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ynthesis planning via prompting†

Annie M. Westerlund, * Lakshidaa Saigiridharan and Samuel Genheden

Contemporary multistep retrosynthesis tools such as AiZynthFinder, which are frequently used by chemists,

generate solved routes for the majority of target molecules, but do not consider the prior knowledge of the

chemist, including specific bonds that should disconnect or remain connected throughout the routes. Such

knowledge is for example integral when planning a joint synthesis route for a set of similar molecules where

common disconnection sites can be identified across the molecules. Here, we present a novel strategy in

AiZynthFinder for human-guided multistep retrosynthesis via prompting. This includes a filter for discarding

reactions that violate bonds to freeze constraints. Furthermore, we benchmark four possible strategies for

breaking selected bonds in the search for synthetic routes, and show that a combination of

a disconnection-aware transformer and a multi-objective search generates routes which satisfy bond

constraints for more targets in the PaRoutes dataset compared to the standard search (75.57% vs.

54.80%). Finally, we apply the strategy on a set of drug molecules to exemplify a real-world scenario.

Our novel approach enables building a short joint synthesis route that satisfies the given bond

constraints and covers eight of the ten molecules, demonstrating the added value of incorporating

human prior knowledge in synthesis planning.
Introduction

The synthesis of chemical matter is paramount in pharmaceu-
tics, agriculture, and food industries. Retrosynthesis1,2 is
a systematic approach commonly used for this purpose. It
works by identifying potential disconnection sites in a target
molecule (the product) to predict possible building block
molecules (reactants) that could be used to make the product.
The target molecule and subsequent intermediates are broken
down iteratively until arriving at commercial starting materials.
AI-driven retrosynthesis prediction,3,4 based on deep neural
networks and search algorithms such as Monte Carlo Tree
Search (MCTS), has become an intense area of research in the
last decade. Several models and tools have been developed to
speed up the synthesis-planning process.3,5–16 AiZynthFinder,5,17

for instance, is frequently used by chemists in industrial
projects.13,18 Although AI-assisted retrosynthesis shows promise
to become standard practice, a few challenges still remain,
which should be solved before reaching its full potential and the
generated synthesis plans can be used directly in the lab.

One of the challenges commonly occurring in drug discovery
is the prediction of synthesis routes for a set of target molecules
aZeneca, 43183, Gothenburg, Sweden

ESI) available: Supporting methods, as
model validation, Reaxys-JMC results,
tatistics, and target molecules in the
e for supporting the Reaxys-JMC
earch analysis. See DOI:

y the Royal Society of Chemistry
with shared intermediates. However, off-the-shelf AI-driven
synthesis planning tools, such as AiZynthFinder, are typically
unaware of concepts such as “multiple targets” or “shared
intermediates”. The challenge has previously been approached
either through a recursive search on a complete reaction
network to generate cost-effective and diverse synthesis
routes,19,20 or as a postprocessing step of retrosynthesis searches
by carrying out multi-objective optimization on the generated
reaction networks.21,22 The latter is naturally dependent on the
quality of the set of routes generated by retrosynthesis. More-
over, multistep retrosynthesis which considers the prior
knowledge of the chemist who carries out the experiments in
the lab is an important topic. The chemist could, for example,
be interested in breaking a specic bond, or in keeping certain
bonds or moieties frozen in the generated synthesis route. This
would be especially benecial when planning a joint synthesis
route for a set of similar compounds where common discon-
nection sites can be identied across the compounds.

Here, we present a novel strategy in AiZynthFinder for
human-guided multistep retrosynthesis via prompting. The
chemists provide input on what bonds should be disconnected
(bonds to break) or remain connected (bonds to freeze) in the
synthesis route as prompts to the tool. In its standard cong-
uration, AiZynthFinder uses a so-called template-based model
to suggest chemical disconnections and MCTS guided by
a simple objective to break down the target molecule. To keep
bonds frozen, any single step predictions violating the bonds to
freeze constraints are ltered out. This functionality is referred
to as the frozen bonds lter. For breaking user-specied bonds,
we investigate two possible approaches to disconnection-aware
Chem. Sci.
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multistep retrosynthesis via prompting. First, a novel score that
favors routes satisfying the bonds to break constraints early in
the search tree (see Methods; Broken bonds score). We integrate
this score in the tree search using a recently developed multi-
objective (MO) MCTS algorithm.23,24 Second, we introduce
a framework where a disconnection-aware transformer, which
is a prompt-based language model for disconnecting tagged
bonds to break,25,26 is combined with the template-based model
to allow for human-guided multistep retrosynthesis. The reader
is referred to Methods; Disconnection-aware Chemformer in
multistep retrosynthesis for details on how the two models are
integrated in the multistep retrosynthesis framework.

We benchmark the novel approach on the PaRoutes set-n1
(ref. 27) and Reaxys-JMC (Journal of Medicinal Chemistry)28

datasets, which consist of known synthesis routes either from
patents or the literature. Finally, we showcase a project-specic
application with ten similar target compounds. Overall, the
work presented here provides a novel approach for human-
driven multistep retrosynthesis via prompting.

Related studies

Our work focuses on prompting to guide multistep retrosyn-
thesis searches. In this section, we contextualize the advances
presented here and contrast our work to the work reported in
the literature.

First, recent approaches have been reported for nding
common intermediates and joint synthesis routes. One
approach leveraged synthesis routes from AI-driven synthesis
planning tools and carried out multi-objective optimization on
the generated reaction networks.21,22 A recent alternative
approach constructed a search tree for multiple targets at once
using only the single step model scores.29 These tools are
promising for automatically constructing a joint synthesis route
for multiple targets. Although such methods do not allow the
Table 1 Key terms and abbreviations used in this work

MCTS Monte-Carlo Tree Search. Sear
reactants given the current pro

MO-MCTS Multi-objective Monte-Carlo Tr
Single step model In each step of an AI-driven re

(machine learning) model whi
template or explicitly via SMIL

Expansion strategy Used within the multistep retr
outputs model predictions wh

AiZynthFinder Soware tool which uses MCT
multistep retrosynthesis predi

Template-based model The single-stepmodel used in t
and predicts reaction template

Chemformer Transformer model which can
models12,25,26,30,31 are trained
product SMILES as input). Thi
atoms in bonds to break

Pareto front An optimal balance of multipl
without weakening the other s

Pareto rank A ranking of Pareto fronts whic
data. Ex: the set of samples in t
front corresponds to the secon

Chem. Sci.
user to make suggestions of bonds to break or freeze on their
own, they could in principle be used in conjunction with our
human-guided retrosynthesis search in a workow for creating
joint synthesis routes for multiple targets given bond
constraints.

