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ng for synthesizability in
generative molecular design using retrosynthesis
models†

Jeff Guo *ab and Philippe Schwaller*ab

Synthesizability in generative molecular design remains a pressing challenge. Existing methods to assess

synthesizability include heuristics-based metrics or retrosynthesis models which predict a synthetic

pathway. By contrast, an explicit approach anchors generation with “synthetically-feasible” chemical

transformations, such that all generated molecules already have a predicted synthetic pathway. To date,

retrosynthesis models have been mostly used as a post hoc filtering tool as their inference cost remains

prohibitive to use directly in an optimization loop. In this work, we show that with a sufficiently sample-

efficient generative model, it is straightforward to directly optimize for synthesizability using

retrosynthesis models in goal-directed generation. Under a heavily-constrained computational budget,

our model can generate molecules satisfying multi-parameter drug discovery optimization tasks while

being synthesizable, as deemed by retrosynthesis models. We reaffirm previous findings that common

synthesizability heuristics (formulated based on known bio-active molecules) can be well correlated with

retrosynthesis models' solvability, such that optimizing for the latter may not be an optimal allocation of

computational resources. However, going further, we show that moving to other classes of molecules,

such as functional materials, current heuristics' correlations diminish, such that there is an advantage to

incorporating retrosynthesis models directly in the optimization loop. Finally, we demonstrate that over-

reliance on synthesizability heuristics can overlook promising molecules. The codebase is available at

https://github.com/schwallergroup/saturn.
1 Introduction

Generative molecular design for drug discovery has achieved
experimental validation across numerous targets, with many
candidate molecules progressing into clinical trials.1 However,
the synthesizability of generated designs remains a pressing
challenge. Regardless of how “good” generated molecules are,
they must be synthesized and experimentally validated to be of
use, and work has shown that many generative models propose
molecules for which nding a viable synthetic route is, at the
very least not straightforward.2,3

Existing works tackle synthesizability in generative molec-
ular design either by incorporating synthesizability metrics (via
heuristics4 or retrosynthesis models5) in the objective functions
or by explicitly enforcing a notion of synthesizability directly in
the generative process.6–8 The latter can be broadly categorized
as synthesizability-constrained generative models and have
become increasingly prevalent. A typical metric to quantify
EPFL), Switzerland. E-mail: jeff.guo@ep.

(NCCR) Catalysis, Switzerland
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synthesizability is whether a retrosynthesis model can solve
a route for the generated molecules. While synthesizability-
constrained generative models already, by design, output
a predicted synthetic pathway, recent works have additionally
applied retrosynthesis models for post hoc assessment.9–11 It is
common practice to apply retrosynthesis models during post
hoc ltering due to their inference cost.2,3 On the other hand,
sample efficiency is also a pressing challenge, which concerns
with how many oracle calls (computational predictions of
molecular properties) are required to optimize an objective
function. When these oracle calls are computationally expen-
sive, there is a practical limit to an acceptable oracle budget for
real-world model deployment. The Practical Molecular Opti-
mization (PMO) benchmark12 highlighted the importance of
sample efficiency and since then, more recent works have
explicitly considered an oracle budget.13–22

Saturn,22 a language-based molecular generative model built
on the Mamba architecture,23 has recently demonstrated state-
of-the-art sample efficiency when compared to 22 existing
models. Building on this advancement, our work shows that
with a sufficiently sample-efficient generative model, retrosyn-
thesis models can be treated as oracles and directly incorpo-
rated into the molecular generation optimization process –

specically targeting molecules with feasible synthesis routes.
Chem. Sci., 2025, 16, 6943–6956 | 6943
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Although similar approaches have been explored,24–26 our work
explores optimization under a signicantly more constrained
oracle budget (1000 evaluations compared to their 32 000, 64
000, and 256 000 on the hardest task, respectively). We also
perform multi-parameter optimization (MPO) involving dock-
ing and semi-empirical quantum-mechanical simulations.
These computations can be expensive, thus understanding
optimization under these settings is practically important. Our
contribution is as follows:

(1) Contrary to many existing works, we directly optimize for
synthesizability using any (template-based, graph edits-based,
seq2seq SMILES) retrosynthesis model. Our approach can
outperform specialized synthesizability-constrained generative
models on MPO tasks and generate more desirable molecules
under highly constrained computational budgets.

(2) We intentionally pre-train a model unsuitable for gener-
ating synthesizable molecules and present an optimization
recipe leveraging synthesizability heuristics that can ne-tune
this model to generate synthesizable molecules in under
a minute (building on observations made in previous
works2,27,28).

(3) We show that whenmoving from “drug-like”molecules to
functional materials, the ability to leverage the correlation
between synthesizability heuristics and retrosynthesis models'
solvability is diminished. In these cases, directly optimizing for
retrosynthesis models can offer clear benets.

(4) Finally, it is well known that synthesizability heuristics
are imperfect in predicting synthesizability and that “poor”
heuristic scores can still entail synthesizable molecules.4 We
supplement existing works and explicitly show that in the
generative paradigm, incorporating retrosynthesis models
directly in the optimization loop can highlight desirable
chemical spaces that would have been overlooked had only
heuristics scores be considered.

2 Related works
2.1 Assessing synthesizability

2.1.1 Synthesizability metrics. Quantifying and dening
synthesizability is non-trivial and early metrics assess molecular
complexity rather than synthesizability explicitly. Exemplary
works include the Synthetic Accessibility (SA) score4,29 and
SYnthetic Bayesian Accessibility (SYBA)30 which are based on
the frequency of chemical groups in databases. The Synthetic
Complexity (SC) score31 is trained on Reaxys data to measure
molecular complexity and implicitly considers the number of
synthetic steps required to make a target molecule. There is
a correlation between these scores and whether retrosynthesis
tools can solve a route.2,27,28,32 The recent Focused Synthesiz-
ability (FS) score33 incorporated domain-expert preferences34 to
assess synthesizability.

2.1.2 Retrosynthesis models. Given a target molecule, ret-
rosynthesis models propose viable synthetic routes by
combining commercial building blocks (starting reagents) with
reaction templates (coded patterns that map chemical reaction
compatibility) or template-free approaches (learned patterns
from data). Exemplary examples include the rst works35–37
6944 | Chem. Sci., 2025, 16, 6943–6956
targeting retrosynthesis and applying Monte Carlo tree search
(MCTS).5 Retrosynthesis platforms include SYNTHIA,38,39

AiZynthFinder (AiZynth),40,41 ASKCOS,37,42,43 Eli Lilly's LillyMol,44

Molecule.one's M1 platform,45 and IBM RXN.46–48 We further
highlight surrogate models including Retrosynthesis Accessi-
bility (RA) score49 and RetroGNN50 trained on the output of
retrosynthesis models for faster inference. Note that these
models output a score rather than synthetic routes. Finally,
recent work proposes bidirectional synthesis planning, allowing
starting material constraints.51
2.2 Generating synthesizable molecules

2.2.1 Enumeration-based methods. Expansion methods
include SYNOPSIS,52 Design of Genuine Structures (DOGS),53

design of innovative NCEs generated by optimization strategies
(DINGOS),54 and RENATE.55,56 These methods enumerate
candidate molecules following a set of pre-dened reaction
rules and have demonstrated experimental validation.56

2.2.2 Machine learning approaches. More recently,
machine learning methods encompassing molecular generative
models have been formulated with a notion of explicit synthe-
sizability which we categorize broadly into synthesizability-
constrained models and goal-directed generation with synthe-
sizability metrics.

