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simultaneous prediction of K-edge XANES for
multiple light transition metals†
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Shihao Weia and Shaorui Sun *ab

X-ray near-edge structure (XANES) is a crucial bridge between the local structures and chemical properties

of materials. Although there have been a number of studies devoted to the development of predictive K-

edge XANES spectral models, existing methods are usually still limited to separate modeling for a specific

absorbing element. Currently, there is a lack of a K-edge XANES spectra prediction model that can be

broadly applied to a wide range of elements, which would enable data dispersed in terms of absorbing

elements to be integrated and well utilized. In this work, we develop an innovative “family bucket” model

based on a multi-head graph attention convolutional neural network by combining a multi-element

mixed dataset with a crystal topology approach for the localized environment. The model is able to

predict the K-edge XANES spectra for a wide range of light transition metals (periods 3 and 4)

simultaneously. Moreover, it is demonstrated that the training scheme not only improves the accuracy of

the model but also the efficiency of its training. In terms of interpretability, several fascinating insights

were gained, uncovering the underlying mechanisms of the model for spectral prediction. We investigate

the collective behavior of neurons by employing a range of responses to different samples as descriptive

features. Notably, the analysis revealed that neurons in the neural network exhibit functional

differentiation characteristics analogous to Brodmann areas in the cerebral cortex. The homology of data

analysis indicates that the mutual learning of samples from different absorbing elements is occurring

between close elements of the same period. Additionally, the attention scores of the samples are

determined by both the absorbing element and its surrounding atomic environment. In conclusion, this

research advances the understanding of the relationship between XANES spectra and material structures

while providing valuable insights into neural networks, enhancing the comprehension of neuronal behavior.
Introduction

Big data-based articial intelligence data mining has been
called the “fourth paradigm of science”.1,2 Compared with rst-
principles computation based on density functional theory,
machine learning has inherent advantages including input
liberty, high computational throughput, and short time-
consumption.3 With the establishment and continuous
improvement of a series of large databases for experiments or
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simulations, such as ChemSpider,4 Inorganic Crystal Structure
Database (ICSD),5 Cambridge Structural Database (CSD),6

Materials Project (MP),7 Open Quantum Materials Database
(OQMD)8,9 and Automatic-FLOW (AFLOW),10 development in
the interdisciplinary eld of materials discovery and machine
learning is rapidly advancing. Machine learning has been
productive in material property prediction,1,11–13 assisted
characterization,14–18 and process optimization.19,20 Addition-
ally, there have been many advancements in materials discovery
and design by machine learning, as stated by Shi et al.21–28

In the meantime, X-ray absorption spectroscopy (XAS) has
become a popular tool for probing local atomic structure and
electronic properties due to its high sensitivity to structural
changes and elemental specicity with the development of the
fourth-generation synchrotron radiation light source.29–33 There
is wide interest in analyzing the structure of materials from X-
ray absorption near-edge structure (XANES) spectra using
machine learning tools. Timoshenko et al. decoded information
about the average coordination number of metal nanoparticles
from XANES using a neural network.34 Then, Zheng et al. further
Chem. Sci., 2025, 16, 15571–15586 | 15571
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showed that XANES can predict the oxidation state and coor-
dination number.35 At the same time, their work has greatly
assisted in the construction of the XANES dataset for simulated
computation. Torrisi et al. trained and interpreted coordination
number, mean nearest-neighbor distance, and Bader charge
prediction models with direct intensity information or
segmented polynomial tting information from XANES.36 Their
research achieves model simplication and functionality
extension. The interpretability of their model represents
a signicant step towards elucidating structural information
from XANES spectra.

