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environment modification in an
atomically dispersed bimetallic FeCu catalyst in the
oxygen reduction reaction†

Lingmin Wu,a Yinghua Wang,a Chunfeng Shao, b Fanfei Sun,*c Liming Wang *a

and Baitao Li *a

The important effect of microstructure in Fe–Cu bimetallic catalysts on the mechanism of the oxygen

reduction reaction (ORR) was theoretically and experimentally investigated. Three types of Fe sites

regulated by Cu were constructed: Fe clusters modified with Cu–N4, Fe–Cu dimers, and isolated Fe/Cu

single atoms. A theoretical study revealed that although copper could reduce the d-band center of Fe,

the Fe–Cu dimer displayed unique attributes. Notably, the dimer increased the energy of *p antibonding

orbitals combined with Fe2+/Fe3+-3d and *OH-2p, accelerated *OH removal and produced the lowest

predicted overpotential (0.48 V). Three catalysts featuring the above models were experimentally

embedded on porous nitrogen-doped carbon. FeCu-NC-2 with Fe–Cu dimers exhibited the most

positive half-wave potentials of 0.904 V in alkaline and 0.720 V in neutral solutions. A Zn–air battery and

a microbial fuel cell equipped with FeCu-NC-2 as the cathodic catalyst produced stable and high power

densities of 568.6 mW cm−2 and 2467 mW m−2, respectively.
1. Introduction

The development of renewable energy, such as fuel cells and
metal–air batteries, is imperative in tackling the pressing energy
crisis and environmental issues.1–3 However, the inefficient
oxygen reduction reaction (ORR) at the cathode limits their
practical utilization.4–6 Although Pt-based catalysts have signif-
icantly enhanced the ORR,7 their prohibitive cost and poor
stability continue to impede their widespread adoption.8,9 Fe-
based catalysts are considered as promising alternatives to
precious Pt-based counterparts, owing to the unlled d-orbitals
of Fe that facilitate the ORR.10,11 Unlike bulk catalysts such as
Fe3C or Fe particles, which expose only a small fraction of
surface atoms,12 Fe clusters,13 Fe dual atoms,14,15 and single-
atomic Fe–N4 catalysts with maximum atom utilization effi-
ciency have garnered signicant attention for their potential to
enhance ORR performance.16,17
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The intrinsic activity of an atomically dispersed Fe-based
catalyst hardly achieved the desired ORR activity due to its
strong adsorption of *OH intermediate.18,19 Introducing
secondary elements to disrupt the electronic structure of the Fe
atom is an effective strategy to control the adsorption
mentioned above.20–23 A number of dual-atomic Fe–Cu–NC
catalysts with different Fe–Cu bonding congurations have
been reported. In the rst model, the Fe atom is directly bonded
with the Cu atomwith an Fe–Cu distance of∼2.5 Å (model I).24,25

In the second model, Fe and Cu single atoms are arbitrarily
dispersed with an Fe–Cu distance longer than 5.0 Å (model II).26

These two models demonstrated an improvement in the elec-
tronic conguration of active sites as well as ORR performance,
compared to a single-atomic Fe–N4 catalyst. In the third model,
Fe clusters are functionalized by an adjacent Cu–N4 single-atom
site (model III), and the catalysts possess both high-density
active Fe clusters and secondary Cu metal,27 where the Cu–N4

site adjusts the electronic structure of the Fe cluster to reduce
the reaction free energy of *O2 toward *OOH.28 In the above
three models, the active sites determined by theoretical studies
are Fe rather than Cu sites, while Cu acts as a modulator.24,29,30

In many publications, each study typically reported only one or
two of the above structures. Nevertheless, the ORR performance
varies greatly with synthesis procedure, operating, and
measurement parameters. It is very difficult to determine which
type of microstructure is the most effective for ORR perfor-
mance; yet, this is a question that electrochemists have always
sought to clarify. Theoretically and experimentally, constructing
catalysts with the aforementioned three structures and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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weighing up their pros and cons in ORR performance are
crucial and necessary for the bottom-up designing of catalysts
with superior performance.