Second, advances have been made for the purpose of
prompting single step predictions to disconnect bonds to break.
Recently, a disconnection-aware transformer model was
proposed to guide single step predictions by tagging the
disconnection site in the SMILES string prior to feeding it to the
model.25,26 The rst introduction of a disconnection-aware
transformer demonstrated the ability of the model to learn to
recognize the tags and disconnect the corresponding bonds.26 It
was extensively benchmarked on single step predictions
compared to a baseline retrosynthesis transformer in order to
manifest its robustness and accuracy. In addition, the authors
introduced a model for automatic tagging of reaction centers.
The automatic tagging aims to step away from human-guided
retrosynthesis and aids the disconnection-aware model to
automatically generate more diverse predictions.26 In contrast
to our work, the rst disconnection-aware transformer was only
used and evaluated for the purpose of single step retrosynthesis.
Later, an alternative disconnection-aware transformer was used
in a multistep search by pairing it with automatic tagging in
each single-step iteration.25 Unlike the work presented here,
automatic tagging of reaction centers was used to boost diver-
sity. Hence, human-directed prompting of bonds to break in
a multistep framework was not explored.

In contrast to earlier work on disconnection-aware trans-
formers which only considered isolated single step predictions,
we have developed two approaches for human-guided multistep
retrosynthesis searches via prompting. We thus focus on
generating synthesis routes, rather than single reaction
predictions. The rst approach is the novel broken bonds score
ch algorithm used for multistep retrosynthesis. Iteratively predicting
duct molecule. A (single) objective, or score, is used to guide the search
ee Search. MCTS with multiple objectives, or scores, to guide the search
trosynthesis search, predictions are carried out with a single step
ch predicts reactants for a given product, either implicitly via a reaction
ES or molecule graphs
osynthesis search to generate predictions with a single step model. It
ich are ranked and, possibly, processed
S, or MO-MCTS in combination with a single step model to generate
ctions
he standard AiZynthFinder search. Takes a molecule ngerprint as input
s which can be applied to the product to obtain reactants
be used as single step model. Retrosynthesis transformer
on SMILES strings (reactant SMILES are predicted directly based on the
s allows for non-chemical modications to the input, including tagging

e objectives or scores, such that none of the scores can be improved
core(s). The Pareto front is the set of solutions that fulll this trade-off
h are obtained by iteratively removing the primary Pareto front from the
he new Pareto front obtained aer removing the data on the rst Pareto
d Pareto rank

© 2025 The Author(s). Published by the Royal Society of Chemistry
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which is used in a multi-objective search. The score enables
guiding synthesis planning with prompted bond constraints
without altering the single step model. Our second approach
relies on the previously proposed disconnection-aware trans-
former. To this end, we introduce novel extensions to the single
step model. For instance, several steps may be required to break
the bonds, and hence the disconnection site tagging should be
reliably propagated to the next steps in the synthesis route. We
therefore constructed a custom expansion strategy (Table 1)
which combines the predictions of the disconnection-aware
model with predictions of the template-based model in order to
allow further disconnections to reach solved routes. In addition
to our two approaches, we introduce the frozen bonds lter. To
our knowledge, approaches similar to the frozen bonds lter or
the broken bonds score have not been reported prior to this
work.

Table 1 provides a glossary with key concepts and abbrevia-
tions used throughout this manuscript.
Results and discussion
Strategies for disconnection-aware multistep retrosynthesis

Fig. 1 illustrates the approaches for constrained synthesis
planning. Prior to the retrosynthesis search, a user can dene
bond constraints as either bonds to break or bonds to freeze in
the route (Fig. 1a). We treated the bonds to freeze constraints as
hard constraints as it is simple to enforce which bonds should
remain intact in each single step prediction. Conversely, we
treated the bonds to break constraints as so constraints in the
Fig. 1 Depiction of the developed approaches. (a) Constraints are define
directly removes a reaction which violates a “bonds to freeze” constrain
a reaction that fulfills a “bonds to break” constraint while a yellow node re
broken bonds score used in MO search rewards routes which disconnec
reactions that fulfill “bonds to break” constraints. More satisfied “bonds to
(d) The disconnection-aware Chemformer is used in a multi-expansion st
break” is tagged and handled separately by Chemformer. The prediction

© 2025 The Author(s). Published by the Royal Society of Chemistry
search, since excluding predictions that violate such constraints
would hinder the breaking of other bonds either before or aer
the specied bonds to break. Moreover, routes that only
disconnect a subset of the bonds to break could still be useful as
inspiration to the chemist. The bonds to freeze constraints were
satised by a lter that directly removed any prediction which
violated the constraints (Fig. 1b).

For the bonds to break constraints, we investigated two main
approaches: (1) a novel broken bonds score to bias the tree
search and route building steps and (2) a disconnection-aware
Chemformer for boosting single step predictions. The reader is
referred to the Methods section for technical details on the
broken bonds score and disconnection-aware Chemformer.

