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ABSTRACT

Microkinetic models are key for evaluating industrial processes’ efficiency and chemicals’ environ-
mental impact. Manual construction of these models is difficult and time-consuming, prompting a
shift to automated methods. This study introduces SIMBA (Simplest Mechanism Builder Algorithm),
a novel approach for generating microkinetic models from kinetic data. SIMBA operates through four
phases: mechanism generation, mechanism translation, parameter estimation, and model comparison.
Our approach systematically proposes reaction mechanisms, using matrix representations and a
parallelized backtracking algorithm to manage complexity. These mechanisms are then translated
into microkinetic models represented by ordinary differential equations, and optimized to fit available
data. Models are compared using information criteria to balance accuracy and complexity, iterating
until convergence to an optimal model is reached. Case studies on an aldol condensation reaction, and
the dehydration of fructose demonstrate SIMBA’s effectiveness in distilling complex kinetic behaviors
into simple yet accurate models. While SIMBA predicts intermediates correctly for all case studies,
it does not chemically identify intermediates, requiring expert input for complex systems. Despite
this, SIMBA significantly enhances mechanistic exploration, offering a robust initial mechanism that
accelerates the development and modeling of chemical processes. By automating microkinetic model
generation from a data-first approach, SIMBA opens new avenues for future research in automated
mechanism discovery.

Keywords: chemical reaction engineering, microkinetic model generation, automated knowledge discovery


https://orcid.org/0000-0001-5273-7491
https://orcid.org/0000-0002-1163-0505
https://orcid.org/0000-0002-4630-1015
https://orcid.org/0000-0001-5956-4618
https://orcid.org/0000-0003-0274-2852
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc01473e

Open Access Article. Published on 11 August 2025. Downloaded on 8/30/2025 3:51:19 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

View Article Online
DOI: 10.1039/D5SC01473E

Simplest Mechanism Builder Algorithm (SiMBA): An Automated Microkinetic Model Discovery Tool

1 Introduction

Microkinetic models are indispensable tools in both business and policymaking due to their ability to evaluate the
efficiency of industrial processes and the environmental impact of chemicals. These models are particularly vital in
sectors such as pharmaceuticals [1} 2| [3], petrochemicals [4, |5, 6], and environmental engineering [7, (8| 9], where
they help optimize production processes, reduce costs, and improve sustainability. For instance, in the pharmaceutical
industry, microkinetic models facilitate the understanding of drug interactions and optimize synthesis pathways,
accelerating drug development [[10} [11}[12]. Similarly, in environmental policy, these models provide insights into the
behavior of chemical reactions, supporting the formulation of regulations and safety standards, for example the Montreal
Protocol and Stockholm Convention [13 [14]. By simulating the steps of chemical reactions at the molecular level,
microkinetic models offer a detailed understanding of reaction mechanisms, which is essential for making informed
decisions in various sectors, thus balancing economic growth with environmental protection.

Despite their importance, the manual construction of microkinetic models is a complex, time-consuming, and error-prone
process [15,[16]]. Traditional methods require experts to manually identify possible reaction steps and intermediates, a
task that can involve analyzing hundreds of thousands of potential interactions. This meticulous process is not only slow

but also susceptible to human error and often results in models that are either overly simplified or unnecessarily complex.

The increasing complexity of modern chemical systems further exacerbates these challenges, highlighting the need
for more efficient and reliable approaches. Consequently, there has been a significant shift towards the development
of automated methods for constructing these models [[17, 18 [19} 20, 121} 22} 23] |24} 25| 26} [27]], exploiting advances
in data-driven methodologies and computational resources to streamline and enhance the accuracy of the modeling
process.

The general trend towards automation, or scientific machine learning, offers substantial benefits, including increased
efficiency and reduced error rates, compared to traditional manual methods [28]]. Various algorithms for generating
mechanisms have been developed, typically falling into two categories: combinatorial algorithms and algorithms based
on reaction classes [[16]. In the former approach, the generation of the entire set of possible reactions is based solely
on the congruence of the electronic configurations of reactants and products, utilizing graph theory and bond-electron
matrix representations of molecules [29} 30, 18} |31]]. These methods can produce highly detailed and comprehensive
reaction networks. The latter approach involves algorithms that, after recognizing the compounds as belonging to a
certain class, generate only those reactions known to be characteristic of that class. While this method produces more
compact networks, it requires prior knowledge of existing reaction classes [32} 133134, 135]]. Combinatorial algorithms
often yield overly complex mechanisms that can hinder computational efficiency and interpretability whilst making
experimental validation and parameter estimation challenging (and often impossible). Conversely, algorithms based
on reaction classes are limited by the availability of pre-existing reaction knowledge which may be limited within the
scope of mechanism discovery for novel reactions. For a more in-depth discussion of these methodologies, reviews by
Ratkiewicz and Truong [34]], and by Van de Vijver et. al. [36] provide valuable insights.

Recently, alternative automated approaches leveraging artificial intelligence have also emerged, such as the method
introduced by Burés and Larrosa, which employs deep learning techniques to classify organic reaction mechanisms
directly from kinetic data without requiring explicit derivation of rate laws or enumerating reaction structures beforehand
[37]. While conceptually distinct from our proposed method, their method similarly addresses the complexity and
interpretability challenges inherent to mechanistic discovery, highlighting the growing role and complementary potential
of machine learning-based strategies in reaction engineering.

In this work, we propose a new approach, the Simplest Mechanism Builder Algorithm (SiMBA), which is designed to
circumvent the necessity for substantial prior knowledge required by reaction class approaches, and to avoid the proposal
of overly complex mechanisms yielded by combinatorial approaches. This is done by tackling the problem of automated
generation of mechanisms from a data-first perspective, ensuring that whatever mechanism is proposed, is both
physically reasonable and only as complex as the data allows. SIMBA generates microkinetic models that progressively
increase in complexity based on the provided data. The algorithm begins with the simplest possible mechanism, yielding
the most straightforward microkinetic model. The complexity of the mechanism is then incrementally increased, thus
increasing the number of parameters of the corresponding microkinetic model. This process continues as long as
there is informational gain from the added parameters, which is evaluated using the Akaike Information Criterion
(AIC). By balancing model simplicity and accuracy, SIMBA ensures the generation of robust and sensible microkinetic
models, effectively bridging the gap between theoretical exploration and practical applicability. While alternative
model discrimination measures could be employed, we chose the AIC based on prior work demonstrating its superior
performance in selecting data-generating kinetic models from a set of candidates [38]]. This minimalist approach is
structurally and fundamentally different than previous methods, in that the main objective is to discover the most
accurate and parsimonious mechanism given the dataset available, with as little prior information as possible.
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This research represents an advancement in the field of microkinetic modeling, offering a novel approach that overcomes
many of the challenges associated with existing automated methods. By systematically generating, refining, and
evaluating microkinetic models, SIMBA provides a robust framework for developing accurate and experimentally
viable reaction mechanisms. The algorithm’s ability to distill complex chemical processes into simple, yet precise
models has the potential to accelerate the design and optimization of chemical processes across various industries.
Ultimately, SIMBA can become a useful tool for chemists and engineers, facilitating the rapid discovery and refinement
of microkinetic models, thereby advancing our understanding of chemical reactions in diverse contexts.

The rest of the paper is organized as follows: in Section 2] our proposed method is motivated and described in detail;
in Section 3] we introduce the three case studies that are used to analyze the performance of SIMBA highlighting the
data-generation procedure and the results of the study are presented and amply discussed along with the shortcomings
of the proposed methodology; and in Section 4] the key findings are presented with a brief outlook on future research.