2.2.3 Synthesizability-constrained molecular generation.
Synthesizability-constrained generative models explicitly
constrain generation by enforcing transformations from pre-
dicted reactivity of building blocks or from a set of permitted
reaction templates. These methods include MOLECULE CHEF,6

Synthesis Directed Acyclic Graph (DAG),7 ChemBO,57 SynNet,8

SyntheMol,58 SynFormer,59 and SynthFormer.60 Models that also
use reinforcement learning (RL) include Policy Gradient for
Forward Synthesis (PGFS),61 Reaction-driven Objective Rein-
forcement (REACTOR),62 LibINVENT,63 and SynFormer.59

Recent works have equipped GFlowNets64 with reaction
templates, including SynFlowNet,10 RGFN,9 and RxnFlow.11

Recent work proposes a model capable of “projecting” unsyn-
thesizable molecules into similar, but synthesizable analogs.65

2.2.4 Goal-directed generation with synthesizability
metrics. An alternative to synthesizability-constrained molec-
ular generation is to task molecular generative models to also
optimize for synthesizability metrics33,66 in the objective func-
tion, with common ones being SA score.2,3 Although the SA
score assesses molecular complexity, it is correlated with
whether AiZynth can solve a route.2,27,28,32 Generally, more
condence is placed on the output of retrosynthesis models in
assessing synthesizability, which is reected in recent studies
that quantify model performance based on whether generated
molecules have a solved route.9–11,65 Here, we incorporate ret-
rosynthesis tools as an oracle in MPO objective functions to
directly optimize for synthesizability (Fig. 1).
3 Methods

In this section, we describe in detail the generative model, ret-
rosynthesis models used, and the case studies (drug discovery
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of algorithmic methods to handle synthesizability in generative molecular design.
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and functional materials). We defer experiment-specic details
including objective functions and metrics to the corresponding
Results sections.
3.1 Unconstrained generative model

We build on Saturn22 which is an autoregressive language-based
molecular generative model using RL. In that work, we
demonstrated state-of-the-art sample efficiency in dense reward
environments, where every molecule gave at least some reward.
However, it is unclear the performance of Saturn when high
reward molecules are more sparse and this can be a challenge
when including retrosynthesis models as an oracle. In partic-
ular, retrosynthesis models either nd a synthetic route or not,
and rewarding partially decomposed target molecules is not
necessarily chemically sound, i.e., just because a molecule can
be partially broken down, does not mean that molecule is
“more” synthesizable given xed building blocks and reaction
rules. In this study, we show that this increased sparsity, while
making optimization more challenging, can still be learned.
Finally, Saturn is separately pre-trained on the common
ChEMBL 33 (ref. 67) or ZINC 250k68 datasets to show that
regardless of the pre-training dataset, suitable molecules can be
generated in reasonable time (we report wall times).
3.2 Retrosynthesis models

Saturn's optimization loop is agnostic to the specic retrosyn-
thesis model used. In an effort to demonstrate this behavior, we
use four retrosynthesis models in this work, which span distinct
formulations. AiZynthFinder (from here on, written as
AiZynth)40,41 uses reaction templates and MCTS search. The
recent Syntheseus69 library benchmarked and provides access to
numerous retrosynthesis models, showing trade-offs in
© 2025 The Author(s). Published by the Royal Society of Chemistry
accuracy and speed. Subsequently, we also use the RetroKNN
(template-based),70 Graph2Edits (graph edits-based),71 and
RootAligned (seq2seq SMILES-based)72 retrosynthesis models.
We chose these models because they are amongst the best
accuracy and speed (as benchmarked in Syntheseus) and cover
diverse classes of model formulations. In contrast to AiZynth
which uses MCTS, we use the Retro* search algorithm73 for
these models to emphasize that our approach is retrosynthesis
model-agnostic. We used the default hyperparameters for all
models. The maximum permitted search time for AiZynth and
Syntheseus models were 120 and 180 seconds, respectively, and
was terminated if one valid route is found. Lastly, retrosynthesis
models propose synthetic routes based on a pre-dened set of
“building blocks” (it is common to consider commercially
available reagents). We use several building block stocks (size in
parentheses) in the retrosynthesis models including AiZynth's
default stock which is based on ZINC40,41,68 (17 422 831), the
‘Fragment’ and ‘Reactive’ sub-sets of ZINC (17 721 980),
Enamine US stock (249 946), Enamine EU stock (160 244), and
the Sigma Aldrich sub-set from the original ASKCOS42 work (20
290). We use different building block stocks with varying sizes
to provide commentary on the effects. In each experiments'
section, we specify which stock was used.
3.3 Drug discovery case study

We use the case study proposed in the recent synthesizability-
constrained Reaction GFlowNet (RGFN)9 work and re-
implement their case study faithfully as the code was not
released (see the ESI† for details). We use this case study in
experiments to compare to their work and to showcase that our
approach is retrosynthesis model-agnostic. The case study is to
generate molecules with optimized QuickVina2-GPU-2.1 (ref.
74–76) docking scores against ATP-dependent Clp protease
Chem. Sci., 2025, 16, 6943–6956 | 6945
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Fig. 2 Experiment 1: optimizing only docking scores. (a) Distribution
of docking scores at varying oracle budgets. The estimated best
docking score across comparison methods (estimated from Fig. 3 in
the RGFN9 work) are annotated as dotted lines. (b) Example lipophilic
molecules generated by Saturn with the best docking scores. Based on
the RGFN work, all models except Saturn were run with a 400 000
oracle budget or 72 hours, whichever was reached first. For Saturn, we
used a 1000 or 10 000 oracle budget.
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proteolytic subunit (ClpP)77 while being synthesizable, as
deemed by the AiZynth40,41 retrosynthesis model, i.e., whether
a synthetic route can be found.

3.4 Functional materials case study

We follow the case study proposed by Yuan et al.78 to design
potential organic semiconductors by targetting specic ranges
of electronic properties. Using semi-empirical quantum-
mechanical calculations through xTB,79 the task is to generate
molecules with 1.8 eV#HOMO–LUMO gap# 2.2 eV and dipole
moment < 2 Debye. We additionally add the constraint that
generated molecules must be solvable by a retrosynthesis
model.

4 Results and discussion

We devise six experiments to answer specic questions. The
specic questions are discussed in the corresponding Results
sections:

(1) (Drug discovery): optimizing only the docking score
following the RGFN work.9

(2) (Drug discovery): jointly optimizing docking score and
AiZynth.