Here, models embedded with Cu–N4-modied Fe clusters
(Fe5–CuN4), Fe–Cu dimers, and isolated Fe and Cu single atoms
(FeCu-isolated) were constructed. Density functional theory
(DFT) calculations expounded that the d-band centers of all the
three models decreased aer incorporating Cu, but the Fe–Cu
dimer exhibited the lowest d-band center (−1.40 eV) and the
highest *p antibonding orbitals of Fe2+/Fe3+-3d and *OH-2p,
which beneted the removal of *OH and resulted in the
lowest predicted overpotential (0.48 V). Guided by the theoret-
ical results, three catalysts (FeCu-NC-x) with the aforemen-
tioned three structures were synthesized by adjusting only the
molar ratio of Cu/Fe, while ensuring that all other conditions
were identical. Aberration-corrected high angle annular dark
eld (HAADF)-STEM and X-ray adsorption spectroscopy (XAS)
analysis revealed that the above three types of active site were
successfully embedded on porous nitrogen-doped carbon.
Notably, FeCu-NC-2 with Fe–Cu dimer sites exhibited superior
ORR performance, outperforming FeCu-NC-1 and FeCu-NC-3,
which have different structures. It also showed great potential
for applications in both Zn–air batteries (ZABs) and microbial
fuel cells (MFCs).
2. Results and discussion

DFT calculations were performed on three models: FeCu-dimer,
Fe5–CuN4 and FeCu-isolated (Fig. S1†). The *O2, *OOH, *O and
Fig. 1 Free energy diagram (a); computed projected density of states
interaction (d) depicting overlap of Fe-3d and O-2p in FeCu-dimer; line
predicted overpotential (f). FeCu-dimer (OH), Fe5–CuN4(OH) and FeC
adsorption.

© 2025 The Author(s). Published by the Royal Society of Chemistry
*OH intermediates adsorbed on the catalysts are depicted in
Fig. S2.† For the FeCu-dimer model, at U= 0 V, each elementary
step was exothermic (Fig. 1a). However, at U = 1.23 V, the
protonation of *O to *OH exhibited the highest endothermicity,
with a DG3 of 0.48 eV (Table S1†), indicating that this step is the
rate-determining step; and the corresponding overpotential was
0.48 V. Similarly, the overpotentials of Fe5–CuN4 and FeCu-
isolated were 0.65 and 0.84 V, respectively (Table S1†). These
values were all lower than those of FeN4 (0.93 V) and CuN3 (1.14
V) single atoms (Fig. S3 and S4†), suggesting the unique
synergistic interaction between Fe and Cu atoms. This was
because stronger oxygen adsorption on FeN4 made the disso-
ciation of *OH challenging,31 while weak oxygen adsorption for
CuN3 made oxygen adsorption difficult.32 The linear relation-
ship between *OH and *O2 adsorption energies (named Eads,*OH
and Eads,*O2

) (Fig. S5†) further suggested that, while the incor-
poration of Cu weakens the interaction between oxygen and
FeN4, it also accelerates the removal of *OH, resulting in a lower
overpotential in the Fe–Cu bimetallic catalyst. The d-band
center of Fe atoms provides insight into this interaction:
generally, a lower d-band center corresponds to weaker
adsorption.33,34 FeCu-dimer exhibited the lowest d-band center
at −1.40 eV, followed by Fe5–CuN4 (−1.05 eV), with FeCu-
isolated showing the smallest reduction at −0.72 eV (Fig. 1b).
These values were all lower than that of FeN4 (−0.66 eV)
(Fig. S6†). The relationship between d-band center and over-
potential (blue line in Fig. 1f) emphasized the decisive role of
the introduced Cu atoms in alleviating adsorption. A decrease
(PDOS) before (b) and after *OH adsorption (e); PDOS (c) and orbital
ar scaling relationship between the d-band center and Eads*OH versus
u-isolated (OH) in (c) and (e) indicate the three models after *OH

Chem. Sci., 2025, 16, 8082–8091 | 8083
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in the d-band center modulated the adsorption of intermedi-
ates, which was vital for enhancing electrocatalytic ORR activity.