Disconnection-aware search by scoring the routes. In the
rst approach, we devised a broken bonds score (Methods;
Broken bonds score: eqn (1)) which returned a value between
zero and one (Fig. 1c). Zero represents the case when none of
the bonds to break were disconnected in any of the reactions,
and one represents all bonds breaking in the rst reaction.
Specically, given a set of bonds to break, a higher score is given
to routes that disconnect those bonds early in the reaction tree.
An example is shown in Fig. 1c, where the three bonds to break
(dened in Fig. 1a) are disconnected in the third reaction tree,
yielding a score of 0.92. In the rst and second reaction trees in
Fig. 1c, only a subset of the bonds to break was disconnected,
leading to lower scores (0.65 and 0.86). A detailed explanation of
the broken bonds score together with explicit examples of how
it is computed is given in Methods; Broken bonds score. We
used this score together with the default MCTS reward in
d as “bonds to break” and “bonds to freeze”. (b) The frozen bonds filter
t. The nodes in the tree represent reactions. A green node represents
presents a reaction that violates a “bonds to freeze” constraint. (c) The
t many “bonds to break” early in the route. The green nodes represent
break” constraints earlier in the tree give a higher broken bonds score.
rategy with the template-based model in AiZynthFinder. Each “bond to
s from both models are joined as a last step.

Chem. Sci.
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AiZynthFinder (referred to as the state score),32 which favors
short routes with a large fraction of precursors in stock.

Standard AiZynthFinder uses MCTS (Table 1) to combine
single-step predictions. In standard MCTS, a single search
objective is used (the state score). However, for retrosynthesis,
there can be multiple objectives that describe route quality. For
example, when prompting bonds to break to a retrosynthesis
search, one objective is to favor routes which disconnect the
prompted bonds (broken bonds score) and another objective is
to favor routes which are solved and short (state score). There-
fore, both the state score and broken bonds score are necessary
to rank the routes in disconnection-aware retrosynthesis. In
contrast to standard MCTS, multi-objective MCTS (MO-MCTS,
Table 1) enables taking multiple objectives, or scores, into
account when carrying out the retrosynthesis search. It has
previously been explored for robotics environmental moni-
toring24 and was recently implemented for multistep retrosyn-
thesis in AiZynthFinder.23 The extracted routes are part of the
Pareto front (Table 1).

The reader is referred to the Methods section as well as the
original publication of MO-MCTS in AiZynthFinder23 for tech-
nical details on how the MO-MCTS algorithm is implemented.

Disconnection-aware search by altering single-step predic-
tions. In the second approach, a disconnection-aware Chem-
former was used in a novel multi-expansion framework.
Because disconnection-aware transformers12,25 alter single step
predictions, we rst evaluated the disconnection-aware Chem-
former model alone before integrating it in the multistep
framework and comparing it to the strategies relying on the
broken bonds score (see ESI Results:† Verifying single step
disconnection-aware Chemformer). Specically, the model was
evaluated by disconnectionmatching accuracy, whichmeasures
how well the model generates predictions that disconnect the
prompted bond to break. The results highlight the ability of the
disconnection-aware Chemformer to recognize tagged atoms
and generate distinct predictions which break the correspond-
ing bond(s) (Fig. S1 and S2†). We were therefore condent to use
the model in the multistep retrosynthesis framework. The
model was combined with the template-based model (Table 1),
which is the standard single step model in AiZynthFinder5,32

(Fig. 1d). The predictions of the two models were simply
concatenated and sorted according to the model probabilities
associated with each prediction. For technical details on how
the two models were integrated in AiZynthFinder, we refer to
Methods; Disconnection-aware Chemformer in multistep retro-
synthesis. The disconnection-aware Chemformer was trained to
recognize the tags and disconnect the corresponding bond(s).
When the input molecule contained bonds to break, those were
explicitly tagged and provided to the Chemformer. The output
consisted of unique reactants atom-mapped by RXN-mapper33

in order to reliably propagate the tagged disconnection sites to
the next steps in the synthesis route. The input molecule's
atom-mapping was then propagated to the predicted reactants
(see ESI Methods:† Chemformer expansion policy for details).

Combining approaches into disconnection-aware strategies.
In summary, we investigated two approaches to human-guided
retrosynthesis: we either modied (1) the search algorithm or
Chem. Sci.
(2) the single step model. As an alternative to the standard
MCTS with the state score as the single objective, we considered
anMO-MCTS with the broken bonds score and the state score as
objectives. As noted above, we did not consider MCTS with the
broken bonds score as a single objective since solvability and
route length are important retrosynthesis aspects captured by
the state score. For single step predictions, we considered either
the standard template-based model or the disconnection-aware
Chemformer framework. Note that the template-based model
receives molecular ngerprints as input, which prevents tagging
of bonds to break. Therefore, we did not consider a disconnec-
tion-aware template-based model here. Moreover, we did not
consider the baseline Chemformer (not disconnection-aware)
as a single step model since extensive comparisons between the
template-based model and baseline Chemformer have been
carried out in the literature.34,35

Building on the two approaches, we implemented four
different disconnection-aware strategies in multistep
retrosynthesis:

(1) Route ranking: in AiZynthFinder, the tree search gener-
ates a large number of synthesis routes which are ranked in
a postprocessing step. Aer ranking the routes, AiZynthFinder
extracts the top 10–15 routes which are returned to the user. The
number of routes generated byMCTS is much larger (on average
∼125 with the state score), and therefore the score used to rank
routes greatly inuences which routes are returned to the user.
In the route ranking strategy, routes are ranked prior to
extraction using a linear combination (with equal weights) of
the broken bonds score (Methods; eqn (1)) and the state score.
The score was thus not used in the MCTS, but in the subsequent
route extraction phase by AiZynthFinder to gather the output
routes. This is in contrast to the standard strategy, where only
the state score is used for route ranking. Note that the template-
based model and standard single-objective (state score) MCTS
were used in this strategy.

(2) MO search: multi-objective MCTS23,24 (MO-MCTS) with
the broken bonds score as an additional objective together with
the state score. The template-based model was used as single-
step model. The template-based model generated 50 predic-
tions. The broken bonds score ensured that routes with desired
disconnections were favored. The two objectives used in the
MO-MCTS were used to rank and select routes, such that the
extracted routes belonged to the Pareto front.

(3) Chemformer: disconnection-aware Chemformer paired
with the template-based model in a multi-expansion framework
to generate single step predictions. The standardMCTS with the
state score was used to conduct the search. The state score was
used to rank and extract routes.