2 Methodology

SiMBA (Simplest Mechanism Builder Algorithm) has been tailored to develop microkinetic models using kinetic data,
focusing on identifying the informationally smallest reaction mechanism that accurately describes the available data.
By focusing on the balance between model accuracy and simplicity, SIMBA aims to make the process of mechanism
discovery more accessible, efficient, and reliable.

SiMBA is comprised of four key phases:

1. Mechanism generation phase: utilizes a parallelized backtracking algorithm to generate all physically-
sensible mechanisms for a given set of complexity parameters: the number of elementary steps and inter-
mediates. This phase ensures that only feasible reaction pathways are considered, significantly reducing the
computational burden;

2. Mechanism translation phase: the proposed mechanisms, represented by a matrix, are converted into
executable microkinetic models, specifically systems of ordinary differential equations (ODEs). This translation
is crucial for transforming reaction networks into practical models that can be analyzed and simulated;

3. Parameter estimation phase: the kinetic parameters of the proposed microkinetic models are estimated by
minimizing the error between the model predictions and the observed kinetic data. This is achieved using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm;

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

4. Model comparison phase: involves evaluating the generated models using the AIC to determine the best
microkinetic model for a given iteration. This phase also decides whether further iterations and additional
complexity provide enough informational gain to justify continuing the algorithm.
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By systematically progressing through these phases, SIMBA ensures the development of robust, accurate, and computa-
tionally efficient microkinetic models.

(cc)

Our methodology also offers a closed-loop approach for refining models if the SIMBA’s output is unsatisfactory, whether
due to conflicts with prior knowledge (e.g., belief that the microkinetic model should involve more/less chemical
species) or due to poor model fitting (e.g., the model failing to accurately capture the non-linearities in the kinetic
data). In such cases, the modeler can opt to conduct an optimal experiment specifically designed to enhance model
discovery — using model-based design of experiments (MBDoE), more specifically the Hunter-Reiner criterion [39] —
and then integrate this new data with the initial dataset. With the additional experimental data, the methodology can be
re-applied, allowing for iterative refinement and re-evaluation of the output. Practically, this discriminatory experiment
could also serve to validate the models proposed in earlier iterations, rather than relying solely on the AIC. The process
can be repeated as many times as necessary or until the experimental budget is exhausted. Figure[T] visually represents
the SIMBA workflow, highlighting the key phases of the methodology. The following subsections provide a detailed
account of each of these phases.

2.1 Mechanism Generation

The primary goal of the this initial phase is to systematically generate all physically plausible reaction mechanisms
given a set of specified constraints. This phase sets the foundation for the microkinetic modeling process by exploring
the potential reaction pathways that could feasibly describe the overall chemical reaction under investigation. By
considering physical and chemical constraints, we ensure that only realistic and meaningful mechanisms are carried
forward for further analysis.
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The algorithm utilizes matrix representations to model molecular transformations, where each matrix corresponds to a
potential reaction mechanism (i.e., each row accounts for an elementary step and each column accounts for a chemical
species). This formalism allows the algorithm to handle complex molecular interactions in a structured manner, making
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it easier to apply checks and balances on the proposed mechanisms.

SiMBA is designed to ensure that only chemically sensible and stoichiometrically balanced reactions are proposed.
It does so by adhering to specific rules, which will be elaborated on later in this Section. These checks are crucial in
maintaining the physical plausibility of the generated mechanisms. But before initiating the mechanism generation

process, several key inputs are required:

* Number of elementary reactions: this input defines the smallest possible number of reactions, or elementary
steps, that could lead to a feasible microkinetic model. These elementary steps are constrained by physical
principles, such as the requirement that reactions typically involve at most two molecules (bimolecular
interactions) and usually produce a maximum of two product molecules (i.e., four possible elementary
reactions: (i) A — B, (ii)) A+ B — C, (iii) A - B + C, and (iv) A+ B — C + D). This consideration
significantly reduces the complexity of the potential mechanisms and aligns the generated reactions with

known ones.

* Number of chemical species: this input specifies the minimum (i.e., lower limit) number of chemical species
needed to form the smallest possible mechanism. The number of species is critical because it defines the
scope of the mechanism generation, ensuring that all necessary reactants, products, and intermediates are
considered. This parameter also helps in maintaining the balance between complexity and feasibility in the

Figure 1: The workflow of the SIMBA methodology.
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proposed mechanisms. We emphasize that these reactant/product limits are defaults chosen for the present
case studies; the SIMBA code allows these bounds to be increased trivially. If multi-molecular complexes or
fast pre-equilibria are suspected, the user may simply raise the maximum number of reactants or products per
step, and SiMBA will enumerate and analyze the resulting higher-order elementary reactions without further
modification.

 Stoichiometry: the stoichiometry input dictates the overall chemical reaction being analyzed. It specifies
the roles of different species in the reaction, with negative numbers representing reactants, positive numbers
representing products, and zeros indicating intermediates (species that do not appear in the overall reaction).
This ensures that the generated mechanisms adhere to the correct chemical balance and respect the conservation
of mass.

* Time budget: the time budget defines the amount of computational time allocated to the mechanism generator
algorithm for exploring the search space and identifying physically feasible reaction mechanisms at each
iteration. This constraint helps in managing computational resources effectively and ensures that the generation
process is both thorough and time-efficient.

In principle, SIMBA could operate with only the stoichiometry of the reaction provided by the user. From the
stoichiometric information alone, the smallest feasible mechanism — defined by the minimum number of elementary
reactions and chemical species — could technically be derived automatically. However, the current version of SIMBA
deliberately retains the options for users to input these parameters explicitly. This design choice stems from recognizing
that users may possess valuable prior knowledge or estimates about their reaction systems, including a realistic minimal
number of elementary reactions or chemical species. Starting from an informed position can greatly enhance efficiency,
allowing SiMBA to focus computational resources effectively. Thus, while reducing inputs is feasible, maintaining
these user-defined inputs provides critical flexibility and practical advantages in guiding the mechanism discovery
process.

Once the inputs are defined, we can allow the backtracking algorithm to explore the mechanistic possibilities. The
backtracking algorithm — a branch-and-prune method within the field of constrained optimization — is used to systemati-
cally explore the vast search space of possible reaction mechanisms by incrementally building potential solutions and
backtracking when a solution is found to be infeasible. In the context of mechanism generation, this algorithm starts
with an empty matrix representation (mechanism) and progressively starts filling the matrix with possible numbers,
ensuring at each step that the proposed mechanism adheres to physical and chemical constraints, such as stoichiometry
and the limits on the number of reactants and products in each step. When the algorithm encounters a dead end, where a
proposed mechanism violates any of the predefined constraints, it backtracks to the previous step and tries an alternative
pathway. This process allows the algorithm to efficiently prune the search space, focusing only on chemically valid and
feasible mechanisms, thereby avoiding the exhaustive and brute-force approach through enumeration of all possibilities.
This is of particular importance because of the combinatorial nature of the problem. For example, for a small 4x5
matrix, there are 95,367,431,640,625 possible combinations assuming that x; ; € {-2,-1,0,1, 2}, where a brute-force
approach would be intractable. Thus, employing smart methods for an efficient exploration of the space is paramount,
even when dealing with small problems. For a more detailed discussion on backtracking, the interested reader should
refer to Chapter 2 of Erikson’s book [40]. Figure 2] gives an illustrative example of how the backtracking algorithm
works.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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To further improve the efficiency of the exploration of the possible reaction pathways, we employ a parallelized version
of the backtracking algorithm. This allows multiple ‘trees’ or potential mechanisms to be explored simultaneously,
significantly accelerating the search process. The degree of parallelization is primarily constrained by the number
of available processors, making this approach highly scalable with increased computational power. Parallelizing the
backtracking algorithm offers significant benefits in terms of computational efficiency and scalability. By exploring
multiple potential pathways concurrently, the algorithm can cover a much larger portion of the search space within the
same amount of time, making it feasible to generate comprehensive sets of candidate mechanisms even for complex
reactions.