(3) (Drug discovery): jointly optimizing docking score and
AiZynth starting from an intentionally unsuitable pre-trained
model.

(4) (Drug discovery): jointly optimizing docking score and
synthesizability using any retrosynthesis model.

(5) (Drug discovery and functional materials): demonstrating
that going “out-of-distribution” of synthesizability heuristics
can lead to misleading proxies of synthesizability

(6) (Drug discovery): demonstrating that over-reliance on
synthesizability heuristics can overlook promising chemical
spaces.

In experiments 1 and 2, we compare to previous models:
GraphGA,80 SyntheMol,58 FGFN,81 and RGFN.9 We highlight one
caveat in the ensuing comparisons: Saturn is pre-trained with
the common ChEMBL 33 (ref. 67) or ZINC 250k68 datasets which
contain bio-active molecules and inherently bias the learned
distribution to already known synthesizable entities.2 On the
other hand, synthesizability-constrained models, such as RGFN
denes a state space based on reaction templates and building
blocks. Therefore, the starting distribution is not the same.
However, we believe this is still a meaningful comparison
because we pre-train on common datasets, used in all genera-
tive molecular design benchmark literature.12,82,83 Finally, all
experiments with the exception of experiment 1, were run across
10 seeds (0–9 inclusive) and the mean and standard deviation
are always reported.

4.1 Experiment 1: optimizing only docking score leads to
unreasonable molecules

In this section, we follow RGFN's9 case study exactly and show
that only optimizing for docking scores can negatively
compromise physico-chemical properties. Correspondingly, we
use the following reward function:
6946 | Chem. Sci., 2025, 16, 6943–6956
RRGFN(x) = Docking score(x) (1)

where x is a generated molecule. It is generally not advised to
optimize this in isolation because docking oracles can be highly
exploitable, such that lipophilic (lots of carbon atoms and high
log P) molecules (promiscuous binders with solubility
issues84) receive good docking scores. We show that with 10 000
oracle calls, Saturn (pre-trained on ChEMBL 33) generates
molecules with approximately the same best docking scores
compared to GraphGA,80 SyntheMol,58 FGFN,81 and RGFN9

which were run with 400 000 oracle calls (40× higher budget).
We perform one replicate here as we only want to convey that
the objective function is highly exploitable. Fig. 2a shows the
distribution of docking scores at varying oracle budgets. We
illustrate how the docking oracle can be exploited in Fig. 2b
which shows the best molecules generated by Saturn. Although
possessing good docking scores, they are lipophilic with high
molecular weight and low QED. Consequently, these are not
meaningful molecules. Table 1 in the RGFN9 work shows that
the best generated molecules across various models also have
low QED: GraphGA (∼0.32), FGFN (∼0.22), and RGFN (∼0.23),
suggesting that they are also exploiting the docking oracle. We
note that SyntheMol has slightly higher QED (∼0.45).

4.2 Experiment 2: directly optimizing for synthesizability
using AiZynth

In the previous section, we have shown that generative models
can exploit docking oracles. Yet, docking scores can be valuable
as they can be correlated with better binding affinity85 and
should be optimized in combination with oracles that modulate
physico-chemical properties. Correspondingly, we dene two
reward functions in this section:

RAll MPOðxÞ ¼

ðDocking scoreðxÞ$QEDðxÞ$SA scoreðxÞ$AiZynthðxÞÞ14˛½0; 1�
(2)

RDouble MPOðxÞ ¼ ðDocking scoreðxÞ �AiZynthðxÞÞ
1
2˛½0; 1� (3)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Synthesizability metrics for top-kModes (molecules with docking score <−10). Results are taken from the RGFN9 work (it was not stated
howmany replicates the models were run for). Mol. weight, QED, and SA score are reported for the top-500 Modes while AiZynth is for the top-
100 Modes. All Saturn experiments were run across 10 seeds (0–9 inclusive). The mean and standard deviation are reported. Both Yield and
Modes are reported. The number after the configuration denotes the number of successful replicates out of 10 (Modes$ 1). For Saturn, none of
the configurations found 100Modes in 1000molecules generated so themetrics are reported for howevermanyModeswere found. NR denotes
“not reported”

Method Modes (yield) Mol. weight (Y) QED ([) SA score (Y) AiZynth ([) Molecules generated (wall time)

Previous work Top-500 Top-500 Top-500 Top-100
GraphGA NR 521.0 � 31.8 0.32 � 0.07 4.14 � 0.51 0.00 400 000 (NR)
SyntheMol NR 458.2 � 60.7 0.45 � 0.16 2.86 � 0.56 0.56 100 000 (72 h)
FGFN NR 548.6 � 42.9 0.22 � 0.03 2.94 � 0.54 0.25 400 000 (NR)
RGFN NR 526.2 � 37.6 0.23 � 0.04 2.83 � 0.22 0.65 400 000 (72 h)

RAll MPO(ours) 4 Objectives (docking, QED, SA, AiZynth)
Saturn-ChEMBL (10) 7 � 3 (16 � 13) 359.3 � 19.2 0.73 � 0.08 2.08 � 0.12 0.89 � 0.15 1000 (2 h 35 m � 12 m)
Saturn-ZINC (10) 5 � 4 (8 � 5) 369.9 � 44.0 0.76 � 0.09 2.28 � 0.41 0.94 � 0.10 1000 (2 h 25 m � 12 m)

RDouble MPO(ours) 2 Objectives (docking, AiZynth)
Saturn-ChEMBL (10) 59 � 12 (170 � 45) 420.9 � 24.9 0.40 � 0.04 2.25 � 0.11 0.90 � 0.05 1000 (2 h 35 m � 21 m)
Saturn-ZINC (10) 26 � 11 (81 � 47) 415.7 � 24.1 0.52 � 0.08 2.36 � 0.22 0.94 � 0.06 1000 (2 h 31 m � 10 m)

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/6

/2
02

6 
9:

38
:4

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
See the ESI† for details on reward shaping to normalize eqn
(2) and (3) ˛ [0, 1] and the exponential terms from the product
aggregator that outputs the nal reward. The rationale for RAll

MPO (eqn (2)) is because RGFN evaluates generated molecules
also by their quantitative estimate of “drug-likeness” (QED)
score86 and SA score.4 Since these are the downstream metrics,
we include them in the objective function. The rationale for
RDouble MPO is to illustrate a contrast in optimization difficulty as
RAll MPO is inherently more challenging. Moreover, the use of
RDouble MPO is to explicitly convey a sub-message of this section:
if certain properties are desirable in the generated molecules,
then these properties should be explicitly optimized for. Since
RDouble MPO does not optimize for QED, we do not expect the
generated molecules to possess high QED. We verify this in the
results. Finally, since synthesizability heuristics are computa-
tionally inexpensive, we perform an additional set of experi-
ments coupling GraphGA and Saturn which are non-
synthesizablity-constrained models with SA score (and QED)
and run post hoc ltering with AiZynth for comparison. The
corresponding reward function is:

RSA QEDðxÞ ¼ ðDocking scoreðxÞ$QEDðxÞ$SA scoreðxÞÞ
1
3˛½0; 1�

(4)

4.2.1 Metrics. Following the RGFN9 work, Modes is dened
as the set of molecules with docking score < −10 that also
possess Tanimoto similarity < 0.5 to each other. We note that
this threshold is somewhat arbitrary, so for Saturn results, we
additionally report Yield which denotes the total number of
unique molecules generated with a docking score < −10.