(4) Chemformer-MO: MO-MCTS with the state score and
broken bonds score to conduct the search, and the disconnec-
tion-aware Chemformer paired with the template-based model
in a multi-expansion framework to generate single step
predictions. The two scores used in the MO-MCTS were used to
rank and select routes, such that the extracted routes belonged
to the Pareto front.

The frozen bonds lter was used in all four strategies. The
usefulness of the frozen bonds lter is specically analyzed in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Performance of the different disconnection-aware strategies with standard search as the baseline. Performance is measured in terms of
(a) percentage of solved targets, (b) median search time, (c) percentage of targets which are solved and fulfill the bond constraints and (d) average
number of routes which are solved and fulfill the bond constraints. The full PaRoutes set-n1 targets were divided into batches with batch size 128
in order to facilitate statistics calculations (Methods; “Statistical variation from batches”). Each colored dot corresponds to one batch. Box-plot
elements: center line is the median, box limits are the upper and lower quartiles, whiskers are 1.5 times the interquartile range, and outliers are
depicted as black dots.
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the section Application to a target-specic set of compounds.
The four disconnection-aware strategies were compared to the
standard AiZynthFinder search that uses the template-based
model from the production platform and MCTS with the state
score as the single search and route ranking objective.18
Performance of breaking bond strategies in multistep
retrosynthesis

To evaluate the different disconnection-aware strategies, we
analyzed targets from PaRoutes set-n1 and Reaxys-JMC
synthetic route datasets. Bond constraints were extracted from
the synthetic routes using a convergent disconnection score36

(see the Methods section for details). The template-based model
returned the 50 highest ranked predicted templates. Because
the disconnection matching accuracy saturated at top-5
(Fig. S1†), Chemformer used a beam size of ve in the search.
Fig. 2 shows the performance of the four breaking bond strat-
egies and standard search on the PaRoutes set-n1 dataset. The
two constraint satisfaction metrics were computed on the top (1
to 50) extracted routes (single-objective), or the routes in the
extracted Pareto front (multi-objective). Fig. S3† shows the
corresponding results for Reaxys-JMC targets.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We could draw several interesting conclusions from the
results in Fig. 2. Although the standard search solved most
targets (84.91%) in a short time (Fig. 2a and b), it only solved
and satised the bond constraints for 54.80% of the targets. The
Chemformer strategy was substantially slower than the stan-
dard strategy, while the route-ranking and multi-objective
search strategies were comparable in search time (Fig. 2b). The
route-ranking strategy led to fewer solved targets than the
standard search (Fig. 2a: 74.62% vs. 84.91%) but resulted in
more solved targets which fulll the bond constraints (67.66%
vs. 54.80%).

The Chemformer strategy yielded almost as many solved
targets as the standard strategy (Fig. 2a; 83.18%), while more of
the solved targets actually complied with the bond constraints
(Fig. 2c; 62.00% vs. 54.80%). Although the Chemformer strategy
improved bond constraint performance compared to standard
search, it remained less efficient than the route-ranking
strategy. Hence, the route scoring in the AiZynthFinder post-
processing step is an important, but easily overlooked,
component. In contrast to Chemformer, which approaches the
problem with single step predictions, strategies that rely on the
broken bonds score consider the full composition of the routes.
In other words, Chemformer operates locally while the broken
Chem. Sci.
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Table 2 Data for Reaxys-JMC targets where either the multi-objective search or the Chemformer-MO strategy (but not both) fulfilled all bond
constraints

Case

Fullled
bond
constraints

Distribution of
#bonds to
break constraints

Solved in less
(less or equal to)
steps than #bonds
to break constraints Solved targets

Satised any bonds to
break constraints

1 Fullled by MO search
(but not Chemformer-MO)

6.0% 1 Constr.: 5% [Chemformer-MO]:
43% (80%)

[Chemformer-MO]:
85%

[Chemformer-MO]:
solved – 85%, all – 100%2 Constr.: 48%

3 Constr.: 47%
2 Fullled by Chemformer-MO
(but not MO search)

4.2% 1 Constr.: 33% [MO search]:
24% (36%)

[MO search]:
66%

[MO search]:
solved – 45%, all – 78%2 Constr.: 62%

3 Constr.: 8%
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bonds score operates globally. The global approach appeared
especially successful. In particular, the MO search strategy
generated routes which satised the constraints for even more
targets than the route-ranking strategy (Fig. 2c). Moreover, it
generated a larger number of solved routes which fullled bond
constraints compared to the route-ranking strategy, while
a smaller average number of routes was generated compared to
the Chemformer strategy (Fig. 2d). The same was observed for
the Reaxys-JMC targets (Fig. S3d†). These results demonstrate
a clear advantage of using the broken bonds score from human-
guided synthesis planning via prompting. Because the local and
global approaches treat the problem in fundamentally different
ways, one could imagine that the combined approach (Chem-
former-MO which combines the MO-MCTS with disconnection-
aware Chemformer) is superior. Indeed, for the PaRoutes set-n1
targets, the Chemformer-MO strategy reached the highest
percentage of targets fullling bond constraints and yielded the
largest number of routes which satisfy the bond constraints
(Fig. 2).