The algorithm includes several rules to ensure that the generated mechanisms are chemically plausible, to name a few:

* Stoichiometric consistency: the proposed mechanisms must adhere to the stoichiometry defined by the input,
ensuring that the overall reaction remains balanced.

» Elementary step constraints: each elementary step is restricted to having at most two reactants and two
products, with at least one of each, reflecting the typical nature of an elementary step and ensuring that there is
no redundant elementary steps (i.e., a row full of zeros).

* Intermediate formation: intermediates must be generated in the reaction network before they are consumed,
maintaining a logical and sequential flow of the reaction mechanism.
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Figure 2: Example of a backtracking algorithm flowchart, where the algorithm explores potential pathways from node 1
by systematically advancing to connected nodes (2, 4, 5) while evaluating constraints. If a path fails to meet criteria
(e.g., reaching a red node), the algorithm “’backtracks” to the previous node, exploring alternative paths until a viable
solution path is found (ending at a green node).

These rules allow for SiMBA to filter out unfeasible or non-physical mechanisms, ensuring that the outputs are not
only mathematically valid but also chemically meaningful. Thus, at the end of this phase, a comprehensive set of
candidate reaction mechanisms is generated, each represented by a matrix and each having the same level of complexity
(i.e., same number of elementary steps and chemical species). These matrices serve as the basis for further analysis in
subsequent phases of the SIMBA methodology. This phase lays the groundwork for the rest of the SIMBA methodology,
providing a robust and physically plausible set of reaction mechanisms that will be refined, validated and compared in
the subsequent phases.

A noteworthy scenario arises when the overall chemical reaction is incompletely characterized due to unknown side

products, such as when significant yield losses occur through mechanisms like coking or volatile byproduct formation.

In such cases, SIMBA may encounter difficulty in proposing chemically meaningful reaction mechanisms if kinetic
data from these unknown pathways are unavailable. However, two practical workarounds could partially mitigate this
challenge. First, one could adjust the kinetic data for reactants by subtracting the fraction lost to side reactions, thereby
defining an “effective reactant” profile. This manipulation would focus SIMBA’s mechanism generation exclusively
on the known reaction pathway of interest. Alternatively, one could introduce “pseudo-side product” variables to
represent all mass lost through unidentified side reactions, thus preserving mass balance. SIMBA would then propose
mechanisms involving both the target reaction and a generalized pathway to the pseudo-side products. Although helpful,
this second method implicitly assumes an arbitrary number of side pathways, potentially oversimplifying the actual
chemical processes involved. Consequently, both approaches have inherent limitations and should be applied with
careful consideration of the reaction system under study.

It is important to note, however, that despite SIMBA’s systematic approach and rigorous filtering criteria, the mechanisms
returned are fundamentally justified by the kinetic data rather than guaranteed to represent the actual underlying chemical
pathways. The inherent limitation here is that concentration-time datasets, especially when incomplete, inherently
underconstrain the reaction network. Consequently, SIMBA-generated mechanisms should be interpreted as being
consistent with the available kinetic data and chemically plausible within the defined constraints (which can always be
augmented), but not necessarily as uniquely true representations of the fundamental reaction mechanisms. This caveat
is particularly critical when applying SiMBA to real-world experimental datasets, which may be incomplete or subject
to measurement uncertainties. Users should therefore view the generated mechanisms as robust hypotheses warranting
further experimental verification and refinement.

2.2 Mechanism Translation

The purpose of this step of the SIMBA algorithm is to convert matrix representations of mechanisms into executable
models that can be used for parameter estimation, simulation, and analysis. The translation process consists of two
main steps: first, converting the matrix representation into reaction strings, and second, converting these reaction strings
into systems of ODEs which are executable in Python.
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In the matrix representation, each row corresponds to an elementary reaction, while each column represents a chemical
species. The elements within the matrix indicate stoichiometric coefficients: negative for reactants, positive for products,
and zero for species not involved in the elementary step.

In the first step, each reaction string is generated by identifying the reactants, products and the stoichiometric coefficients
for every row of a given matrix. For example, the below matrix would be converted into the following reaction strings,
where A and B are reactants, C' is a product and D is an intermediate:

-1 -1 0 1 A+BE D |
0o -1 1 -1 ko M
B+D—=C

Using mass-action kinetics, the reaction strings are then converted into ODEs. The rate of a reaction is proportional to

the product of the concentrations of the reactants. For example, for the reaction string A + B 15 D the rate equation is
expressed as r = k1C'4Cp, where ky is the rate constant. Our code automates the translation of these reaction strings
into ODEs by systematically identifying unique species, constructing rate equations, and assembling the differential
equations into a comprehensive kinetic model. For instance, the system of ODEs for the above matrix representation is:

dC4
dt
dC'x
A+BE D | Tar
B+D ¢ (dCc _y oo

dt
dCp
dt

= —k1CaCp

= —kchCB — kQCBCD
2

= k1CaCp — k2CpCp

The translation process is automated using a Python script, primarily leveraging the regex library [41]. Regex is
employed to parse and extract key components from reaction strings, such as chemical species and reaction operators.
Specifically, regex identifies species by matching patterns of letters and helps distinguish between different parts of the
reaction strings, including reactants, products, and the reaction arrow (—). This parsing ensures accurate separation and
interpretation of reactants and products, facilitating the automated construction of corresponding rate equations in the
ODE system.

Given the potential to generate a vast number of models in any iteration of SIMBA, automating the translation from
matrix notation to executable Python functions is crucial. Manual conversion would be impractical, if not impossible,
due to the sheer volume of candidate mechanisms. Therefore, this automated approach not only improves efficiency
but also ensures that the subsequent phases of the SIMBA algorithm can proceed smoothly. Much of the code for the
translation of reaction strings to systems of ODEs has been adapted from the work of Jiscoot et. al. [42].

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 11 August 2025. Downloaded on 8/30/2025 3:51:19 AM.

(cc)

2.3 Parameter Estimation

The objective of this aspect of SIMBA is to determine the kinetic parameters that best fit the generated models to the
available data. This step is crucial for ensuring that the proposed reaction mechanisms are optimized so that they reflect,
as accurately as possible, the observed dynamics of the chemical system. This will enable the algorithm to compare
different models fairly in the next phase. The parameter estimation step is a standard procedure in model building
frameworks.

To solve the parameter estimation problem, we use simulated concentration-time profiles as the dataset. These profiles
provide time-series data of species’ concentrations, which are critical for fitting the kinetic models.

The parameter estimation problem is defined in Eq. (3)), where g)ﬁ,i) denote the prediction of a value coming from a
proposed model m at a given time ¢t (i.e., g),(qi) =m(t® | 6,,)), and 3 represents the target value at a given time
t (i.e., in-silico data, in this study). Furthermore, SSE represents the sum of squared errors and n; is defined as the

sampling times, which are set within the fixed time interval, t) € At where At = [to, t;].

aremin S 50) (D)
0, argerngSSE(ym,y ) 3)

i=1
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The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm is employed for solving the parameter
estimation problem [43]. L-BFGS is well-suited for handling this problem due to its performance in tasks pertaining to
parameter estimation and optimization [44], 43]].

To ensure a thorough exploration of the parameter space, we may use expert-informed or random initial guesses for the
parameters, with bounds set within the range [0, 10] to maintain physically meaningful values in the chosen case studies
(this can be changed on as-needed basis). The stopping criteria for the optimization are left to the default options in the
Scipy package [45]], and a multi-start approach is employed, where multiple runs are initiated with different starting
points, and the best solution is retained.