Compared to the inverse problem, which aims to infer
atomic structure information from XANES, there is still less
attention paid to the positive problem. Carbone et al. developed
the rst machine learning model for predicting XANES from
molecular structures based on a graph neural network.37 They
trained models that can be used to predict nitrogen and oxygen
K-edge XANES for small organic molecules in the QM9 data-
base. Close on the heels of this, Rankine et al. published a study
on the prediction of Fe K-edge XANES for crystals by using DNN
algorithms with RDC as the feature input.38 They also used the
model to predict XANES for organic systems such as tris(bi-
pyridine)iron(II). Their results show that there is still a high
discrepancy between the crystals and the molecules for the
XANES prediction. In addition, it requires an energy-dependent
arctangent function for post-processing to obtain better
prediction results, which limits the model in some way. In
a later study, they replaced the descriptor with wACSF.39 Indi-
vidual models of nine different transition metal elements
between Ti and Zn have been created for the prediction of
XANES, which demonstrates the versatility of the methodology.
However, these models remain isolated between the different
elements. Recently, Kwon et al. used the DNN algorithm to
study the structure and spectrum problem from both positive
and negative perspectives in parallel.40 For the structure-to-
spectrum problem, their study showed that new descriptors
such as SOAP achieved great results in the prediction of
molecular K-edge XANES, with the best performance for the
model using the LMBTR descriptor, which involves angular
information, as input. Kotobi et al. investigated the interpret-
ability of a series of graph neural network models that predict
the small molecule XANES in the QM9 database, based on the
work of Carbone's team.41 This research is based on the prop-
erties of graph neural networks, which greatly breaks the black
box of XANES prediction for this kind of model. However, there
remains a signicant gap in the application of graph neural
networks for the prediction of crystal XANES.

Graph neural networks as a machine learning algorithm are
popular among chemists for their excellent correspondence
between inputs and chemical structures. The graph is a struc-
tured data containing points, edges, global information, and an
adjacency matrix.42 In general, points correspond to atomic
codes, edges correspond to bonding information, global infor-
mation corresponds to the overall properties of a molecule or
crystal, and the adjacency matrix records the connections
between atoms in chemistry. Through the message passing
neural network module, which can usually be divided into three
15572 | Chem. Sci., 2025, 16, 15571–15586
steps of message passing, message aggregation and node
updating, the graph neural network realizes the updating of the
graph data with an unlimited number of points and edges43.44

The natural correspondence between graph data and chemical
structures, and the ability of graph neural networks to update
graphs with an unlimited number of points and edges, has
allowed for its frequent application in recent studies.45–49

In this study, the prediction of the XANES spectra of crystals
with multiple absorbing elements is realized based on a multi-
head attention neural network. As far as we know, there is no
research report that has developed a graph neural network
model that can simultaneously predict crystal XANES spectra
for multiple absorbing elements just using the same parame-
ters. In the meantime, Shi et al. demonstrated that domain
knowledge embedding signicantly improved the prediction
accuracy of machine learning models in materials property
prediction.50–52 This study proposes a crystal graph topological
method based on a center absorbing atom considering that
XANES is a localized atomic structure probe in terms of its
physical properties. Beneting from this topological approach,
the data for 20 different transition metal elements were mixed
and trained to obtain a more general and accurate multi-
element mixed XANES spectra prediction model (MEM-
XANES). With the development of various machine learning
models, the focus is no longer limited to performance, and the
interpretability analysis of models is gradually becoming an
integral part in the research of machine learning models.53,54 It
is worth emphasizing that a novel perspective is introduced
here to understand the neural network model. By analyzing the
activation patterns and response characteristics of neurons
across large-scale samples, revealing their collective behavior,
we thereby provide new insights for understanding the complex
internal workings of the model. Ultimately, the model is
comprehensively analyzed in three dimensions: the neurons of
the model, the homology of the data, and the topological
structures, with promising results in terms of interpretability
analysis.
Methods
Workow

The overall ow of this study from data collection and organi-
zation tomodel training and analysis is shown in Fig. 1 from le
to right. During the data collection stage, data for 20 different
transition metal elements was collected from the original
XANES database. The data will be delivered to the lter to screen
the spectra by physical common knowledge. The screened
spectra will be sent to the reconstructor for alignment and
quantitative reconstruction of the spectra from different
absorbing elements. The processed data will be topologized
from the crystal structure with the absorbing atom as the center
and stored as graph data. Before the model training, the graph
dataset is divided into three parts (training set, validation set
and test set). The training set was directly delivered to the MEM-
XANES for training the model by gradient descent. The valida-
tion set is used to nd the optimal model with the help of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic illustration of the entire multi-element mixed modeling workflow. The workflow is divided into four parts: data collection,
graph building, model training and model analysis. Data collection: the spectral data from 20 absorbing elements were collected screened and
reconstructed via physical filter and reconstructor. Graph building: the crystal structure is topologized and eventually converted to a graph.
Model training: the dataset is divided into three parts to iteratively train the network and obtain the best model. Model analysis: a comprehensive
analysis of the model in terms of comparative ablation, performance evaluation and interpretability.
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scoring function. Test sets are used to evaluate the model
performance and interpretable analyses.