For the Reaxys-JMC targets, Chemformer-MO performed
similar to the MO search strategy in terms of solved targets
satisfying constraints, but generated substantially more routes
which satisfy the constraints (Fig. S3†). We noticed that 6.0% of
the targets were solved with fullled constraints using MO
search (Table 2: Case 1), but not by Chemformer-MO.
Conversely, 4.2% of the targets were solved with fullled
constraints by Chemformer-MO (Table 2: Case 2), but not by MO
search. Because the bonds to break constraints were handled
differently by these two strategies, we investigated this
constraint type. The number of bonds to break constraints was
typically fewer for targets in Case 2, compared to the targets in
Case 1. Moreover, Chemformer-MO oen solved routes with
fewer steps than the number of constraints in Case 1, as
opposed to the MO search in Case 2 (Table 2). While Chem-
former-MO did not fulll all constraints in Case 1, it solved 85%
of the targets and satised at least one of the bonds to break
constraints for all targets. This was in stark contrast to the MO
search strategy in Case 2 (Table 2: 45%). The premature
convergence, which was more common for the Chemformer-
based strategy, is a symptom of the bonds to break constraints
being treated as so constraints. Because the state score favors
routes which are short and solved, the longer routes from
Chem. Sci.
Chemformer-MO which satised all bond constraints were not
included in the Pareto fronts of these targets. With the current
implementation, one can include routes from lower Pareto
ranks (Table 1) to extract the longer routes that satisfy all bond
constraints. Altogether, the results presented here suggest that
the combined approach of the Chemformer-MO strategy
successfully generated routes which fulll the given bond
constraints, with the largest performance boost originating
from the broken bonds score in MO-MCTS.

Characteristics of generated synthesis routes

To characterize the set of suggested routes, we calculated
dissimilarity to the routes generated by the standard search, as
well as the within-strategy route diversity (Fig. 3). To compute
these metrics, we used a recently introduced route similarity
metric which reports similarity via common bond disconnec-
tions and atom groupings across the route.37 The dissimilarity
to the standard search was measured for each strategy by using
the dissimilarity to the most similar standard-search route
while diversity was calculated as the average maximum
dissimilarity across the set of generated routes. The Methods
section includes a detailed explanation of these two metrics.

Fig. 3a (Reaxys-JMC: Fig. S4a†) shows that the disconnection-
aware strategies in general suggested dissimilar routes to the
standard search. The route-ranking strategy yielded the most
dissimilar sets of routes, followed by the Chemformer-MO
strategy (Fig. 3a and S4a†). Notably, the dissimilarity of routes
when comparing standard search to itself resulted in slight non-
zero values. While this might appear unexpected, it is inherent
to the used similarity metric.37 Specically, the route similarity
consists of two parts: atom-similarity and bond-similarity. The
atom-similarity is normalized based on the number of total
molecules in the two routes being compared. However, the
atom-similarity calculation is only based on atoms that are
identied in the nal target molecule. This leads to some
molecules being completely le out from the similarity calcu-
lations while still being part of the normalization. This is
sensible when comparing two different routes, but may some-
times lead to noise when comparing two identical routes.

When considering route diversity in terms of average
maximum dissimilarity between the set of routes generated by
each strategy, the disconnection-aware strategies scored lower
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Characteristics of the generated routes from each strategy. (a) Dissimilarity of solved routes compared to the standard search and (b)
route diversity of the solved routes in terms of average pairwise route distance. Statistics are gathered from averages over batches of 128
PaRoutes set-n1 targets (Methods; “Statistical variation from batches”). Each colored dot corresponds to one batch. Box-plot (black boxes)
elements: center line is the median, box limits are the upper and lower quartiles, and whiskers are 1.5 times the interquartile range.

Table 3 Solvability and constraint compliance of the five strategies on
the application dataset of 10 target molecules

Strategy Solved targets Fullled bond constraints

Standard 10/10 9/10
Route ranking 9/10 9/10
MO search 9/10 9/10
Chemformer 10/10 10/10
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than the standard strategy (Fig. 3b and S4b†). In addition to
these metrics, we computed the round-trip accuracy of pre-
dicted reactions. The round-trip accuracy was similar across the
different strategies (Fig. S5†), indicating that any strategy can be
employed without excessively compromising route feasibility.

In order to understand how, and to what extent, the
disconnection-aware Chemformer was used in the routes, we
analyzed the frequency of predictions in the extracted routes
which had been generated by Chemformer and Chemformer-
MO strategies (Fig. S6 and S7†). The Chemformer expansion
policy was used more oen in the Chemformer-MO strategy
than in the single-objective Chemformer strategy (Fig. S6 and
S7†), demonstrating the role of the broken bonds score in
steering the search and ranking routes. Regardless of whether
single- or multi-objective MCTS was used, Chemformer
predictions were found only in the rst three steps of the
extracted routes (Fig. S6b and S7b†). The depths of trees
generated by Chemformer and Chemformer-MO on average
only included three steps (Tables S1 and S2†). Thus, the prior-
itization of disconnecting bonds to break le little room for the
standard template-based predictions, which were mainly used
as a complement to yield properly solved routes. In line with
this, we noticed that the template-based model was not utilized
in all trees, and was found in fewer trees generated by the
Chemformer-MO strategy (Fig. S6 and S7†).

In summary, the disconnection-aware Chemformer
produced reliable single step predictions, but the MO-MCTS
with the broken bonds score (MO search) had a greater impact
on the nal constraint satisfaction of generated routes.
Furthermore, the combined Chemformer-MO approach
exploited features from both strategies and governed several
synthesis routes in the feasible region while lowering route
diversity compared to the standard search.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Application to a target-specic set of compounds

To highlight the potential of the overall approach in real-world
applications, we analyzed ten molecules originally discovered
due to their potency against B lymphoma cells.38 We identied
two bonds which were common in the ten molecules and
prompted the search with these as bonds to break: a carbon–
nitrogen bond ([N:1]–[c:2]) and an amide bond ([N:3]–[C:4])
(Fig. S8†). These aligned with the SAR (structure activity rela-
tion) vectors and allowed us to focus on synthesizing the thia-
zole core. One of the target molecules did not contain the amide
bond. Aer the retrosynthesis search, we extracted ve routes
for each strategy.

Table 3 reports the percentage of solved targets and the
percentage of targets with routes that were solved with satised
bond constraints. The standard search reached purchasable
precursors for all 10 targets. However, for one of the targets,
neither of the three strategies relying solely on the template-
based model was able to break the specied bonds (Table 3). In
contrast, both Chemformer-based strategies satised bond
constraints for all targets. Although all strategies performed
reasonably well in satisfying bond constraints for this selected
set of molecules, the bulk experiments (Fig. 2 and 3)
Chemformer-MO 10/10 10/10

Chem. Sci.
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Fig. 4 Comparison of the top routes from standard search and the Chemformer-MO strategy. The top routes generated by the (a) standard
search and (b) Chemformer-MO strategy for the target for which the standard search did not break the specified bonds. The “bonds to break” are
highlighted in green.