2.4 Model Comparison

SiMBA uses an information criterion approach for model selection rather than a data-splitting approach, enabling
the entire dataset to be used for model construction while still providing a robust and reliable method for testing the
proposed models. This is especially advantageous in low-data scenarios, as it ensures that we make full use of the
available information when identifying suitable microkinetic models.

We use the Akaike Information Criterion (AIC) because in previous work we compared various information criteria
to determine if any offered superior performance. We found that AIC consistently outperformed other criteria in the
context of kinetic discovery; further details of these studies can be found in de Carvalho Servia et. al. [38]. However,
SiMBA’s architecture is entirely agnostic to the particular metric used for selecting the best mechanism. Should a user
prefer a classical train/test error, cross-validation score, Bayes factor, or any other statistic instead of AIC, they can
simply swap in their desired metric via the “metrics.py” module without altering the core enumeration, translation, or
parameter-estimation workflows. Users can thus tailor model selection to their data and domain requirements.

Given a model m with parameters 6,,, of dimension d,,, the AIC is defined as:

AIC,, =2NLL(0,, | D) + 2d,,, “)
where N LL represents specifically the negative log-likelihood [46]. Given two competing models, m; and mo, the
preferred model would be the one with the lowest AIC value calculated by Eq. ().

If iteration n + 1 in the SIMBA algorithm results in an improvement of the AIC value compared to iteration n, SIMBA
will continue running, further refining the model output by considering more complicated mechanisms. This approach

ensures that the algorithm is consistently moving towards a model that better balances complexity with goodness of fit.

However, if the best model in iteration n + 1 displays a worsening in the AIC value compared to the best model in
iteration n, indicating that the model has become less optimal, SIMBA will terminate the process. In this scenario, the
algorithm concludes that additional iterations are implausible to produce a superior model, and it will return the best
solution found during iteration n, which is considered the most accurate and parsimonious model according to the AIC
evaluation.

2.5 Model-Based Design of Experiments

If the dataset used for mechanism discovery is insufficient to yield an adequate model, and provided that the experimental
budget has not been exhausted, we can use the insights from the optimized models to design a more informative
experiment. Specifically, we can identify operating conditions that maximize the difference between the state predictions
X of the two best proposed models, v and p based on the existing dataset. The rationale behind using the two best
proposed models is discussed in de Carvalho Servia et. al. [47]. The MBDoE approach adopted in this work was
developed by Hunter and Reiner [39]:

T
Xj41 = arg max Z Z(Xf] - Xf,j)2 3)
XEX =1 j—1
ty
X = [ f(x,t,60%)dt 6)
to
ts
Xt = [ fr(x,t,0%) dt )
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In this equation, x represents the operating conditions within a set X. Using the identified initial conditions, a new
experiment can be conducted to generate additional data points, which are then added to the original dataset. With this
updated dataset SIMBA can be executed again, thereby closing the loop between informative experimental design and
optimal model discovery.

3 Catalytic Kinetic Case Studies

The purpose of the case studies presented in this work is to serve as proof-of-concept validations for the newly developed
methodology, SIMBA. Before deploying this data-driven method in experimental environments or attempting to propose
and discover new reaction mechanisms, it is important to ensure that the methodology is both sound and capable of
delivering reliable results. To achieve this, we selected case studies where experimentalists have already proposed
mechanisms or rate models, allowing us to generate in-silico data through computational simulations and subsequently
test SIMBA'’s ability to accurately rediscover these mechanisms from the generated datasets.

The selection of the case studies was made to demonstrate SIMBA's effectiveness across a range of scenarios. The case
studies include a hypothetical reaction, an aldol condensation between benzaldehyde and acetophenone [48]], and the
dehydration of fructose to 5-hydroxymethylfurfural (HMF) [49]|50]. These studies were chosen to showcase SIMBA’s
ability to distill complex kinetic behaviors into simple, accurate models.

The hypothetical reaction serves as an initial proof-of-concept, illustrating whether SIMBA can generate microkinetic
models purely from fundamental principles without relying on prior knowledge. This first case study also demonstrates
SiMBA’s versatility in handling both first-order and second-order elementary steps. Next, the aldol condensation — a
classic reaction with a well-understood mechanism — tests SIMBA's ability to reconstruct mechanistic pathways solely
from dynamic data on main reactants and products. By successfully modeling this reaction, SIMBA shows that it can
go beyond hypothetical examples to accurately capture established mechanistic pathways. Finally, the dehydration of
fructose to HMF introduces a different challenge: rather than relying on a microkinetic simulation of stoichiometric
reactants and products, the in-silico dataset comes from a rate model that has been experimentally validated. In this
scenario, SIMBA is challenged to discover a plausible kinetic mechanism, aligning with established literature and
demonstrating its capacity to derive robust reaction models from realistic data sources.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Although our case studies focus on homogeneous reaction networks, SIMBA’s matrix-and-ODE framework naturally
accommodates both homogeneous catalytic cycles and heterogeneous surface chemistry. In a homogeneous catalytic
cycle, one treats the catalyst resting state and any activated forms (e.g., Cat—A, Cat—B) as additional species in the
matrix. Turnover steps — substrate binding (A — Cat—A), intramolecular transformation (Cat—-A — Cat-B), and
product release (Cat—-B — Cat 4+ P) — are handled just like any elementary reaction. Likewise, in heterogeneous
catalysis, adsorption/desorption steps (A = Z) and surface—surface reactions (X + Y — Z) map directly onto
bimolecular or unimolecular matrix rows: free species adsorb (A — X, B — Y), surface intermediates react
(X +Y — Z), and products desorb (Z — P). Because every elementary step — whether substrate isomerization,
catalyst turnover, or surface adsorption — is represented in the same stoichiometric matrix and translated automatically
into ODEs, SiMBA requires no algorithmic changes to discover, fit, and rank mechanisms in either homogeneous or
heterogeneous catalytic systems.

Open Access Article. Published on 11 August 2025. Downloaded on 8/30/2025 3:51:19 AM.
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3.1 The Hypothetical Reaction

The hypothetical reaction is one that involves five different chemical species — only three of which are observed —
interacting in four different elementary steps. The overall stoichiometry of the hypothetical reaction can be represented
by Eq. while Eq. (O) provides a description of the mechanism of the reaction as well as the system of ordinary
differential equations (ODEs) underpinning the dynamics of the reaction (and directly derived from the proposed
mechanism). The kinetic parameters (rate constants) were defined as: k; = 0.1 M~ h ! ky =02h"1, kg =0.13
h~! and k4 = 0.25 M—! h™!. Since this is a purely in silico proof-of-concept, the four rate constants were drawn
randomly within a physically reasonable range.

1A= B+C (8)
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dCy
dt

dCp

24 %1, B el ki Ch

A p o | adoe

= —k1C? — koCy — kyCuC

= k,CaC 9
D ks g i 1CACE )

k dC

A+E % C —dtD =FkyCy + k3Cp
dcC
—F — k3Cp — kaCuCr

dt
Starting from the ODE system in Eq. E], an in-silico dataset is generated wherein At = [0,10] h
and n; = 30. This dataset is composed of five different experiments, each ran at different initial
conditions (in molar units: (Ca(t = 0),Cp(t = 0),Cc(t = 0),Cp(t = 0),Cg(t = 0)) €

{(10,0,2,0,0),(10,2,0,0,0), (10,2,2,0,0), (5,0,0,0,0), (10,0,0,0,0)}); these experiments were randomly picked
from a 2% factorial design [51]].

For all experiments, the system is assumed to be both isochoric and isothermal, and Gaussian noise is added to the
in-silico measurements to simulate a chemical experiment. The added noise had zero mean and a standard deviation of
0.15 for A, B and C. To further approximate a realistic system, we assume that we cannot measure the intermediates
D and E. The generated dataset for the one of the experiments are presented in Fig. 4| (a). The dataset, providing
150 datapoints, has a realistic size for kinetic studies [52| |53} 54]], especially considering recent advancements in
high-throughput setups.