Furthermore, the changes in d-sub-orbitals before and aer
*OH modication were explored. In the pristine FeCu-dimer,
the unlled dx2−y2 orbital had the highest energy, above the
Fermi level (Fig. S7a†). Meanwhile, the dxz and dz2 orbitals were
half-lled, and the dxz and dxy orbitals were fully lled.35 Aer
*OH adsorbed on the Fe active sites in FeCu-dimer, the dz2
orbitals overlapped with the pz orbital in *OH, forming a s

bond. The dxz and dyz orbitals individually overlapped with px
and py orbitals in *OH, forming two p bonding orbitals and two
*p antibonding orbitals (Fig. 1c and d).36,37 Similar bonding
interactions, s bonds, p bonds, and *p bonds, were observed in
Fe5–CuN4 (Fig. S7b†) and FeCu-isolated (Fig. S7c†). A higher
energy for the *p antibonding orbitals meant weakened inter-
action between *OH and active sites.27 The *p orbital energy
followed the trend FeCu-dimer > Fe5–CuN4 > FeCu-isolated
(Fig. 1e), indicating that FeCu-dimer had a signicant advan-
tage in *OH removal; this is in agreement with a lower Eads,*OH
for FeCu-dimer (Fig. S5†). Furthermore, Eads,*OH and the pre-
dicted overpotential (the pink line in Fig. 1f) exhibited a linear
relationship, suggesting that reducing Eads,*OH on Fe sites
directly enhances the ORR performance. Overall, the FeCu-
dimer was predicted to show the best ORR performance.
Fig. 2 Synthesis procedure of FeCu-NC-x (a); SEM images (b), TEM ima
bution (f) of FeCu-NC-2; aberration-corrected HAADF-STEM images of

8084 | Chem. Sci., 2025, 16, 8082–8091
Furthermore, the corresponding catalysts (FeCu-NC-x) were
synthesized by adjusting the molar ratio of Cu/Fe from 1 to 3
with SiO2 as a porosity-inducing template (Fig. 2a). Both FeCu-
NC-x and Cu-NC catalysts exhibited tightly packed pore struc-
tures (Fig. 2b and S8a–e†). However, a more constricted aper-
ture was observed in the Fe–NC catalyst (Fig. S8d†), due to the
easy aggregation of a number of Fe ions (2.81 wt%) (Table S2†)
aer the removal of SiO2.38 All the catalysts exhibited typical
type IV curves with H3 hysteresis (Fig. S9†), indicating the
presence of numerous mesopores.39,40 Their surface areas were
all greater than 900 m2 g−1 (Table S2†). Furthermore, the TEM
(Fig. S8i†) and energy-dispersive X-ray spectra (EDS) (Fig. S8k†)
revealed obvious iron particles in Fe–NC, but no metal particles
could be detected in FeCu-NC-x (Fig. S8f–h†) or Cu–NC
(Fig. S8j†). The XRD pattern of Fe–NC showed the existence of
iron carbide, but no related species were observed in the FeCu-
NC-x or Cu–NC catalysts (Fig. S10a†), showing that the addition
of Cu prevented the accumulation of iron.41 The aberration-
corrected HAADF-STEM showed the presence of clusters
(∼0.8 nm, red circles) and single atoms in FeCu-NC-1 (Fig. 2g).
According to the ICP results (Table S2†), these clusters were
identied as Fe clusters. The Fe clusters became less abundant
with the decrease in Fe dosage. A signicant presence of atomic
pairs (red circles) and single atoms was observed in FeCu-NC-2
ges (c)–(e), HAADF-STEM image and corresponding elemental distri-
FeCu-NC-1 (g), FeCu-NC-2 (h) and FeCu-NC-3 (i).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(Fig. 2h, S10b and c†). No clusters were observed in FeCu-NC-3
(Fig. 2i), and the quantity of single atoms was lower than that in
FeCu-NC-2, due to the reduction in Fe loading. Thus, the
microenvironment of bimetallic Fe and Cu can be achieved by
adjusting the Cu/Fe molar ratio.