Fig. 5 Joint reaction tree for application target molecules. The tree includes targets that obtained routes with the common retrosynthesis
approach (breaking bond [N:3]–[C:4] in the first step and [N:1]–[c:2] in the second). The “bonds to break” are highlighted in green.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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demonstrate clear differences in the overall performance of the
disconnection-aware strategies.

Fig. 4 depicts the top-1 routes generated by the standard
search and Chemformer-MO strategy for the target for which
the template-based strategies did not yield solved routes with
fullled constraints. Specically, the route generated with the
standard search reached purchasable precursors before
breaking the bond [N:3]–[C:4] (Fig. 4a). In practice, one could
envision a scenario where the chemist wishes to break a specic
bond in order to avoid a certain starting material, for example
due to cost or environmental impact. Then, it is important that
the prompts made by the chemist are respected by the synthesis
planning tool. For this reason, the route generated by the
standard strategy in Fig. 4a can be considered less successful
compared to the route in Fig. 4b generated by the Chemformer-
MO strategy.

To test the effect of the frozen bonds lter, we carried out
a search with bonds to freeze set to the bond between thiazole
and benzene that was disconnected in the rst Suzuki coupling
reaction (Fig. 4a). With this lter, the bonds to break constraints
were satised for all targets (Table S3†). However, the routes
were not ranked to favor constraint satisfaction, leading to only
7/10 top-1 routes fullling the constraints. Together with the
route-ranking strategy, the frozen bonds strategy yielded lower
route diversity than any of the other strategies. Moreover, the
frozen bonds strategy lead to routes more dissimilar to the
standard search while the disconnection-aware strategies had
higher top-1 constraint satisfactions (Table S3†). As mentioned,
the ability to prioritize and rank routes based on constraint
satisfaction is an important aspect when constructing routes
with common intermediates. In contrast to using a frozen
bonds lter, the Chemformer-MO strategy avoided the prema-
ture convergence-issue by rst breaking the bond [N:3]–[C:4] in
the rst step with an N-acylation to amide reaction and then the
bond [N:1]–[c:2] in the second step with nucleophilic aromatic
substitution (SNAr)‡§ (Fig. 4b). This particular approach was
observed in routes suggested by both Chemformer strategies for
7 of the 9 targets which included both bonds.

For the seven targets which shared a common retrosynthesis
approach where bond [N:3]–[C:4] was disconnected in the rst
step and [N:1]–[c:2] in the second, we constructed a joint reac-
tion tree (Fig. 5). The routes presented in this gure correspond
to the top route of each target molecule. Five of these targets
shared a common intermediate at the second step, and six
shared a common intermediate at the third step. Interestingly,
the shared intermediate at the second step was the target
molecule which only contains the bond [N:1]–[c:2] (Fig. S8†).
Hence, 8 of the 10 targets are actually represented in the joint
reaction tree. One target did not share any intermediate mole-
cules with the other targets, but a building block molecule
which was common to the ve targets with a common second-
step intermediate.3 { Altogether, the Chemformer-MO strategy
generated routes with common intermediates and shared
building block molecules, greatly simplifying the synthesis of
these compounds. For this set of compounds, the local
approach used by the disconnection-aware Chemformer thus
proved successful when the template-based model did not
© 2025 The Author(s). Published by the Royal Society of Chemistry
generate routes where [N:3]–[C:4] was disconnected in the rst
step.

Conclusions

We have developed and benchmarked a novel approach for
human-guided retrosynthesis via bond prompting. In the
current AiZynthFinder framework, the user can provide bonds
to break and bonds which should be frozen throughout the
search. To prevent bonds from breaking, we implemented
a lter which immediately discards those reactions that break
one of the bonds to freeze. For bonds to break, we benchmarked
four disconnection-aware strategies that either relied on a novel
broken bonds score, a disconnection-aware Chemformer
tailored for multistep retrosynthesis, or both.

We demonstrated that the strategies relying on a broken
bonds score (route-ranking and MO search) overall out-
performed the basic Chemformer strategy. Because the
template-based model returned the 50 highest ranked template
predictions, the bond to break was oen disconnected in one of
these. The broken bonds score could then rank the reaction
trees or steer the search to generate routes which fullled the
given bond constraints. In the Chemformer strategy, the boos-
ted single step predictions were likely down-prioritized because
the default search objective favored short and solved routes,
which may be suboptimal for this task. When combining the
disconnection aware Chemformer with the broken bonds score
in a multi-objective search, features from both local and global
approaches were exploited, leading to a higher percentage of
solved routes with satised constraints compared to the other
three strategies. Notably, the Chemformer and Chemformer-
MO strategies were signicantly slower than standard search,
while the MO search and route-ranking performed on par with
the standard search concerning search time. Therefore, the
strategies only relying on the broken bonds score and the
template-based model are suitable in industrial application
settings where multiple searches might be conducted, and time
is a limiting factor. Conversely, the Chemformer-MO strategy
may be better suited for few-target searches where the project
can afford to generate more suggestions of routes which comply
with the bond constraints at the cost of computational time.

The work presented here can be exploited in several practical
application scenarios. For example, given the knowledge and
experience of a chemist, human-guided retrosynthesis can
rene the synthesis routes provided by a standard search where
undesirable disconnections have been proposed. Another
example is synthesis planning for a set of similar molecules, for
instance those obtained from generative molecular design with
reinforcement learning.39 Adopting our approach may in these
cases improve the routes, thus simplifying the synthesis process
and consequently accelerating drug discovery.