3.1.1 Results and Discussions

The application of SIMBA to the hypothetical reaction case study successfully demonstrated its ability to recover the
underlying microkinetic model with limited data and only access to the species present in the overall reaction (i.e.,
without direct data on intermediates). This provides initial validation of the algorithm’s capacity to propose accurate
and physically sensible models under constrained conditions, highlighting its potential for broader application in more
complex chemical systems, which will be shown in subsequent subsections.

In this case, given the stoichiometry of the hypothetical reaction, shown in Eq. (8], the simplest possible mechanism
involves two elementary steps. This is due to the fact that termolecular, and higher order interactions, are relatively
rare — for the purpose of SIMBA, we consider them as impossible — as the simultaneous collision of three or more
molecules in the correct orientation is a very unlikely occurrence. Thus, based on that constraint, we would need at
least two elementary steps to react four moles of A. As such, in the first step, two moles of species A react to produce
one mole of B, while in the second step, two moles of A react to produce one mole of C. Notably, the order in which B
and C are produced is interchangeable, without affecting the model’s performance. These two configurations represent
the only physically feasible mechanisms that could be formed in the first iteration of SIMBA, based on a 2x3 matrix
(representing two elementary steps and three species).

Upon identifying all possible permutations of mechanisms represented by this 2x3 matrix (in this case, two permutations),
SiMBA translated them into ordinary differential equation (ODE) models that could be optimized. Through parameter
estimation, we optimize the kinetic parameters of the model, which enable us to calculate the AIC values for each
model and selected the best-performing one. Table|l| shows the optimal mechanism discovered in the first iteration,
including the corresponding microkinetic model, and the AIC value which amounted to 1110.34. Figure[6] presents the
model’s fit against an arbitrary training experiment, visually illustrating its accuracy.

Following this initial step, SIMBA automatically proceeded to iteration 2, which leads to an increase of complexity by
allowing an extra elementary step and an extra intermediate to be present in the modeling task. Consequently, in this
iteration, the algorithm began with an empty 3x4 matrix representation of the reaction mechanism. Using the same
process as in iteration 1, we identified and optimized the potential mechanisms for this iteration. To echo the point made
in Sectionregarding the importance of smart explorative methods, iteration 2 could generate 244,140,625 different
matrix configurations; with backtracking, we only check the 31 configurations that make physical sense ( 0.00001%
of all possibilities). The AIC value was again used to select the best model for iteration 2, which now amounted to
an improvement to 106.28. A decrease in AIC from 1110.34 to 61.67 indicates a substantial improvement in model
accuracy while maintaining parsimony.

10
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SiMBA converged in four iterations, at which point the termination criterion was met, meaning that the informationally
optimal mechanism was discovered in iteration 3. At iteration 4, no further reduction in AIC was observed, which
met the termination criterion for model refinement, indicating that the added complexity did not yield better predictive
accuracy. Table[I|summarizes the best mechanism identified in each iteration, along with the corresponding microkinetic
models and AIC values. Figure [6]illustrates the model fit for each selected mechanism against an arbitrary training
experiment, further demonstrating the progressive refinement of the models across iterations (with exception of the last
one).

In iteration 1, the 2x3 matrix yields 56 = 15,625 possible combinations, of which SiIMBA identifies and evaluates all
feasible candidates in just 3.40 s. In iteration 2, the search space jumps to 5'? ~ 2.44 x 10® matrices, yet SIMBA
finds and evaluates all feasible mechanism arrangements in 14.91 s by pruning infeasible branches early. By iteration 3
(520 ~ 9.54 x 1013, 1,110.34 s) and iteration 4 (5°° &~ 9.31 x 102°, 5,911.28 s), the exponential growth in possibilities
becomes evident — even though the number of feasible matrices remains a tiny fraction and the execution of SIMBA
stays tractable.

A comparison of the final selected model against the data-generating model indicates that SIMBA successfully uncovered
the underlying mechanism driving the hypothetical reaction. This case study serves as a proof-of-concept, showcasing
SiMBA’s ability to generate accurate microkinetic models even in the absence of direct data on intermediates and with
limited in-silico data. The results demonstrate the robustness of SIMBA in handling systems that feature both first-
and second-order elementary steps, confirming its potential for more complex chemical systems and broader industrial
applications, as demonstrated in the next subsections.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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Table 1: Reaction mechanisms, corresponding microkinetic models, and AIC values for iterations 1 through 4. The
table presents the reaction mechanisms discovered at each iteration, alongside their respective microkinetic models and
AIC values. Each iteration reflects an increase in the complexity of the reaction mechanism. In iteration 1, the simplest
model consists of two elementary steps involving species A, B, and C, with an AIC value of 1139.86. By iteration 2, an
additional intermediate (D) is introduced, lowering the AIC to 106.28. The optimal mechanism (in this case, identical to
the data-generating one), discovered in iteration 3, involves the introduction of an additional intermediate (E), achieving
the lowest AIC of -317.99. Iteration 4 introduces yet another intermediate (F), but results in a higher AIC value of
390.92, indicating that iteration 3 provides the best balance between accuracy and complexity.

Iteration Reaction Mechanism  Microkinetic Model AIC Value
d
% = —k1Ch — k2C3
k1
1 =2 — |k C? 1139.86
24 *2, ¢ dcg A
C 2
=€~ ke
dt 2-A
dCy
W - —klc?q - kQCi
24 55 D dCs = kyC%
2 94 k2, g dt 106.28
G 9 _ 1o
D= C dt 3~D
dCp
A e
dlf 3V D
d
% = —k10% — ksCa — ksCaC
dC
24 F1. B 7dtB =k C3
k2
A= D dC¢
3 — -317.99
D E @~ FCale
A+ E s ¢ %:kgmwg%
d
& = k3Cp — ksCsCg
dt
dCa
W == 7]{716124 - k20124
dCB o 2
24 o
24 %2, D dCc = ksCpCr
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3.2 The Aldol Condensation Reaction

An aldol condensation is a type of condensation reaction in organic chemistry between a ketone and an aldehyde to form
a carbon-carbon double bond in the enone product, eliminating a molecule of water. The mechanism of the reaction is
initiated with the formation of an enol or enolate intermediate from a ketone. This nucleophilic intermediate attacks the
carbonyl group of the aldehyde, to form a 5-hydroxyaldehyde or 5-hydroxyketone, which in turn dehydrates to produce
a conjugated enone. The aldol condensation therefore involves six different chemical species — only four of which are
observed — interacting in three different elementary steps. Fig. [3|represents the overall reaction as well as the detailed
mechanism of the aldol condensation reaction between acetophenone and benzaldehyde.

Overall reaction (Aldol):

it i i
+ —_— + H,0
Ph”” “CH, Ph)LH PhJ\/\Ph
A B C D
Mechanism:
OH o) ko O OH ks

ki 2
A C+D
Ph/gCHz ’ Ph)J\ PhMPh ’

H H
E B F

Figure 3: Schematic representation of the aldol condensation reaction between acetophenone (A) and benzaldehyde (B)
to form the chalcone product (C') and water (D). The mechanism proceeds in three main steps: (i) enolization of A to
give the enolate/enol intermediate (£), (ii) nucleophilic addition of F to B to form the 5-hydroxy adduct ('), and (iii)
dehydration to yield the final conjugated enone (C'). Rate constants k1, ko, and k3 are associated with each step. Phenyl
groups are represented by “Ph.”