The surface electronic structures of Fe and Cu atoms were
analyzed via X-ray photoelectron spectroscopy (XPS). The Fe 2p
spectra showed peaks at 710.8/723.6 eV and 713.0/726.0 eV,
corresponding to ferrous (Fe2+) and ferric (Fe3+) states,42

respectively (Fig. S11†).43 Fe–NC displayed a higher Fe2+/Fe3+

ratio (2.18) (Table S3†) than that of the FeCu-NC-x catalysts,
suggesting electron transfer from Fe to Cu. The ratio increased
from 1.50 to 1.83 as the Fe content increased from FeCu-NC-3 to
FeCu-NC-1.This observation can be further conrmed by the Cu
2p spectra (Fig. S12†). Compared to the lower ratio of Cu+/Cu2+

in Cu–NC (0.72), FeCu-NC-x exhibited higher values (>0.80),
further supporting electron transfer from Fe to Cu. The high-
resolution N 1s spectra could be deconvoluted into four peaks at
398.3, 399.5, 401.0, and 404.0 eV, attributed to pyridinic N,
metal-N, graphitic N, and oxidized N, respectively (Fig. S13†).44

Among these, pyridinic N,45 metal-N46,47 and graphitic N48 were
regarded as active N species favorable to ORR performance, and
Fe–N was more active than Cu–N.49,50 Thus, FeCu-NC-2 exhibi-
ted the highest concentration of active N species (Table S4†),
suggesting the substantial potential for ORR activity in Fe-NC-2.

The coordination environments of Fe and Cu atoms in the
FeCu-NC-x catalysts were investigated by XAS. Fe K-edge XANES
of FeCu-NC-x were set between FeO and Fe2O3, revealing the
presence of Fe2+ and Fe3+ in the bimetallic catalyst (Fig. 3a).51

The average oxidation state of Fe increased from FeCu-NC-1
Fig. 3 X-ray absorption spectroscopy data of FeCu-NC-x. XANES spectr
K-edge (b) and Cu K-edge (e) based on the XANES spectra of the first de
edge (c) and Cu K-edge (f).

© 2025 The Author(s). Published by the Royal Society of Chemistry
(2.35) to FeCu-NC-3 (2.57) (Fig. 3b),24 reecting a decrease in
the Fe2+/Fe3+ ratio, which agreed well with the result from XPS
(Table S3†). Accordingly, the average oxidation state of Cu
decreased from FeCu-NC-1 (1.49) to FeCu-NC-3 (1.12) (Fig. 3d
and e),52,53 further indicating electron transfer from Fe to Cu
atoms. Furthermore, the Fourier transform (FT)-EXAFS of the Fe
K-edge revealed a primary peak located at ∼1.41 Å (Fig. 3c),
corresponding to the Fe–N path or Fe–O scattering. Addition-
ally, FeCu-NC-1 displayed a weak shoulder peak at 2.27 Å
(Fig. 4a), suggesting the existence of a Fe-metal path.54 No such
peak was detected in FeCu-NC-2 (Fig. 4b) or FeCu-NC-3 (Fig. 4c),
where Fe atoms were more dispersed. Similarly, the Cu K-edge
FT-EXAFS plots showed a Cu–O or Cu–N peak at ∼1.47 Å
(Fig. 3f),55 with FeCu-NC-2 showing a secondary peak at 2.38 Å
(Fig. 4e), indicating Cu-metal bonding.56 The EXAFS tting
revealed that the coordination number of Fe–N in FeCu-NC-1
was 3.02 and that of Cu–N was 3.98 (Table S5†). As no obvious
Cu-metal path was detected in the Cu K-edge of FeCu-NC-1 in R
space (Fig. 4d), the Fe-metal path in the Fe K-edge of FeCu-NC-1
was ascribed to Fe–Fe scattering. While FeCu-NC-2 presented
small amounts of Fe–Cu dimers and abundant Fe–N4 single
atoms (Fig. 4b and e), FeCu-NC-3 showed highly dispersed Fe
single atoms and Cu single atoms, each coordinated with three
nitrogen atoms (Fig. 4c, f, and Table S5†). The Cu–NC catalyst
was well-tted with Cu–N scattering (Fig. S14 and Table S5†)
with a coordination number 4.02. Moreover, the Fe K-edge
wavelet-transformed (WT) EXAFS of FeCu-NC-1 and FeCu-NC-
2 both exhibited two intensity maxima: one at k z 4.50 Å−1