In conclusion, the disconnection-aware Chemformer with
the multi-objective search strategy used together with a frozen
bonds lter is a viable strategy to generate routes that comply
with user-specied bond constraints, and enables creating joint
synthesis plans for a compound series using human knowledge.
Future work includes creating a complete workow for multi-
Chem. Sci.
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target synthesis which integrates our approach into existing
multi-target planning framework tools.21,22,29

Methods
Broken bonds score

To rank routes during and aer the retrosynthesis search, we
devised a novel score, the broken bonds score. The broken
bonds score returns a value between zero and one and gives
a higher score to routes which disconnect bonds to break earlier
in the tree, and a lower score to the routes which do not satisfy
these constraints.

The score takes a set of bonds to break, B, as the input and
returns a score, S, between zero and one:

Sf
X
r˛R

�
1� dðrÞ

DmaxjBj
�
fðr;BÞ þ

"
1� 1

jBj
X
b˛B

jðb;RÞ
#
; (1)

fðr;BÞ ¼
(
1 if db˛B such that b breaks in r

0 otherwise

jðb;RÞ ¼
(
1 if b is frozen in r; cr˛R

0 otherwise

Here, d(r) is the depth of reaction r, which breaks some bond b,
in the reaction tree. Furthermore,R is the set of reactions in the
reaction tree and Dmax is the maximum depth of the tree. The
reaction depth found in the rst component ensures that
breaking a bond early in the search tree gives a higher score
than a bond being disconnected further down in the tree. The
second component represents unbroken bonds which are given
a joint penalty corresponding to breaking at the maximum
depth, Dmax. Note that the score is normalized with the number
of productive components (jBj if all bonds are broken orP
r˛R

fðr;BÞ þ 1 if not all bonds are broken). If all bonds to break

are disconnected in the rst reaction, the score becomes

S ¼

��
1� 0

DmaxjBj
�
� jBj þ 0

�
jBj ¼ 1. Conversely, if none of the

bonds to break are disconnected, the score becomes

S ¼

�
0�

�
1� 1

jBj jBj
��

1
¼ 0. Finally, the score for the third

reaction tree in Fig. 1c is calculated as

S ¼

��
1� 0

4 � 3

�
þ
�
1� 1

4� 3

�
þ
�
1� 2

4� 3

��
3

z 0:92.

Disconnection-aware Chemformer

Datasets for single step Chemformer. The single step
Chemformer was trained and evaluated on the open source
USPTO-50k40 and a curated proprietary dataset from AstraZe-
neca which contains 17.4 million reactions. The template-based
Chem. Sci.
model used in multistep retrosynthesis with AiZynthFinder41

was trained on the proprietary dataset as well.32 USPTO-50k is
a common and publicly available benchmark dataset for retro-
synthesis models, while the proprietary dataset spans a larger
chemical space and is more suitable for the purpose of drug
discovery. The proprietary dataset was divided into training
(90%), validation (5%), and test (5%) sets. Furthermore, reac-
tions from PaRoutes42 were placed in the test set. For USPTO-
50k, we used the dataset split already published in the original
Chemformer study.30 The data preprocessing was performed
with the AiZynthTrain tool.41

Chemformer training and validation. We ne-tuned
a disconnection-aware Chemformer. To validate the discon-
nection-aware model for single step predictions, we additionally
ne-tuned a baseline Chemformer. The baseline model was
thus not used in the multistep retrosynthesis experiments. The
two models were ne-tuned on both the USPTO-50k40 and the
proprietary dataset. The baseline backward model predicts
reactants given (an unmodied) product SMILES as the input.
In the disconnection aware Chemformer, the bond to break is
marked by tagging the corresponding atoms with “<atom>!”, as
suggested in previous work.25 The data preprocessing tools
developed here are now available in AiZynthTrain.41 In addition
to the backward models, we ne-tuned a forward Chemformer
model on the proprietary dataset for round-trip validation of
backward model predictions. The ne-tuning followed the
approach reported in earlier work.30,34 See ESI Methods† for
more details on dataset preparation, ne-tuning and validation
of the predictions produced by disconnection-aware
Chemformer.

Disconnection-aware Chemformer in multistep retrosyn-
thesis. To incorporate the disconnection-aware Chemformer in
the AiZynthFinder multistep synthesis planning tool, we
developed a novel framework which included a multi-expansion
strategy. The multi-expansion policy combines the output of
multiple expansion strategies (Table 1), in this case the expan-
sion policy of the standard AiZynthFinder single stepmodel and
the (disconnection-aware) Chemformer expansion policy. The
latter is referred to as the Chemformer expansion policy and is
described in the next paragraph. The standard single step
model in AiZynthFinder is a template-based model; a neural
network which ranks a set of reaction templates given the
ngerprint of a target molecule.5,32 The template-based model
was applied in all iterations, while the disconnection-aware
Chemformer was only applied whenever the input molecule
contained the bonds to break. The predictions of the two
expansion strategies were concatenated and sorted according to
the priors (model output probabilities) associated with each
prediction. Because the multi-expansion strategy combined the
template-based and disconnection-aware predictions based on
their priors, both models could contribute to the suggestions
for the next step in the search. The priors of the two models
were weighted equally. This resulted in Chemformer predic-
tions oen being ranked higher than the template-basedmodel,
but also allowed for mixing of the predictions (Fig. S9†).

The Chemformer expansion policy received an atom-map-
ped SMILES as input together with the list of bonds to break. In
© 2025 The Author(s). Published by the Royal Society of Chemistry
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an atom-mapped SMILES, each atom is tagged by a number.
Atom-mapping is used to pair the corresponding atoms in
product and reactants SMILES in a reaction. By exploiting the
atom-mapping predicted by RXN-mapper,33 the original atom-
mapping could be propagated to the retro-reactions predicted
by Chemformer. The Chemformer expansion policy returned
atom-mapped predictions which break the bonds specied by
the list of bonds to break. The technical details of data pro-
cessing, including how the atom-mapping is propagated in each
step, and ltering carried out in the Chemformer expansion
policy are given in ESI Methods:† Chemformer expansion
policy.