4.2.2 Experimental set-up. For the RAll MPO and RDouble MPO

experiments, we use an oracle budget of 1000 calls (how many
molecules are assessed by the objective function). While RGFN
used an oracle budget of 400 000 calls, an exact apples-to-apples
comparison on oracle budget alone cannot be made. This is
because our approach incorporates a retrosynthesis model
© 2025 The Author(s). Published by the Royal Society of Chemistry
directly in the optimization loop, which is considerably more
computationally expensive than just docking used in RGFN.
Therefore, we report the wall times as RGFN enforced a limit of
72 hours and also refer to “oracle calls” in just this section, as
“molecules generated”. We compare our approach with
GraphGA,80 SyntheMol,58 Fragment-based GFlowNet (FGFN),81

and RGFN.9 For the RSA QED experiments with GraphGA and
Saturn,22 we use 3000 and 1000 oracle budgets, respectively. We
do this so that the wall times of the models are similar. We
continue to enforce the highly constrained oracle budget even
though the runs themselves are not particularly long because:
(1) these models are sample-efficient12,22,87 and (2) should the
oracle be more expensive, increasing oracle budgets become
less feasible.12

4.2.3 Quantitative results. Table 1 shows the Saturn results
and also results taken from RGFN's9 work. The central message
of this section is that molecules satisfying the objective func-
tions can be found within 1000 generated molecules. An
important note is that all RGFN results (top half of Table 1)
report results for the top-500 (for Mol. weight, QED, SA score)
and top-100 (for AiZynth) Modes. Saturn does not nd 100
Modes in all congurations with 1000 generated molecules so
the metrics are reported for however many Modes were found.
Regardless of the pre-training dataset (ChEMBL 33 or ZINC
250k), Saturn can generate molecules satisfying RAll MPO and
RDouble MPO. We make the following specic observations: by
including AiZynth in the objective function, AiZynth solvable
molecules are generated. Including QED and SA score in the
objective function also optimizes these metrics (contrast RAll

MPO with RDouble MPO results). RDouble MPO nds notably more
Modes than RAll MPO because the optimization task is easier.
Finally, we highlight that although the raw number of Modes
generated when using the RAll MPO objective function is rela-
tively low (in 1000 generated molecules), if AiZynth does accu-
rately predict “true” synthesizability, then these Modes are
immediately actionable. Importantly, they satisfy every metric
Chem. Sci., 2025, 16, 6943–6956 | 6947
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in the objective function (low docking score, high QED, low SA
score, and is AiZynth solvable). See the ESI† for additional
experiments showing that optimizing also for QED is a consid-
erably more difficult task.

Next, we comment on the RSA QED results that remove
AiZynth from the optimization loop and rely on SA score to
guide the model towards AiZynth-solvable molecules. Table 2
contrasts the performance between GraphGA and Saturn. We
rst note that both methods used ZINC 250k to initialize the
models. In the case of GraphGA, the initial population was
sampled from ZINC 250k, which follows the original publica-
tion.80 In the case of Saturn, we used the ZINC 250k pre-trained
model. Next, we ran GraphGA under two oracle budgets: 1000
and 3000 to compare with Saturn with a 1000 oracle budget. The
reason is because GraphGA runs faster than Saturn which
requires back-propagation and QuickVina2-GPU is a computa-
tionally light docking oracle. Therefore, we increase the oracle
budget of GraphGA accordingly so that the wall times of the
methods are the same, for maximum fairness. However, this
makes two assumptions: (1) there are no additional costs for
running more oracle calls, e.g., monetary costs if using API-
services or licensed soware. (2) We ignore the computational
cost of manually running AiZynth on the generated molecules.
If one wants to assess more molecules, then the wall time is
non-negligible since AiZynth is by far the most computationally
intensive oracle compared to GPU docking, QED, and SA score.
Note that we refer to “oracle budget” now because the reward
function is xed here and neither model incorporates the ret-
rosynthesis model directly in the optimization loop. Lastly, the
hyperparameters of GraphGA were based on the optimal set
found in the PMO benchmark.80 Based on the results in Table 2,
we make the following observations: rstly, Saturn with 1000
oracle calls outperforms GraphGA with 1000 oracle calls across
all metrics. Secondly, GraphGA with 3000 oracle calls generates
more Modes than Saturn across both docking score thresholds.
However, the property values are less optimized, demonstrating
that Saturn performs MPO to a much greater extent. As we show
Table 2 Synthesizability metrics for all Modes using RSA QED which does n
– Saturn Dock which only optimizes for docking. The metrics are divid
GraphGA (initial population sampling) and Saturn (pre-training). All experim
deviation are reported. Both Yield and Modes are reported. The number a
of 10 (Modes $ 1 that are synthesizable). ‘Rxn steps‘ denotes the number

RSA QED 3 Objectives (docking, QED, SA)

Method Modes (yield) Mol. weight (Y) QED ([)

Docking score < −9
GraphGA (10) 30 � 6 (36 � 7) 398.4 � 11.1 0.61 � 0.04
GraphGA (10) 221 � 22 (327 � 55) 386.4 � 5.1 0.66 � 0.02
Saturn Dock (10) 121 � 33 (378 � 85) 406.3 � 14.3 0.54 � 0.05
Saturn (10) 38 � 13 (83 � 33) 343.3 � 6.2 0.80 � 0.05

Docking score < −10
GraphGA (8) 3 � 2 (3 � 2) 424.5 � 27.3 0.50 � 0.11
GraphGA (10) 29 � 8 (35 � 12) 405.7 � 12.6 0.61 � 0.05
Saturn Dock (10) 45 � 18 (135 � 53) 432.8 � 17.2 0.47 � 0.05
Saturn (9) 3 � 1 (4 � 2) 379.9 � 18.8 0.72 � 0.16

6948 | Chem. Sci., 2025, 16, 6943–6956
in the ESI,† jointly optimized QED makes achieving lower
docking scores more difficult because it constraints the
molecular weight. One can verify this by contrasting the average
molecular weights of the generated molecules. Furthermore,
because GraphGA generatedmolecules are larger, they also have
longer synthetic routes (about 1 step longer) as predicted by
AiZynth (Table 2). Lastly, the solve rate of Saturn generated
molecules are also higher because SA score is optimized to
a greater extent, though the absolute number of solved mole-
cules is higher in GraphGA with 3000 oracle calls. Overall, the
results convey two things: (1) SA score is a meaningful heuristic
for AiZynth-solvability. (2) Saturn optimizes MPO objectives to
a greater extent than GraphGA.