belonging to Fe–N and another at 6.65 Å−1 in FeCu-NC-1,
attributed to the Fe–Fe path (Fig. 4g); the peak at 6.90 Å−1 in
a of the Fe K-edge (a) and Cu K-edge (d); fitted oxidation state of the Fe
rivative; k3-weighted Fourier transform (FT) EXAFS spectra of the Fe K-

Chem. Sci., 2025, 16, 8082–8091 | 8085
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Fig. 4 EXAFS fitting spectra of the Fe K-edge and Cu K-edge in R space for FeCu-NC-1 (a and d), FeCu-NC-2 (b and e) and FeCu-NC-3 (c and f),
and wavelet-transform contour plots of the k3-weighted EXAFS data of Fe K-edge (g–i) and Cu K-edge (j–l).
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FeCu-NC-2 was ascribed to the Fe–Cu path (Fig. 4h). Only one
intensity maximum at 3.61 Å−1 (Fig. 4i) was detected in FeCu-
NC-3. The Cu K-edge WT-EXAFS of FeCu-NC-2 alone showed
two intensity maxima at k z 4.97 Å−1 and 6.95 Å−1, which were
related to the Cu–N and Cu–Fe paths (Fig. 4k), respectively and
were different from those of Cu foil (Fig. S15d†) and Cu2O
(Fig. S15f†). All the other catalysts displayed one intensity
maximum at 4.0 Å−1 (Fig. 4j, l and S14b†) assignable to the Cu–
N path (Fig. S15e†).

The electrocatalytic activity of the FeCu-NC-x catalysts
toward ORR was investigated in an O2-saturated 0.1 M KOH
8086 | Chem. Sci., 2025, 16, 8082–8091
solution. FeCu-NC-2 demonstrated the most positive half-wave
potential (E1/2) of 0.904 V and onset potential (Eonset) of
1.012 V, exceeding those of FeCu-NC-1 (0.891 V, 1.022 V) and
FeCu-NC-3 (0.877 V, 0.982 V) (Fig. 5a and b), highlighting the
signicant advantage of Fe–Cu dimers in the FeCu-NC-2 catalyst
over the Fe clusters in Fe-NC-1 and individual Fe/Cu single
atoms in FeCu-NC-3. Meanwhile, the E1/2 values of the FeCu-NC-
x catalysts surpassed those of the monometallic catalysts, Fe–
NC (0.856 V) and Cu–NC (0.836 V), indicating the special
interactions between Fe and Cu atoms. Additionally, different
batches of FeCu-NC-2 were tested (Fig. S16†), for which the LSV
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Electrocatalytic performance of FeCu-NC-x, Fe–NC, Cu–NC and Pt/C catalysts. LSV curves at 1600 rpm (a), the value of onset potential
(Eonset) and half-wave potential (E1/2) (b), Tafel slope (c) and peroxide yields and electron transfer number (e) in 0.1 M KOH solution; LSV curves at
1600 rpm (g), the value of Eonset and E1/2 (h) and Tafel slope (i) in 0.05 M PBS solution; LSV curves of FeCu-NC-2 at different rotation speeds from
625 to 2025 rpm (d) and the corresponding electron transfer number (e) and methanol crossover effect test of FeCu-NC-2 (f) in 0.1 M KOH.
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curves almost overlapped and the E1/2 varied from 0.900 V to
0.904 V, with a low standard deviation of 0.002, suggesting good
reproducibility of the synthesis process. Furthermore, FeCu-NC-
2 displayed the smallest Tafel slope of 60.9 mV dec−1 (Fig. 5c),
indicating its outstanding kinetics.57,58 The electrochemically
active surface areas (ECSAs) were evaluated by double-layer
capacitance (Cdl) (Fig. S17†), with FeCu-NC-2 showing the
highest Cdl (21.4 mF cm−2), in line with the trend of ORR
activity. Koutecky–Levich (K–L) plots demonstrated that the
electron transfer numbers (n) of all the catalysts (Fig. 5d, S18
and S19†) were comparable to that of Pt/C (4.10), indicating that
the catalysts followed a four-electron pathway. RRDE measure-
ments showed a similar result, in which all the catalysts had
a peroxide yield of less than 5%, with n close to 4.0, conrming
the four-electron pathway (Fig. 5e).