Eq. provides a simplified description of the mechanism of the reaction as well as the ODE system underpinning
the dynamics of the reaction (which was directly derived from the proposed mechanism) [48]]. It is worth noting
that we assume that the elementary steps are all irreversible. The kinetic parameters (rate constants) were defined
as: k1 = 0.759h™ !, ks = 0.293 M~ ! h~! and k3 = 0.681 h—!. Although the sequence of elementary steps is taken
from literature, we likewise randomized the three rate constants within [0.1, 1], imposing only the constraint that the
C-C bond-forming step (i.e., second step) is the slowest, consistent with mechanistic studies showing carbon—carbon
coupling as rate-determining [48]].

dC.4
Ak
il 1Ca
dCg
=5 _
i 2CrCp
A E % = ksCp
E+B' F JC (10)
ks 2R o)
F—>C+D dt 3VF
d
e e TR e
d
% — kyCuCp — ksCp

In Eq. @]) A, B, C, D, E and F correspond to acetophenone, benzaldehyde, chalcone, water, a-phenylvinyl enolate
and 4-hydroxy-1,3-diphenylbutan-1-one, respectively.

Starting from the ODE system in Eq. an in-silico dataset is generated wherein A¢ = [0,10] h and
ng = 30. This dataset is composed of five different experiments, each ran at different initial condi-
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0),Cr(t = 0)) €

tions (in molar units: (Ca(t = 0),Cp(t = 0),Cc(t = 0),Cp(t = 0),Cp(t =
0)}); these experiments were

{(5,10,0,0,0,0),(5,5,2,0,0,0), (5,10,0,2,0,0), (10, 10,0, 2,0,0), (10, 10, 2, 2,0,
randomly picked from a 2 factorial design [S1]).

For all experiments, the system is assumed to be both isochoric and isothermal, and Gaussian noise is added to the
in-silico measurements to simulate a chemical experiment. The added noise had zero mean and a standard deviation of
0.15 for A, B, C' and D. To further approximate a realistic system, we assume that we cannot measure the intermediates
FE and F'. The generated dataset for one of the experiments are presented in Fig. |4{(b).

3.2.1 Results and Discussions

The aldol condensation reaction provided a different challenge for SIMBA due to the complexity of the overall system,
given that there is a higher number of chemical species involved. Despite the absence of direct data on intermediates,
SiMBA demonstrated its capability to infer a reliable microkinetic model, even in this constrained setting, which
matches perfectly to the data-generating model.

In the first iteration, based on the stoichiometric relationship between the reactants and products, SIMBA identified a
single elementary step where one mole of acetophenone (A) reacted with one mole of benzaldehyde (B) to produce
chalcone (C) and water (D). The simplicity of this mechanism, represented by a 1x4 matrix (one step involving four
species), aligned with the overall stoichiometry of the aldol condensation reaction and was deemed the only feasible
configuration for this initial phase.

Following this, SIMBA translated the 1x4 matrix into a set of ODEs that could be optimized computationally. Parameter
estimation was performed, and the AIC value was calculated and used to gauge the model’s fit. Table 2] does not present
the mechanism identified during this initial iteration for spacing reasons, but Figure [6] shows how well the model
predictions aligned with experimental data from a selected training experiment.

Upon completion of iteration 1, SIMBA advanced to iteration 2, where an additional elementary step and species were
incorporated. This expanded the search space to a 2x5 matrix, increasing the complexity of the possible mechanisms.
As in the previous step, the new sets of ODEs were optimized, and AIC values were calculated. The results from
iteration 2 showed a notable improvement, as the added complexity contributed to a better overall fit, without overfitting
the system. Table 2]and Figure [6|detail the refined mechanism and its improved accuracy.

The iterative process continued, and SIMBA reached its optimal solution at iteration 3, where no further reduction in
the AIC value was observed in subsequent iterations. The complexity added in iteration 4 did not yield a better AIC
value, signaling that the best mechanism had already been identified, since further complexity was improving the fit
negligibly. The termination criterion was therefore met after iteration 4, confirming that iteration 3 provided the most
accurate and parsimonious model. The results from the second, third and fourth iterations are summarized in Table@,
while Figure [6]illustrates the fit for every iteration.

A similar pattern to that of the first case study emerges for the aldol case regarding the execution of SIMBA: iteration
1 (5* = 625 total possible matrices) executes in 3.06 s; iteration 2 (5'° ~ 9.77 x 10%) in 4.41 s; iteration 3
(5'® ~ 3.81 x 10'?) in 75.18 s; and iteration 4 (528 ~ 3.73 x 10'%) in 7,989.69 s. These results confirm that
backtracking keeps the search tractable even as the combinatorial possibilities skyrocket.

The comparison between the selected model and the original data-generating mechanism demonstrates SIMBA’s ability
to successfully uncover the fundamental dynamics of the aldol condensation reaction, even when working with limited
data. This case study serves as further evidence of SIMBA'’s strength in identifying complex reaction mechanisms in
realistic systems. The results not only validate SIMBA’s accuracy but also highlight its potential for broader application
in mechanistic discovery across diverse chemical reactions.
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Table 2: Reaction mechanisms, microkinetic models, and AIC values for iterations 2 to 4 identified by SIMBA in the
aldol condensation case study. Due to space constraints, iteration 1 is omitted from the table but its performance is
shown in Figure[6] The table presents the reaction mechanisms for iterations 2 through 4, the corresponding microkinetic
models in the form of ordinary differential equations, and the AIC values, which assess model quality. Iteration 2
begins with the introduction of intermediate E, resulting in a substantial improvement in the AIC value to 866.58. By
iteration 3, the inclusion of intermediate F yields the optimal model with the lowest AIC value of -351.17, indicating
the best balance between fit and parsimony. In iteration 4, an additional intermediate (G) is introduced, but the AIC
value of -349.21 indicates that the added complexity is unnecessary, suggesting that the optimal model was discovered

in iteration 3.

Iteration Reaction Mechanism  Microkinetic Model AIC Value
dCa
@A _ g
dt 1Ca
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3.3 The Dehydration of Fructose

The dehydration of fructose refers to the process of removing water molecules from fructose to produce 5-
hydroxymethylfurfural (HMF), a valuable platform chemical. This reaction is important because HMF can be further
converted into various high-value chemicals and biofuels, making it a crucial step in the conversion of biomass into
renewable energy and materials. The overall stoichiometry of the dehydration reaction can be represented by Eq.
whilst Eq. (T2) shows the rate model extracted from the literature [49]], which is derived from experimental data and
governs the reaction dynamics. A brief note on assumptions: the energy balance is not included in this study, instead
treating the reaction as if it proceeds isothermally at 137 °C. This choice reflects the experimental setup — heating a 0.5
mL reaction mixture in sealed glass ampoules — where the small volume and thin walls likely minimize heat-up time
and heat transfer limitations. Under these conditions, the parameters used were: Cyeiq = 3.3 x 1072 M of sulfuric
acid, by = 0.9 M min !, E, =124Jmol~!, R =8314JK ! mol~! and T = 410.15 K (directly taken from
van Putten et. al. [49], which alike the model, were derived from experimental data).

A—3B+C Y

r = kCACqciq (12a)
Eq

k= kref exp (M) (12b)

In Eq. (1), A, B and C correspond to fructose, water and HMF respectively. Starting from the rate model in Eq.
% ddc;’i) and generate an in-silico dataset wherein At = [0,90] min and
ns = 30. This dataset is composed of five different experiments, each ran at different initial conditions (in molar
units: (Ca(t = 0),Cp(t = 0),Cc(t = 0)) € {(4,0,0),(6,2,1),(4,2,0),(4,0,1),(6,2,0)}); these experiments

were randomly picked from a 2* factorial design [51]].

For all experiments, the system is assumed to be both isochoric and isothermal, and Gaussian noise is added to the
in-silico measurements to simulate a chemical experiment. The added noise had zero mean and a standard deviation
of 0.2 for A, B and C. In this example, resembling a real system, we do not have any measurement on possible
intermediates. The generated dataset for the one of the experiments are presented in Fig. [ (c).