As an additional experiment, we also run a Saturn congu-
ration optimizing only for docking. As demonstrated previously
(Fig. 2), this is prone to docking score exploitation by generating
greasy molecules. However, under the limited 1000 oracle calls
budget, Saturn only begins to exploit the oracle. This is
demonstrated by the higher MW and lower QED compared to
the GraphGA and Saturn congurations which incorporate QED
in the objective function. Similar to GraphGA which optimizes
QED to a lesser extent and results in higher MW molecules,
‘Saturn Only Docking’ generates larger molecules which makes
it easier to achieve a better docking score. The consequence is
that generated molecules have, on average, a higher number of
reaction steps as predicted by AiZynth (Table 2).

4.2.4 Qualitative results. Fig. 3 shows the docking pose for
the generated molecules with the top-2 best docking score (no
cherry-picking) across all Saturn congurations. In all cases, the
pose conforms to the geometry of the binding cavity and the
molecule itself is AiZynth solvable (see the ESI† for the solved
routes). Generated molecules using RDouble MPO have better
docking scores than RAll MPO, which is expected as the optimi-
zation task is easier. In the case of RDouble MPO, the best mole-
cules have docking scores and QED values similar to the best
molecules generated by RGFN9 in 400 000 oracle calls (Fig. 2).
We highlight that the molecules from RDouble MPO possess
ot include AiZynth in the optimization loop. A baseline is also included
ed based on docking score thresholds. ZINC 250k was used for both
ents were run across 10 seeds (0–9 inclusive). Themean and standard
fter the configuration denotes the number of successful replicates out
of reaction steps of the generated molecules, as predicted by AiZynth

SA score (Y) Rxn steps (Y) AiZynth ([) Oracle calls (wall time)

2.77 � 0.15 3.50 � 0.30 0.43 � 0.11 1000 (3 m 2 s � 5 s)
2.48 � 0.10 3.43 � 0.15 0.49 � 0.04 3000 (9 m 12 s � 18 s)
2.57 � 0.28 3.11 � 0.40 0.59 � 0.15 1000 (8 m 6 s � 33 s)
2.10 � 0.10 2.04 � 0.26 0.85 � 0.07 1000 (8 m 51 s � 1 m 36 s)

2.78 � 0.42 3.26 � 0.71 0.50 � 0.23 1000 (3 m 2 s � 5 s)
2.46 � 0.20 3.46 � 0.48 0.53 � 0.16 3000 (9 m 12 s � 18 s)
2.64 � 0.32 3.39 � 0.44 0.55 � 0.17 1000 (8 m 6 s � 33 s)
2.26 � 0.16 2.77 � 0.84 0.82 � 0.21 1000 (8 m 51 s � 1 m 36 s)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Docked pose of the reference ligand (PDB ID: 7UVU) and generated molecules with the top-2 best docking scores (DS) across all Saturn
configurations and across all 10 seeds (0–9 inclusive). The reference pose is in gray and all generated molecules are in green. All molecules are
AiZynth solvable. (a) Molecules generated using RAll MPO. (b) Molecules generated using RDouble MPO.
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extensive carbon rings and are likely exploiting the docking
oracle. This is expected because RDouble MPO does not reward for
high QED.

4.3 Experiment 3: directly optimizing for synthesizability
using AiZynth starting from an unsuitable training
distribution

As we have shown in the last part of the previous section, SA
score is highly correlated with AiZynth solvability. In this
section, we demonstrate a straightforward optimization recipe
that allows the generation of AiZynth solvable molecules under
minimal computational resources.

Generative models are pre-trained to model the training data
distribution. The experiments thus far use Saturn which has
been trained with either ChEMBL 33 or ZINC 250k. These
datasets contain previously synthesized molecules and pre-
trained models can already generate molecules that can be
solved by a retrosynthesis model.2 In this section, we pre-train
Saturn on the fraction of ZINC 250k that is not AiZynth solv-
able. To do this, we ran AiZynth on the entirety of ZINC 250k
and kept the 98 110/248 188 unique SMILES that are not
AiZynth solvable. The model pre-trained on this data will be
referred to as “Purged ZINC” (see the ESI† for pre-training
metrics). The message we convey in this section is that even
with an intentionally unsuitable training distribution, both RAll

MPO and RDouble MPO can still be optimized under a 1000 oracle
budget and within 2–3 hours, reinforcing the message that
© 2025 The Author(s). Published by the Royal Society of Chemistry
optimizing for synthesizability (as deemed by retrosynthesis
models) may not be as difficult as widely believed.

To do this, we leverage the correlation of SA score and
AiZynth solvability as previously noted.2,27,28,32 Specically, the
“Purged ZINC” model should not be expected to generate syn-
thesizable molecules at the start, since it was intentionally pre-
trained with non-synthesizable molecules. Tasking such
a model to optimize for retrosynthesis solvability immediately
would likely result in unsuccessful optimization. Therefore, we
apply curriculum learning (CL)88 which is a general framework
to decompose a complex optimization objective into sequential,
simpler objectives. Our end objective is to generate synthesiz-
able molecules with good docking scores. Since the initial
model cannot even generate synthesizable molecules, we make
the optimization more tractable by rst tasking Saturn with only
minimizing SA score rst. The intended effect is that once the
model learns to generate low SA score molecules, it is much
more likely that subsequently generated molecules will be
AiZynth solvable, precisely because SA score is a noisy proxy for
it. Correspondingly, the “Purged ZINC” model is tasked to
minimize SA score (500 oracle calls). Fig. 4a shows the optimi-
zation trajectory and the resulting model is referred to as
“Purged ZINC SA”. The 500 oracle calls are not counted in the
1000 oracle budget, as computing SA score is cheap (this
process took 56 seconds). Next, to illustrate distribution
learning, we sample 1000 unique molecules from the “Normal
ZINC” (trained on the full dataset), “Purged ZINC”, and “Purged
Chem. Sci., 2025, 16, 6943–6956 | 6949
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Fig. 4 Correlation of SA score and AiZynth solve rate and learning to
generate AiZynth solvable molecules. (a) “Purged ZINC” is tasked to
minimize SA score. The average SA score of the sampled batches are
shown. (b) AiZynth solve rates for 1000 molecules sampled from
different models. (c) All MPO task: fraction of generated molecules
(without the GA activated) across all batches that are AiZynth-solvable.
Values are the mean and the shaded regions are the minimum–
maximum across 10 seeds (0–9 inclusive). (d) Example molecules
generated from the “Purged ZINC” and “Purged ZINC SA” models with
the best docking scores (DS).
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ZINC SA”models and run AiZynth. Fig. 4b shows the fraction of
molecules that are AiZynth solvable. In under a minute, the
“Purged ZINC” model (which generates mostly AiZynth non-
solvable molecules) can be ne-tuned to immediately generate
molecules that are almost all solvable. Next, we show how the
“Purged ZINC” model can learn to generate molecules that are
AiZynth solvable during the course of RL (Fig. 4c). We contrast
this with the “Purged ZINC SA” model which has almost 100%
solve rate throughout the entire run. During the runs, some
seeds occasionally generate batches that are not AiZynth solv-
able (lower bound of the shaded region), but this is not detri-
mental (see the ESI† for more details). Fig. 4d shows the
molecules with the best docking score generated across all
seeds. The property proles are essentially the same as the runs
with the “Normal ZINC” model (Fig. 3).
Table 3 Synthesizability metrics for “Normal ZINC” (results from Table 1),
10 seeds (0–9 inclusive). The mean and standard deviation are reported. B
denotes the number of successful replicates out of 10 (Modes $ 1 that
were found