The stability of FeCu-NC-2 was assessed using the normal-
ized current–time (i–t) method. It maintained 84.9% of its
initial current aer 45 000 s, comparable to Pt/C (81.3%)
(Fig. S20a†). The corresponding E1/2 of FeCu-NC-2 decreased by
only 20 mV, while Pt/C exhibited a decrease of 26 mV (Fig. S20b
© 2025 The Author(s). Published by the Royal Society of Chemistry
and S20c†), demonstrating its excellent stability. Aer 10 000
consecutive cycles in accelerated durability testing (ADT), FeCu-
NC-2 showed a small change in E1/2 (7 mV) (Fig. S21a†) and
retained its porous structure (Fig. S22a†) without any metal
aggregation (Fig. S22b†), suggesting its stability in terms of both
structure and activity. Additionally, methanol tolerance tests
(Fig. 5f) showed that FeCu-NC-2 exhibited no signicant change
in current. Overall, FeCu-NC-2 demonstrated excellent ORR
activity and stability in 0.1 M KOH, which was comparable to
similar types of previously reported state-of-the-art non-
precious-metal catalysts (Table S6†).

The ORR activity of the prepared catalysts were also investi-
gated in 0.05 M PBS solution (Fig. 5g and h), where FeCu-NC-2
displayed excellent activity with an outstanding E1/2 of 0.720 V
and Eonset of 0.880 V. This value surpassed those of other re-
ported FeCu bimetallic catalysts (Table S7†) and was better than
those of FeCu-NC-1, FeCu-NC-3, and Pt/C. The Tafel slopes of
the synthesized catalysts were similar (75–85 mV dec−1) but
inferior to that of Pt/C (114.7 mV dec−1) (Fig. 5i). Furthermore,
the K–L equation and RRDE results (Fig. S23†) also suggested
Chem. Sci., 2025, 16, 8082–8091 | 8087
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that FeCu-NC-2 abided by a four-electron pathway. Interest-
ingly, better long-time stability was detected in FeCu-NC-2,
which retained 90.2% of the initial current (Fig. S20d†) and
exhibited only 19 mV damping in E1/2 (Fig. S20e†) aer 45 000 s.
In contrast, the current of Pt/C decreased to nearly half (58.1%)
of its initial value (Fig. S20d and S20f†). Aer 10 000 consecutive
cycles in ADT, FeCu-NC-2 also retained its good durability, with
unnoticeable variation (3 mV) for E1/2 (Fig. S21b†).

Zn–air batteries (ZABs) were constructed using FeCu-NC-2
and Pt/C as cathodic catalysts (Fig. S24a†). FeCu-NC-2-ZAB
exhibited an open-circuit voltage (OCV) of 1.57 V, 120 mV
higher than that of Pt/C-ZAB (Fig. S24b†). The voltage for FeCu-
NC-2-ZAB plateaued at a higher value than that for Pt/C-ZAB
across various current densities (Fig. S24c†). The specic
capacity of FeCu-NC-2-ZAB was 736.2 mA h gZn