3.3.1 Results and Discussions

The application of SIMBA to the dehydration of fructose case study demonstrated its ability to uncover a mechanistic
pathway that aligns with literature-accepted models [50]], even though the data originated from a rate law validated
by experimental findings [49] rather than from a constructed microkinetic model with hidden intermediates (alike the
other two presented case studies). By working with a system where only the concentrations of fructose (A), water (B),
and hydroxymethylfurfural (C') were available, SIMBA inferred the presence and behavior of unobserved species in a
manner that remained consistent with a widely accepted reaction mechanism in literature.

In the first iteration, SIMBA identified all permutations of the simplest possible reaction configuration consistent with
the overall stoichiometry. For this case study, these permutations resulted in 10 candidate reaction matrices, each
describing a minimal three-step mechanism involving five total species. For an in-depth discussion of these initial
candidates, please refer to the Supplementary Information. The best of these initial models, shown in the first row of
Table 3] achieved an AIC value of -166.18, indicating a reasonable fit to the in-silico data. As seen in the top right plot
of Figure[d] this initial mechanism satisfactorily captures the concentration profiles of A, B, and C, yet leaves open the
possibility that additional chemical complexity could yield a still better match to the observed dynamics.

It is interesting to see that in iteration 1, SIMBA proposes a mechanism that is analogous to a widely accepted one in
literature in which the 5-membered ring of fructose remains intact [49]. The first dehydration step yields intermediate
D, which can exist either as the enol or keto tautomers. The second elimination introduces a unit of unsaturation in
the ring (£). Finally, HMF can be obtained from the last dehydration from the ring. Given that the tautomerism is a
very fast process, this mechanism can be described kinetically by three consecutive elementary dehydration steps. The
detailed mechanism can be found in Fig. [5] (i).

Iteration 2 introduced a more elaborate mechanism by appending an additional elementary step and including an extra
intermediate species (F'). The resulting 4x6 matrix improved the fit of the model, offering a more nuanced description
of how fructose converts into HMF through an additional intermediate stage. As reported in Table 3] this enhanced
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Figure 4: (a) The in-silico data of one of the computational experiments for the hypothetical reaction. (b) The generated
data of one of the computational experiments for the aldol condensation reaction. (c) The generated data of one of the
computational experiments for the the dehydration of fructose to HMF.
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mechanism yielded an AIC of -169.40 — a slight improvement that underscores a better balance between complexity
and predictive accuracy. The middle-right plot of Figure[6]shows a slightly improved alignment between the simulated
trajectories and the measured concentrations, particularly for water (), which now follows the experimentally validated
rate model’s curvature slightly more precisely.

Remarkably, in this iteration, SIMBA also recovers an underlying sequence of elementary steps that is analogous to
another widely accepted mechanism in the literature for the dehydration of fructose [49,55)]. This mechanism starts
with the acyclic form of fructose (A), which is thought to be more abundant. In order for dehydration steps to occur,
the formation of an enediol intermediate (D) is thought to be critical. Following two sequential dehydration steps, the
dideoxyhexosulose intermediate (F’) can cyclise very readily to form the 5S-membered ring, prior to the elimination of
the final water molecule to yield HMF (C). The detailed mechanism can be found in Fig. [5ii).

Iteration 3 further expanded the proposed mechanism by introducing yet another species (G). Although this more
complex mechanism continued to reproduce the trajectory of the reaction reasonably well, its increased complexity
did not translate into further gains in predictive power; the AIC rose to -161.52, signifying that the added steps merely
inflated model complexity without meaningful improvement in data fitting. This is corroborated by the bottom-right
plot of Figure[6] where the concentration profiles remain comparable to those from iteration 1, highlighting diminishing
returns on model complexity. Consequently, the algorithm converged in iteration 3, as no additional refinement offered
a better trade-off between model simplicity and accuracy. Among all iterations, the mechanism discovered in iteration 2
proved optimal.
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The fructose example further illustrates the exponential scaling: iteration 1 (5'° ~ 3.05 x 10'° possible matrices)
takes 12.80 s; iteration 2 (5%* ~ 5.96 x 10'%) takes 1,978.81 s; and iteration 3 (5%° ~ 2.91 x 102%) takes 10,217.54
s. Two key conclusions follow. First, the total enumeration size grows exponentially with matrix dimensions, but the
backtracking time — and thus the feasible subset — is strongly problem-dependent (i.e., dependent on SiMBA’s starting
point and the stoichiometry of the reaction) but remains small. Second, as network complexity grows, most of the
runtime shifts from backtracking to the parameter-estimation phase, which becomes the dominant cost in evaluating
every feasible candidate.

In this example, unlike our other case studies — where we deliberately hid intermediates in a microkinetic simulation —
this example underscores SIMBA’s value in a realistic setting. The results establish that SIMBA can parse complex,
experimentally grounded datasets and distill them into verifiable mechanistic pathways, further solidifying its robustness
and practical relevance for catalytic reaction discovery.
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Figure 5: The transformation of fructose (A) to HMF (C) is known to be facile and involves three dehydration steps,
eliminating 3 molecules of water. There are two general mechanistic pathways that are commonly proposed in literature.
In the cyclic pathway (found in iteration 1), the five-membered ring remains intact and undergoes three consecutive
dehydration steps: the first step yields intermediate D (enol or keto tautomer), followed by a second dehydration to
produce intermediate F, and a final dehydration to form HMF. In the acyclic pathway (found in iteration 2 and chosen
by SiMBA), fructose is proposed to adopt an open-chain form, which tautomerizes through an enediol intermediate
(also labeled D). After two sequential dehydration steps, the resulting intermediate F' cyclises readily, and the last
dehydration step produces HMF. Both routes eliminate a total of three water molecules.
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Table 3: Evolution of reaction mechanisms, microkinetic models, and AIC values across three iterations of the SIMBA
process for the dehydration of fructose case study. The table shows the progression of SIMBA through iterations 1, 2,
and 3 for the given reaction system. For each iteration, the reaction mechanism, corresponding microkinetic model,
and the AIC values are presented. In iteration 1, the simplest mechanism is identified with an AIC of -166.18. As
complexity increases in iterations 2 and 3, intermediates such as F and G are introduced, and the model structure
becomes more intricate. The best-fit mechanism is achieved in iteration 2 with an AIC of -169.40, while iteration 3,
despite introducing additional complexity, yields a higher AIC value of -161.52, indicating that further refinement may

not improve model accuracy considerably.
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Figure 6: Model fit of the selected mechanisms across iterations for three case studies: the Hypothetical Reaction
(Experiment 3), Aldol Condensation Reaction (Experiment 2), and Dehydration of Fructose Reaction (Experiment 1).
Each plot shows the concentration profiles of species A (blue), B (red), C (yellow), and D (where applicable) over time,
with solid lines representing model predictions and dotted points corresponding to in-silico data. For the hypothetical
reaction (left column), SIMBA progressively refines the mechanism through iterations, achieving the best model fit by
iteration 3. The aldol condensation reaction (middle column) shows notable improvement in fit by iteration 3, where the
model captures the observed data well for all species. Iteration 4 introduces additional complexity but does not improve
the fit, as demonstrated by the increased AIC value. For the dehydration of fructose reaction (right column), the model
performs well from iteration 1, with iteration 2 yielding the optimal mechanism, which aligns with the data-generating
model. The AIC value increases in iteration 3, signaling that additional complexity does not enhance the fit, and the
process is terminated.