Method Modes (yield) Mol. weight (Y) QE

RAll MPO 4 Objectives (docking, QED, SA, AiZynth)
Normal ZINC (10) 5 � 4 (8 � 5) 369.9 � 44.0 0.7
Purged ZINC (10) 6 � 5 (9 � 10) 342.6 � 14.8 0.7
Purged ZINC SA (8) 13 � 8 (28 � 18) 355.2 � 12.2 0.7

RDouble MPO 2 Objectives (docking, AiZynth)
Normal ZINC (10) 26 � 11 (81 � 47) 415.7 � 24.1 0.5
Purged ZINC (10) 31 � 15 (129 � 99) 416.4 � 42.2 0.5
Purged ZINC SA (10) 36 � 13 (215 � 133) 426.5 � 16.2 0.4

6950 | Chem. Sci., 2025, 16, 6943–6956
4.3.1 Quantitative results. Table 3 contrasts the results
using the “Normal ZINC”, “Purged ZINC”, and “Purged ZINC
SA” models. Despite an unsuitable training distribution,
“Purged ZINC” can still generate Modes that are AiZynth solv-
able, although the solve rate can be slightly lower than “Normal
ZINC”. “Purged ZINC SA” was rst ne-tuned to minimize SA
score and already generated mostly AiZynth solvable molecules
(Fig. 4b). This process benets both RAll MPO (less so) and RDouble

MPO as the Yield and Modes found are higher. Overall, we show
that regardless of the starting model, generated molecules with
all models possess property proles better than GraphGA,80

SyntheMol,58 FGFN,81 and RGFN9 (contrast Saturn metrics in
Fig. 4d compared to the average metrics of the comparing
models in Tables 1 and 2).

4.4 Experiment 4: directly optimizing for synthesizability
using any retrosynthesis model

Our approach of directly incorporating retrosynthesis models in
the optimization loop is retrosynthesis-model agnostic. In the
experiments thus far, we used AiZynth.40,41 In this section, we
run the same RAll MPO and RDouble MPO reward functions using
RetroKNN (template-based),70 Graph2Edits (graph edits-
based),71 and RootAligned (seq2seq SMILES-based)72 as the
retrosynthesis models. The building block set is the ZINC
‘Fragment’ and ‘Reactive’ sub-sets (17 721 980) and we use
Saturn pre-trained on ChEMBL 33.67 Table 4 shows the quan-
titative metrics for RAll MPO and RDouble MPO. In all cases, the
optimization task can be solved within 1000 oracle calls. The
wall time discrepancies are due to differences in the retrosyn-
thesis models' inference speed. The wall times may also be
longer than AiZynth because we ran multiple experiments
simultaneously on a single workstation due to GPU limitations.
See the ESI† for more details.

4.5 Experiment 5: generating out-of-distribution of
synthesizability heuristics

In experiment 2, we showed that optimizing SA score and then
post hoc ltering with a retrosynthesis model nds more desir-
able molecules than directly incorporating retrosynthesis
models in the optimization loop. The natural question is
“Purged ZINC”, and “Purged ZINC SA”. All experiments were run across
oth Yield and Modes are reported. The number after the configuration

are synthesizable). The metrics are reported for however many Modes

D ([) SA score (Y) AiZynth ([) Oracle calls (wall time)

6 � 0.09 2.28 � 0.41 0.94 � 0.10 1000 (2 h 25 m � 12 m)
5 � 0.10 2.16 � 0.25 0.89 � 0.16 1000 (2 h 49 m � 20 m)
2 � 0.05 2.01 � 0.12 0.97 � 0.03 1000 (2 h 42 m � 22 m)

2 � 0.08 2.36 � 0.22 0.94 � 0.06 1000 (2 h 31 m � 10 m)
1 � 0.13 2.49 � 0.32 0.89 � 0.10 1000 (2 h 55 m � 20 m)
1 � 0.06 2.20 � 0.27 0.94 � 0.08 1000 (3 h 13 m � 22 m)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Synthesizability metrics RetroKNN, Graph2Edits, and RootAligned. All Saturn (pre-trained with ChEMBL 33) experiments were run across
10 seeds (0–9 inclusive). The mean and standard deviation are reported. Both Yield and Modes are reported. The number after the configuration
denotes the number of successful replicates out of 10 (Modes $ 1 that are synthesizable). For Saturn, none of the configurations found 100
Modes in 1000 oracle calls so the metrics are reported for however many Modes were found

Method Modes (yield) Mol. weight (Y) QED ([) SA score (Y) Solved ([) Oracle calls (wall time)

RAll MPO 4 Objectives (docking, QED, SA, Solved)
AiZynth (10) 7 � 3 (16 � 13) 359.3 � 19.2 0.73 � 0.08 2.08 � 0.12 0.89 � 0.15 1000 (2 h 35 m � 12 m)
RetroKNN (10) 3 � 1 (5 � 3) 374.0 � 14.6 0.64 � 0.12 2.13 � 0.26 0.67 � 0.26 1000 (4 h 49 m � 33 m)
Graph2Edits (7) 5 � 3 (7 � 6) 376.2 � 46.1 0.68 � 0.05 2.15 � 0.26 0.88 � 0.15 1000 (4 h 44 m � 39 m)
RootAligned (10) 3 � 1 (5 � 5) 365.2 � 22.5 0.70 � 0.08 2.08 � 0.13 0.78 � 0.20 1000 (6 h 8 m � 52 m)

RDouble MPO 2 Objectives (docking, Solved)
AiZynth (10) 59 � 12 (170 � 45) 420.9 � 24.9 0.40 � 0.04 2.25 � 0.11 0.90 � 0.05 1000 (2 h 35 m � 21 m)
RetroKNN (10) 33 � 14 (141 � 88) 444.1 � 28.5 0.40 � 0.09 2.26 � 0.19 0.85 � 0.06 1000 (3 h 43 m � 42 m)
Graph2Edits (10) 30 � 9 (109 � 65) 446.2 � 30.2 0.38 � 0.06 2.29 � 0.18 0.85 � 0.11 1000 (3 h 16 m � 40 m)
RootAligned (10) 31 � 14 (122 � 92) 443.6 � 40.2 0.42 � 0.08 2.36 � 0.24 0.81 � 0.05 1000 (6 h 5 m � 29 m)
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whether there is any benet to the latter, as in the end, the
desired outcome of a generative experiment is to yield the most
synthesizable molecules with the desired property prole. In
this section, we answer two questions:

(1) SA score is well correlated with AiZynth solvability with
ZINC building blocks. Is this true for other retrosynthesis
models, particularly with other (and much smaller) building
block stocks?