−1, with a corre-
sponding energy density of 994.2 W h kgZn

−1 at 10 mA cm−2,
surpassing those of Pt/C-ZAB (678.3 mA h gZn

−1, 858.0 W h
kgZn

−1) (Fig. S24d†). It also achieved a peak power density of
568.6 mW cm−2, approximately triple that of Pt/C-ZAB (207.9
mW cm−2) (Fig. S24e†) and surpassed those of most reported
catalysts (Table S6†). Furthermore, FeCu-NC-2-ZAB displayed
remarkable durability, maintaining 97.4% of its initial voltage
over 14 h of discharge (Fig. S24f†), compared to 94.3% for Pt/C-
ZAB. The round-trip efficiency of FeCu-NC-2-ZAB was 67.7%,
64.9%, and 64.3% at 8, 20, and 36 h, respectively (Fig. S25†),
highlighting its superior stability compared to Pt/C-ZAB. Two
FeCu-NC-2-ZAB cells successfully powered LED bulbs (inset in
Fig. S24f†). Overall, FeCu-NC-2 exhibited great potential in
practical ZAB applications.

Similarly, in view of the excellent ORR performance of FeCu-
NC-2 in neutral solution, its potential application in microbial
fuel cells (MFCs) was investigated. As illustrated in Fig. S24g,†
MFCs can generate electricity while degrading organic matter
from sewage, where anaerobic bacteria oxidize organic material
at the anode, releasing electrons to the cathode for oxygen
reduction.59,60 FeCu-NC-2-MFC showed superior OCV (0.72 V)
and achieved an impressive power density of 2467 ± 56 mW
m−2, surpassing that of Pt/C-MFC (1689 ± 94 mW m−2)
(Fig. S24h†). Additionally, FeCu-NC-2-MFC exhibited minimal
voltage decay (2.6%) over 550 h (Fig. S24i†), indicating
remarkable long-term stability. With respect to wastewater
treatment, FeCu-NC-2-MFC achieved higher chemical oxygen
demand (COD) removal (85.3%) and coulombic efficiency
(6.98%) than Pt/C-MFC (83.0% and 6.86%) (Fig. S26b†), sug-
gesting its efficiency in converting organic matter into electrical
current. The comparable performance of FeCu-NC-2 to previ-
ously reported Fe/Cu catalysts (Table S7†) further conrmed its
great advantages in MFC applications.

3. Conclusion

A theoretical study revealed that the lowest predicted over-
potential for Fe–Cu dimers was due to the downshied d-band
center, which led to an increase in energy of *p antibonding
orbitals combined with Fe2+/Fe3+-3d and *OH-2p, and a signi-
cant decrease in adsorption energy with *OH and *O2 inter-
mediates. In an experimental study, the microenvironment of
8088 | Chem. Sci., 2025, 16, 8082–8091
porous FeCu-NC catalysts was tailored by adjusting the molar
ratio of Cu/Fe and three catalysts— Cu–N4 modied Fe clusters
(Fe5–CuN4), Fe–Cu dimers, and isolated Fe and Cu single atoms
(FeCu-isolated)—were obtained. FeCu-NC-2 with a Fe–Cu dimer
structure showed outstanding ORR performance in both alka-
line and neutral solutions, with the highest E1/2 (0.904 V, 0.720
V) and favorable Tafel slope (60.9 mV dec−1, 75.0 mV dec−1).
When applied as a cathodic catalyst in ZAB and MFC, FeCu-NC-
2 demonstrated admirable power density (568.6 mW cm−2 for
ZAB, 2467 ± 56 mW m−2 for MFC) and excellent stability.
Overall, the Fe–Cu dimer could be a more promising micro-
structure for future energy conversion devices. This research
makes a valuable contribution to high-performance ORR cata-
lysts. The promising results of the FeCu-NC-2 catalyst suggest
that further research into its potential high performance under
an acid electrolyte could pave the way for its large-scale appli-
cation in polymer electrolyte membrane fuel cells and proton
exchange membrane fuel cells. Additionally, exploring other
bimetallic sources, such as, FeCo, FeNi, and FeMn, could
broaden the feasibility of this synthesis approach.
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