(cc)

3.4 Methodological Limitations

While SiMBA represents an advancement in the automated construction of microkinetic models, it is not without its
limitations. One of the primary challenges is the lack of inherent chemical identification for intermediates, which requires
expert input when dealing with complex systems. This limitation can constrain the algorithm’s utility in scenarios where
the identification of novel intermediates is crucial for understanding the reaction mechanism. Additionally, SIMBA’s
approach to exploring extensive mechanism spaces is computationally demanding, particularly as the complexity of the
potential mechanisms increases. Furthermore, the optimization process can be sensitive to initial parameter guesses,
which might lead to suboptimal solutions if not managed carefully.
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It is also important to note that despite SIMBA’s systematic approach and rigorous filtering criteria, the mechanisms
returned are fundamentally justified by the kinetic data rather than guaranteed to represent the actual underlying
chemical pathways. The inherent limitation here is that concentration-time datasets, especially when incomplete,
inherently underconstrain the reaction network. Consequently, SiMBA-generated mechanisms should be interpreted
as being consistent with the available kinetic data and chemically plausible within the defined constraints (which can
always be augmented), but not necessarily as uniquely true representations of the fundamental reaction mechanisms.
This caveat is particularly critical when applying SIMBA to real-world experimental datasets, which may be incomplete
or subject to measurement uncertainties. Users should therefore view the generated mechanisms as robust hypotheses
warranting further experimental verification and refinement.

To mitigate the other limitations, several strategies have been implemented within the current study. For instance,
to address the computational demands associated with exploring large mechanism spaces, we have employed a
backtracking technique, as detailed in Section[2.1] This method significantly reduces the search space by eliminating
unfeasible pathways early in the process, and the exploration has been parallelized to further improve computational
efficiency. To counter the potential sensitivity to initial parameter guesses during optimization, as discussed in Section
[2.3] we have utilized a well-established optimization algorithm, specifically the BFGS algorithm, with a multi-start
option. This approach increases the likelihood of finding the global optimum by starting the optimization from multiple
initial guesses.

Looking ahead, future work will focus on overcoming the lack of inherent chemical knowledge as well as continuing
to reduce the computational cost to further enhance SIMBA’s capabilities. For the issue of chemical identification of
intermediates, we plan to explore the use of quantum chemistry methodologies. While quantum chemistry workflows
(e.g., as reviewed in Simm et. al. [56]) provide a systematic route to enumerate and validate reaction pathways, their
high computational cost often limits the breadth of mechanism exploration — particularly for complex networks with
many intermediates. We therefore envision SIMBA serving as a low-cost “exploration” engine that rapidly identifies the
simplest skeleton mechanisms consistent with kinetic data available. These skeletal networks can then be subjected to
more expensive DFT or other quantum-chemical calculations (“exploitation”) to assign chemical identities, compute
activation barriers, and confirm intermediate stabilities. In cases where quantum-chemical results diverge from SIMBA’s
proposal (e.g., predicting additional intermediates), targeted MBDoOE can be employed to generate discriminating data
and refine the mechanism (as explained in Section [2.3). This hybrid workflow would thus combine the speed and
parsimony of data-driven exploration with the physical rigor of first-principles validation.

Additionally, we are considering to add canonicalization rules into SIMBA, which will decrease the number of duplicates
that, at the moment, the methodology inevitably computes and explores (a more in-depth discussion can be found in the
Supplementary Information). We are also considering the integration of uncertainty quantification methods, which will
increase the robustness of the models proposed by SIMBA. These enhancements aim to make SiMBA a powerful tool
for chemists and engineers, capable of addressing the diverse challenges encountered in kinetic discovery and reaction
mechanism elucidation.

4 Conclusions

In this paper, we have presented SIMBA (Simplest Mechanism Builder Algorithm), an efficient approach to microkinetic
model discovery that aims to address key limitations in both manual and automated methods. Microkinetic models
play a crucial role in various industries, including pharmaceuticals, petrochemicals, and environmental engineering, by
helping to optimize chemical processes and understanding their environmental impact. However, traditional methods
for constructing these models are often time-consuming, complex, and prone to human error, as they require extensive
expertise to manually identify reaction mechanisms and intermediates. While automated approaches have emerged to
overcome these challenges, they tend to generate overly complex models or rely heavily on prior knowledge, limiting
their practical application.

SiMBA was developed to fill this gap by introducing a minimalistic, data-driven approach that incrementally builds
model complexity based on available information. Unlike other methods, SIMBA begins with the simplest possible
mechanism and systematically adds complexity only if the additional parameters provide informational gain. This
balance between simplicity and accuracy is achieved through four key phases: mechanism generation, mechanism trans-
lation, parameter estimation, and model comparison. The algorithm starts by proposing feasible reaction mechanisms
using a parallelized backtracking algorithm, translates these mechanisms into systems of ODEs, optimizes their kinetic
parameters, and selects the best model using the AIC to ensure the right trade-off between model complexity and fit.

The effectiveness of SIMBA was demonstrated through three case studies: a hypothetical reaction, an aldol condensation,
and the dehydration of fructose. In each case, SIMBA successfully distilled complex reaction behaviors into accurate
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models, even in situations where intermediates were not directly observable. These case studies highlight the algorithm’s
versatility and robustness in generating models.

While SiMBA has proven to be a powerful tool for microkinetic model discovery, it is not without limitations. The
current version does not provide chemical identification of intermediates, necessitating expert input for it. Additionally,
while the algorithm excels at balancing simplicity with accuracy, incorporating uncertainty quantification could further
enhance the robustness of its predictions. Future work will focus on integrating more chemical knowledge and
techniques for identifying intermediates, as well as expanding the algorithm’s capabilities to address uncertainty in
model predictions.

In conclusion, SIMBA offers a novel approach to overcoming many of the challenges associated with existing automated
methods for microkinetic model discovery. By systematically generating, refining, and evaluating microkinetic models,
SiMBA provides a new framework for mechanistic discovery. As SIMBA continues to evolve with future enhancements
like uncertainty quantification and intermediate identification, we hope that it will become a useful tool for chemists
and engineers, helping bridge the gap between theoretical exploration and industrial applications.

Author Contributions
Miguel Angel de Carvalho Servia: Conceptualization, formal analysis, investigation, methodology, project adminis-
tration, software development, validation, visualization, writing (original draft), and writing (review and editing).

King Kuok (Mimi) Hii: Conceptualization, formal analysis, funding acquisition, supervision, writing (original draft),
and writing (review and editing).

Klaus Hellgardt: Conceptualization, formal analysis, funding acquisition, supervision, and writing (review and
editing).

Dongda Zhang: Conceptualization, funding acquisition and supervision.

Ehecatl Antonio del Rio Chanona: Conceptualization, formal analysis, funding acquisition, methodology, project
administration, supervision, and writing (review and editing).

Declaration of Competing Interest

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access Article. Published on 11 August 2025. Downloaded on 8/30/2025 3:51:19 AM.

Acknowledgments and Funding

(cc)

This work was supported by the EPSRC Centre of Doctoral Training for Next Generation Synthesis & Reaction
Technology (rEaCt) funding grant EP/S023232/1.

Appendix A. Supplementary Information

The accompanying supplementary information offers an in-depth discussion of the candidates proposed by SIMBA in
the first iteration of the dehydration of fructose case study.

The code used to produce all results and graphs shown in this work can be accessed at https://github.com/
OptiMaL-PSE-Lab/auto_react_mech_construct,
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The code for SiIMBA, an open-source Python automated microkinetic model discoyery togl, /e e
can

be found at https://doi.org/10.5281/zenodo.14913720 with DOI -- 10.5281/zenodo0.5510203.
The version of the code employed for this study is version v0.1.0.

Data for this article, including in-silico datasets are available at OptiMaL-
PSELab/auto_react_mech_construct at https://doi.org/10.5281/zenodo.14913720.
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