Dataset

The data is derived from a published dataset from a study on X-
ray absorption spectroscopy by Mathew et al.55 in 2018, which is
by far the world's largest library of simulated computed XANES
spectra about crystals. K-edge XANES spectra data associated with
the 20 transition metal elements from Sc to Zn and Y to Cd were
extracted from the library and labeled with a unique ID. For
example, an ID of mp-680094-6-Cd-XANES-K means that the data
is a Cd K-edge XANES spectrum calculated by constructing
a cluster centered on the position 6 atom of the mp-680094
material in the MP database. The ID duplicates and illegal data
whose tagged center atom position number exceeds the actual
material's atom position number are removed. Aerwards, the
four rules were established for ltering XANES data by combining
the data screening scheme in the work of Torrisi et al.,36 which
studied spectrum-to-structure based on the Random Forest
algorithm. These rules limit the unphysical common-sense cases
of negative intensities, excessive peaking, pre-peak stronger than
the main peak, and upward trends in the far range. Aer
screening, 57 649 pieces of XANES data were obtained, and the
distribution of the data across the elements is shown in Fig. 2a.
The mixed dataset for all elements is named EM-Dataset and the
subset of a specic element X is called X-Dataset (e.g., Fe-Dataset).
Aerwards, the spectra are regularized and reconstructed by X-
© 2025 The Author(s). Published by the Royal Society of Chemistry
Dataset. The minimum energy value of the spectra onset in
each X-Dataset was counted and an energy window of length
55 eV (20 eV pre-edge region and 30 eV post-edge region, with
a 5 eV tolerance) was created using this value as the starting point.
The spectra data were reconstructed with 0.5 eV step size to
obtain an absorption intensity vector that has a length of 111. The
topology crystal structure information makes the raw dataset
a graph-structured dataset. These graph-structured datasets were
randomly disrupted and divided into training, validation, and
test sets in an 8 : 1 : 1 ratio for later research.
Graph construction

The topological approach of the crystal is shown in Fig. 2b, where
an absorbing atom is used as the center to nd the nearest 20
neighboring atoms within its 8 Å range aer expanding the unit
cell for the crystal. If there are less than 20 atoms within 8 Å then
virtual atoms with a distance of 8 Å are utilized to ll in the
blanks. Atoms are represented by the points, and the connectivity
between atoms is represented by the adjacency matrix to form
a directed graph. The 118-dimensional electron arrangement is
used to encode the atom for the task to predict XANES against.
The edge information is jointly represented by the distance
between atoms and a 64-dimensional vector of distance unfold-
ing via a Gaussian radial basis function so that the neural
network can autonomously select effective features.45 The
Gaussian radial basis function is specied as follows:
Chem. Sci., 2025, 16, 15571–15586 | 15573
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Fig. 2 Composition of the dataset and the construction of graph data. (a) The scale of the dataset used in this work. The values indicate the
number of samples corresponding to that class of elements in the dataset. (b) The process of constructing graph data is demonstrated from
a crystal CIF file. The extension details the three components of graph data, points, edges, and connectivity, along with their corresponding
matrix data.

Fig. 3 Overview of the MEM-XANES model architecture. (a) Schematic of the connection sequence and the composition of the modules in the
network. (b) Flowchart of the simple graph convolution computation. (c) Flowchart of the graph convolution computation with attention
mechanism. Compared to the simple graph convolution, the graph convolution with attentionmechanism automatically selects the complicated
input features by calculating the attention scores.