Similar to when the template-based model was used alone,
the multi-expansion strategy returned the rst ranked 50
template predictions of the two combined models to the tree
search.
Multistep retrosynthesis experiments

Synthetic datasets. Multistep retrosynthesis searches were
carried out on compounds from PaRoutes set-n1 (ref. 42 and 43)
and Reaxys-JMC. Moreover, we used eMolecules as the stock.44 The
sources for Reaxys-JMC were extracted from the Journal of Medic-
inal Chemistry between the years 2000 to 2020 as deposited in the
Reaxys database.28 The two datasets contained complete routes
and could therefore be used to construct ground truth data for
multistep retrosynthesis. Ground truth routes were constructed by
rst grouping by citation and then creating reaction networks from
which routes could be extracted with an in depth rst search.28 The
approach for building synthetic routes has been detailed else-
where.42,45 We retrieved 2500 randomly sampled (without replace-
ment) targets fromPaRoutes set-n1, using numpy's random.choice
function and seed set to 1. Moreover, we extracted ∼1600 targets
from Reaxys-JMC which were not part of the Chemformer training
set. Because the reactions in the PaRoutes set-n1 dataset are public
and had been completely excluded from both single step models'
training sets, we used this dataset as the main data, while the
Reaxys-JMC results were used for validating the ndings.

To create synthetic benchmarking datasets for the discon-
nection-aware multistep retrosynthesis, we rst extracted all
reactions from the reference routes (PaRoutes and Reaxys-JMC).
From these reactions, we extracted bonds to break and bonds to
freeze with a workow which included propagating atom-
mapping in the tree and selecting bonds to break by maxi-
mizing the convergent disconnection score.36 The convergent
disconnection score makes sure that we select bonds that split
the product molecule into roughly equal sized reactants. The
workow for obtaining bonds to break and bonds to freeze for
a target molecule from an example route is visualized in
Fig. S10,† and described in detail in ESI Methods:† Synthetic
benchmarking datasets. The bonds to freeze were selected from
the unchanged bonds to ensure that there is at least one
possible solved route (the reference route) for each target
molecule. We note that the freezing some of the changed bonds
in the reference routes would force the search to nd different
solved routes than the reference but would not guarantee an
existing solution. In addition, we chose to freeze fewer bonds
© 2025 The Author(s). Published by the Royal Society of Chemistry
than bonds to break to focus on the effect of the different
disconnection strategies, and to lower the probability of
freezing necessary bonds for alternative routes. Applying this
bond extraction workow resulted in 1748 and 1367 targets
from PaRoutes set-n1 and Reaxys-JMC, respectively.

MCTS hyperparameters. We used the default AiZynthFinder
hyperparameter values for maximum search tree depth, search
tree width and number of iterations, as these were identied in
a data-driven fashion and have been shown to give an optimal
balance between median search time and percentage of solved
targets.46 To provide a fair comparison between template-based
and Chemformer strategies, we set the maximum search time to
300 s, regardless of the search strategy. In other words, the
MCTS stops when succeeding 300 s. We refer to our recent study
on MCTS hyperparameters46 for more details on how the
hyperparameters affect the search.

Evaluation metrics. Multistep retrosynthesis predictions
were evaluated based on the search time and percentage of
solved targets. In addition to this, we specied a few custom
breaking bond metrics: (1) the percentage of targets which were
solved and satised all bond constraints (bonds to freeze as well
as bonds to break), and (2) the average number of trees which
satised bond constraints. To verify the reactions predicted in
the search, the top-10 round-trip accuracy was computed.
Round-trip top-N accuracy validates the predictions using
a forward Chemformer model trained to predict products given
reactants as input. More details are found in ESI Methods.†
Furthermore, we evaluated the generated routes in terms of
dissimilarity to the routes generated by the standard search,
and route diversity. To compute these metrics, we used
a recently introduced similarity metric37 which calculates
similarity between 0 and 1 in terms of disconnected bonds and
grouping of atoms in the routes. Dissimilarity, g, to standard
search routes was computed as g = 1 − zmax, where zmax is the
average maximum similarity between each route and the routes
in the reference set. This metric thus represents the average
dissimilarity of each route and their most similar route gener-
ated by the standard search. Route diversity was calculated
similarly with k = 1 − zmin, where zmin is the average minimum
similarity to the routes within the set of generated routes. This
metric represents the average dissimilarity of each route and
their least similar route in the set of generated routes.

Statistical variation from batches. The metrics were evalu-
ated on batches (groups) of target molecules to facilitate
statistics calculations. In this case, each batch contained 128
molecules. Metrics, such as search time, typically vary between
target molecules. The statistical variation between batches thus
represents the uncertainty of an aggregated metric (mean,
median. and accuracy) for each batch.

Software availability

AiZynthFinder with MO-MCTS and broken bonds score was
used to run multistep experiments and can be found at: https://
github.com/MolecularAI/aizynthnder. The disconnection-
aware Chemformer to run with AiZynthFinder can be found
at: https://github.com/MolecularAI/chemformer. AiZynthTrain
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was used to tag disconnection-sites in the Chemformer training
data and can be found at: https://github.com/MolecularAI/
aizynthtrain. The LSTM used for computing approximate
route distances can be found at: https://github.com/
MolecularAI/route-distances. A demo for running the
disconnection-aware strategies on the application data using
publicly available models and code is available here: https://
zenodo.org/records/13626786.

Data availability

The study was mainly carried out using the PaRoutes dataset43

(https://github.com/MolecularAI/PaRoutes) and validated by
the proprietary Reaxys-JMC, which cannot be shared. The
training and evaluation of the disconnection-aware
Chemformer was done with USPTO-50k (the original dataset
with split: https://github.com/MolecularAI/Chemformer) and
the proprietary dataset from AstraZeneca, which cannot be
shared. The USPTO-50k disconnection-aware Chemformer
and data for the application case are available here: https://
zenodo.org/records/13626786.
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Notes and references
‡ A triate or tosylate would be needed to activate the oxygen and make a viable
leaving group.

§ The thiazole cyclization reaction would benet from a protecting group on the
nitrogen, for example a butyloxycarbonyl (BOC) group.

{ The route is missing a step of reducing the nitroarene before transforming into
an amide.
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