(2) Thus far, molecules with low SA score tend to be syn-
thesizable. Are there exceptions to this?

4.5.1 Experimental setup. We x the retrosynthesis model
to be RetroKNN70 with Retro* search73 due to its strong perfor-
mance in the Syntheseus69 benchmark. We consider four
building block stocks (size in parentheses):

(1) Enamine EU stock (160 244): Downloaded in November
2024. 1–2 days delivery within the EU.

(2) Enamine US stock (249 946): Downloaded in November
2024. 1–2 days delivery within the US. This stock is commonly
employed in synthesizability-constrained generative
models.8,59,65

(3) Sigma Aldrich (20 290): Downloaded from the original
ASKCOS42 work.

(4) ZINC ‘Fragment’ and ‘Reactive’ sub-sets (17 721 980): sub-
set of AiZynth's40,41 building blocks set. This same stock was
used in experiment 4.

We perform two case studies and re-iterate the optimization
objectives here:

(1) Drug discovery: case study modied from Koziarski et al.9.
Minimize QuickVina2-GPU-2.1 (ref. 74–76) docking scores
against ClpP,77 maximize QED, minimize SA and/or directly
optimize for the retrosynthesis model.

(2) Functional materials: semiconductor: case study based
on Yuan et al.78. Generate molecules with 1.8 eV # HOMO–
LUMO gap # 2.2 eV and dipole moment < 2 Debye. Properties
computed using xTB (semi-empirical QM).79 This will be
referred to as the semiconductor case study from here on.

Finally, the goal in this section is to contrast the perfor-
mance when optimizing for SA score (then post hoc lter) versus
optimizing for retrosynthesis solvability directly. However,
© 2025 The Author(s). Published by the Royal Society of Chemistry
computing retrosynthesis solvability takes much longer than
computing SA score. Therefore, to ensure a fair comparison, we
allocate oracle budgets such that the overall wall time is similar
(see ESI†). Correspondingly, for both drug discovery and semi-
conductor case studies, we run both the retrosynthesis and SA
score experiments with a 1000 oracle calls budget and addi-
tionally run SA score with either 3000 (drug discovery) or 2000
(semiconductor). The reason why a similar wall time is reached
with 2000 SA scores budget in the semiconductor case study
compared to 3000 in the drug discovery case study is because
xTB is much more expensive to compute than QuickVina2-GPU
docking. Therefore, whereas the retrosynthesis model is the
main bottleneck in the drug discovery oracle, xTB is non-
negligible in the semiconductor oracle. Similar to all previous
experiments, we ran every conguration across 10 seeds (0–9
inclusive) and report the mean and standard deviation.

4.5.2 General results. Fig. 5 shows the number of synthe-
sizable molecules across various building block stocks and
whether SA score or the retrosynthesis model was incorporated
in the optimization loop. Firstly, using the ZINC stock generally
results in more synthesizable molecules which is not unex-
pected, as there are many more building blocks. The other
building stocks are comparable. Next, in agreement with the
results thus far, it is a better allocation of computational
resources to optimize for SA score instead of retrosynthesis
model solvability in the drug discovery case study. In both the
unltered (all results) and ltered (optimal molecules), opti-
mizing for SA score under the same wall time (3000 oracle calls)
yields many more synthesizable molecules. By contrast, in the
semiconductor case study, directly including the retrosynthesis
model in the optimization loop generates more synthesizable
molecules. This is especially apparent in the unltered case. In
the ltered set, this difference diminishes due to the high
variance. Running a t-test shows that only in the case of
Enamine EU are the distributions different (statistically signif-
icant at the 95% condence level). We hypothesize the dimin-
ished difference is because the objective is more challenging as
the model also needs to ensure the electronic properties are
within those intervals. If the oracle budget were increased, the
Chem. Sci., 2025, 16, 6943–6956 | 6951
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Fig. 5 Drug discovery (a) and semiconductor (b) case studies. Comparing SA score optimization and then post hoc filtering under various
building block stocks or directly optimizing for retrosynthesis solvability. The number in parentheses in the x-axes labels represents the number
of oracle calls. SA score was run under two different oracle budgets to have a similar wall time with directly optimizing for retrosynthesis
solvability (right-hand column in the figures). In the drug discovery (a) case study, it is a better allocation of resources to optimize for SA score. By
contrast, in the semiconductor case study, there is a clear benefit in directly optimizing retrosynthesis solvability.

Fig. 6 Semiconductor case study: UMAP of pooled filtered (1.8 eV #

HOMO–LUMO gap # 2.2 eV and dipole moment < 2 Debye) mole-
cules. Different building block stocks define the synthesizable space
and thus generated molecules can occupy distinct chemical space.
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difference may become more stark. This is supported by the
unltered results which show a clear differentiation. We further
support this statement by analyzing the SA score distributions
of the semiconductor sets, which show that when optimizing
explicitly for SA score, they tend to be lower (as expected), yet, it
does not necessarily translate to being more synthesizable (see
the ESI†). We nd that in the semiconductor case study, SA
score and synthesizability (across all stocks) is almost
completely uncorrelated (see the ESI†). This suggests that the SA
score heuristic is less reliable when moving beyond “drug-like”
molecules, since SA score was formulated based on PubChem89

molecules.
4.5.3 Semiconductor: effect of building blocks stock and

plausibility of generated molecules. Next, we focus on the
semiconductor case study and investigate the implications of
using different building block stocks. All ltered (1.8 eV #

HOMO–LUMO gap # 2.2 eV and dipole moment < 2 Debye)
molecules were pooled across all 10 seeds, resulting in 2169
total molecules. Fig. 6 shows the UMAP90 of these molecules,
colored by building block stock. Building block stocks can
occupy different chemical space, showing that changing this
parameters leads to different synthesizable molecules. This is
not completely unexpected as the building blocks dene the
synthesizable space. We note that it is possible that if more
seeds were performed, this separation becomes less
pronounced, but we believe 10 seeds is a reasonable number.
Fig. 6 shows four molecules from each stock with an embedding
distance far from each other to illustrate a notion of distinctive
chemical space. Next, we comment on the plausibility of the
6952 | Chem. Sci., 2025, 16, 6943–6956
generated molecules by highlighting two generated molecules
with uorine and methyl groups. In Yuan et al.,78 the authors
state that uorination and methylation are common substitu-
tions for these classes of molecules. Moreover, the generated
molecules bear similarity to the validated (with DFT) molecules
in Yuan et al.,78 which feature extensive carbon conjugation with
nitrogen and sulfur atoms.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Drug discovery case study: UMAP of pooled filtered (QED > 0.5
and docking score < −9 kcal mol−1) molecules. Generated molecules
with “poor” SA scores can still be promising. “Baseline” denotes the
pooled molecules (10 seeds, 1000 oracle calls budget) generated by
minimizing SA score while “Pooled” are the pooled molecules
generated by maximizing SA score.
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4.6 Experiment 6: over-reliance on heuristic scores can
overlook promising molecules

