02

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
energies and the ionization potentials in both the neutral and
radical anion systems.58 Geometry optimization calculations for
the seven model molecules were carried out, considering rele-
vant conformers.

Machine learning

The logarithmic scale values of the calculated kRISC were used
for the training data to facilitate balanced learning from the
entire dataset, including both low and high kRISC values. A
Gaussian process surrogate model was used for Bayesian opti-
mization, as implemented in the COMBO library.38 Hyper-
parameters of the Gaussian kernels were optimized by
maximizing the type-II likelihood, allowing the model to adapt
to the data at each iteration of Bayesian optimization. Expected
improvement was used as the acquisition function for balanced
exploration and exploitation to select the next molecule for
evaluation. SHAP values were calculated by the SHAP version
0.34.0 53 for the Gaussian process model trained on the dataset
obtained through the Bayesian optimization procedures.

Synthesis

MCz-p2 was synthesized by palladium-catalyzed Buchwald–
Hartwig amination of 3,6-dibromothioxanthone with 1,8-
dimethyl-3,6-diphenyl-9H-carbazole. The detailed synthetic
procedure and characterization data are given in ‘ESI†’.

Photophysical evaluation

Steady-state PL spectra were recorded on an Edinburgh Instru-
ments FS5 spectrouorometer with 375 nm photoexcitation
from a Xe arc lamp. The absolute PL quantum yields were
determined using a Hamamatsu Photonics C9920 integrated
sphere system with 375 nm excitation from a Xe arc lamp.
Transient PL decay measurements were performed by time-
correlated single photon counting using an Edinburgh Instru-
ments FS5 spectrouorometer equipped with a 375 nm pulsed
diode laser (pulse width 60 ps).

The differential rate equation of the S1 and T1 populations
(eqn (2)) was employed in the numerical tting of the transient
PL decays to obtain the rate constants of each excited-state
transition, assuming negligible radiative and non-radiative
decays from T1 to S0.

d

dt

 
S1

T1

!
¼
 
�ðkr þ knr þ kISCÞ kRISC

kISC �kRISC

! 
S1

T1

!
(2)

where kr, knr, kISC, and kRISC represent the rate constants of
radiative decay from S1 to S0, non-radiative decay from S1 to S0,
ISC from S1 to T1, and RISC from T1 to S1, respectively. kr + knr
was resolved into individual rate constant using the PL
quantum yield.

OLED fabrication and evaluation

OLEDs were fabricated on glass substrates covered with indium
tin oxide (ITO) (sheet resistance = 15 U sq−1). The substrates
were sequentially cleaned by sonication in detergent, deionized
water, acetone, and 2-propanol, followed by UV-ozone
© 2025 The Author(s). Published by the Royal Society of Chemistry
treatment. Phosphomolybdic acid (PMA) in acetonitrile (0.25 g
L−1) was spin-coated on the substrates and annealed at 120 °C
on a hot plate for 10 min in ambient conditions. The organic
layers and a LiF/Al cathode were sequentially deposited on the
substrates under vacuum (<8 × 10−4 Pa) at a deposition rate of
<0.9 nm s−1 through a shadow mask dening a pixel size of 4.0
mm2. The deposition rate and layer thicknesses of each layer
were monitored using a quartz crystal microbalance. The
fabricated OLEDs consist of the following layer sequences:
glass/ITO (50 nm)/PMA (5 nm)/TAPC (70 nm)/CCP (10 nm)/
12 wt% Emitter:mCBP (30 nm)/PPF (10 nm)/B3PyPB (40 nm)/LiF
(1 nm)/Al (100 nm). EL spectra were recorded using a Hama-
matsu Photonics PMA-12 photonic multichannel analyzer.
Current density–voltage–luminance characteristics were
measured using a Konica Minolta CS-200 luminance meter and
a Keithley 2400 source meter. The viewing-angle dependence of
luminance was conrmed to follow the Lambertian
distribution.

Data availability

All data including the input and output data used with the
machine learning model are present in the paper and/or the
ESI.†
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