In the previous section, the overarching message of the drug
discovery case study is that optimizing SA score is a better
allocation of computational resource than directly including
retrosynthesis models in the optimization loop. In this section,
we comment deeper on this and start by discussing the impli-
cations of the docking oracle. For most drug discovery tasks
performed in literature, Autodock Vina docking or its succes-
sors are used.74–76,91 These docking oracles are oen permissive,
such that many molecules can achieve a good docking score,
with decreased ability to distinguish across protein targets.85,92

In commercial drug discovery, it is common practice to employ
constrained docking, where for example, specic interactions
are to be retained,85 which makes designing optimal molecules
much more difficult. However, most open-source docking
algorithms, like Autodock Vina74 and gnina,91 do not support
this. As a consequence, synthesizability heuristics like SA score
can work extremely well as a noisy proxy for retrosynthesis
solvability because “optimal” molecules need not deviate from
the chemical space of PubChem, and SA score is formulated
based on this database. In this section, we aim to explicitly
illustrate that there are interesting synthesizable molecules that
possess poor SA scores in the drug discovery case study. Our
intended message in this section is that over-reliance on
optimal SA scores may overlook interesting chemical space, on
the basis of molecules with “sub-optimal” SA scores being
ltered out.

4.6.1 Experimental setup. We dene an “articial” experi-
ment by using the same drug discovery case study, but instead
of minimizing SA score, we maximize it, while incorporating the
RetroKNN70 with Retro*73 retrosynthesis model in the optimi-
zation loop. This is “articial” in the sense that one would likely
never want to make synthesizability “harder”. We use the Sigma
Aldrich (20 290 building blocks) stock to show that interesting
molecules can be overlooked even with this relatively small
building block set which denes a smaller synthesizable space.
Finally, we use an oracle budget of 10 000 and run the experi-
ment across 5 seeds (0–4 inclusive) and set Saturn to perform
more explorative sampling,22 to show more diverse scaffolds.
We also increased the budget because we want to maximize SA
score to above 4, which is generally considered “undesirable”
and above the threshold for common post hoc lters. We include
the oracle budget here for completeness, but it is not important
in the discussion as we are not comparing to any models.

4.6.2 “Poor” SA score molecules can be promising. All
ltered (QED > 0.5 and docking score < −9 kcal mol−1) mole-
cules were pooled across all 5 seeds, resulting in 5286 total
molecules. Fig. 7 shows the UMAP90 of these molecules
compared to the baseline which is the 1000 oracle calls run
from the previous section (10 seeds). The molecules generated
with “poor” SA scores occupy different chemical space than low
SA score molecules, as expected. Example molecules are anno-
tated in Fig. 7 to convey two points: (1) “Poor” SA score mole-
cules can possess rare or undesirable substructures, such as
charged atoms and overly small or large rings. (2) “Poor” SA
© 2025 The Author(s). Published by the Royal Society of Chemistry
score molecules can also be reasonable molecules that achieve
high QED and good docking scores. A specic example is the
annotated molecule with pyrazole (aromatic ve-membered
ring with two nitrogens) as there are many known drugs and
bioactive molecules containing this moiety.93

Overall, we re-iterate our intended message in this section
that molecules with “poor” SA scores can be synthesizable and
over-reliance on optimal SA scores can overlook these prom-
ising molecules. Naturally, SA score does not provide compre-
hensive coverage of “drug-likeness” and retrosynthesis
solvability can be useful in identifying promising molecules
outside the PubChem chemical space.
5 Conclusions

In this work, we adapt Saturn22 which is a sample-efficient
autoregressive molecular generative model using the Mamba23

architecture to directly optimize for synthesizability using ret-
rosynthesis models and across drug discovery and functional
material case studies. Our approach contrasts existing works in
the eld that tackle synthesizability in one of three ways: goal-
directed generation with synthesizability heuristic scores such
as SA score,4 post hoc ltering generated molecules with a ret-
rosynthesis model,94 or by enforcing synthesizability design
principles in the generative process itself (synthesizability-
constrained generation).8–10 We show that with a sufficiently
sample-efficient model, treating retrosynthesis models as an
oracle is feasible, and generated molecules can satisfy multi-
parameter optimization objectives while being synthesizable
(as deemed by a retrosynthesis model). We compare to recent
synthesizability-constrained generative models and show that
Saturn can generate synthesizable molecules with optimal
Chem. Sci., 2025, 16, 6943–6956 | 6953
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property proles under a heavily constrained oracle budget. By
decoupling synthesizability from the generative model itself, we
can mix-and-match any retrosynthesis model and we show
optimization using a total of four models across different
building block stocks of various sizes. Next, we conduct an
articial experiment to intentionally purge a training dataset of
all molecules that are solvable by the AiZynthFinder retrosyn-
thesis model and pre-train a new model with this dataset.
Generated molecules from this model are mostly not AiZynth
solvable, as expected (Fig. 4b). Despite this, we show that within
a similar constrained computational budget, this model can
still generate molecules with property proles better than all
comparing models and are synthesizable. Aer this initial set of
results, we investigate the interplay between optimizing for
synthesizability heuristic scores like SA score compared to ret-
rosynthesis models directly. In the drug discovery case study, we
show that optimizing for SA score followed by post hoc retro-
synthesis model ltering is a better allocation of computational
resources. However, in the functional materials case study, we
show the opposite effect, as optimizing for retrosynthesis
models results in considerably more synthesizable molecules.
We hypothesize that materials move outside the distribution of
SA score, which is formulated based on the PubChem database.
Finally, we illustrate that over-reliance on SA scores can over-
look promising molecules on the basis of “poor” SA scores.
Overall, we demonstrate that treating retrosynthesis models
directly as an oracle is feasible and is an alternative approach to
existingmethods. To date, optimizing directly for retrosynthesis
solvability is minimally used because querying these models
can be computationally intensive. As such, generative models
with insufficient sample efficiency may need to make a prohib-
itive number of calls (equating to compute time and cost) to
these oracles before successfully optimizing the design objec-
tive. On the other hand, sample efficiency has become a core
research topic since the release of the Practical Molecular
Optimization benchmark12 highlighting this problem. Since
then, very recent models have pushed sample efficiency with
more and more state-of-the-art performances reported on
benchmarks.16,95–99 As a result, we envision the approach of
directly optimizing for retrosynthesis solvability will become
more widely adopted.
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