15574 | Chem. Sci., 2025, 16, 15571–15586 © 2025 The Author(s). Published by the Royal Society of Chemistry
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RBF = f(rij)$exp(−bk(exp(−rij) − mk)
2) (1)

where mk and bk are the center and width of the Gaussian
function, respectively. f(rij) is the smooth cutoff function, which
is formulated as follows:

f
�
rij
� ¼ 1� 6

�
rij

rcut

�5

þ 15

�
rij

rcut

�4

� 10

�
rij

rcut

�3

(2)

Graph neural network

Network architecture. As shown in Fig. 3a, the network archi-
tecture of this study can be divided into seven layers, and the
number of features from the input to the output nodes is [118,
600, 500, 400, 300 × 3, 200, 200, 111] sequentially. The 118-
dimensional node features in the graph data are transformed
Fig. 4 Evaluation of model performance. (a) Distribution of samples amo
MAE (orange) and R2 (green) performance evaluation on the same Tc-ele
a multi-element mixed dataset. (c) Schematic of the comparison of tw
targeting localized atomic environment topology. (d) Graph attention co
xHGAN: x-head graph attention convolution) R2 (red) andMAE (blue) perf
after binning by energy.

© 2025 The Author(s). Published by the Royal Society of Chemistry
into 400-dimensional node features aer three simple graph
convolutional processes. The transformed graph data was copied
to three graph attention heads separately to extract the XANES
data. The graph data processed by the multi-head graph atten-
tion convolutional layer will be pooled into 900-dimensional
features and downscaled into 200-dimensional features by dense
layers. Finally, it is transformed to 111-dimensional X-ray
absorbed intensity vectors corresponding to the energy by two
linear layers. The computation ows for the simple graph
convolution and graph attention convolution are shown in Fig. 3.
Results & discussion
Dataset

For exploring the effect of elemental mixed dataset in training
model for this work, different datasets were replaced for
ng different elements after dividing the dataset. (b) The comparison of
ment test set for the models trained by a single Tc-element dataset and
o topological approaches: the regular full crystal topology versus the
nvolution module gradually ablates (S GCN: simple graph convolution;
ormances. (e) Distribution ofmeanMAE for different elemental samples

Chem. Sci., 2025, 16, 15571–15586 | 15575
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Table 1 Performance comparison of two training strategies

EM-Dataset Weight-X-Dataset

MAE 0.0233 0.0269
R2 0.9791 0.9738
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training and scoring comparisons. First, the scores of the 20 X-
Dataset trained models were compared to the EM-Dataset
trained model by weighted average of the sample proportions.
To ensure the fairness of the two comparisons, ideally, the
distribution of elements in the training, validation and test sets
divided by the EM-Dataset should be the same as the EM-
Dataset. Visualizing the distribution of elements before and
aer the EM-Dataset division, their distributions are indeed
very similar, as shown in Fig. 4a. The weighted score of the
models trained on each of the 20 X-Datasets is compared to the
score of the model trained on EM-Dataset as shown in Table 1.
For stability, the scores presented in Table 1 are averaged over
multiple runs and the detailed single run results can be found
in Table S2.† The mean absolute error (MAE) of the EM-Dataset
trained model is 0.0233, which is decreased compared to the
weighted average MAE of 0.0269 for the X-Dataset trained
model. The R-squared (R2) of the EM-Dataset trained model is
also improved in comparing both, which suggests that the
different elemental datasets play a role in helping each other. At
the same time, a special case exists in the dataset. The number
of samples for the Tc element was only 124, which created an
opportunity for research. As we all know, it is difficult to obtain
an excellent result from training on a complex model like
a neural network for a small dataset such as the Tc-Dataset. The
EM-Dataset with the Tc-Dataset removed was mixed with the
training and validation sets divided from the Tc-Dataset as
a customized dataset (DIY-Dataset). Then, the DIY-Dataset was
redivided into a training set and a validation set in a ratio of 9 :
1. Finally, the test set that was divided from Tc-Dataset was kept
as a uniform test set to evaluate the DIY-Dataset trained model
and the Tc-Dataset trained model. The result is shown in
Fig. 4b, where the model trained on the DIY-Dataset scores
surprisingly well with MAE and R2 of 0.0143 and 0.9936,
respectively. The result further demonstrates the superiority of
the EM-Dataset, which was used as the default dataset in
subsequent studies.

Topological approach

A regular way to topologize a crystal is to topologize each atomic
environment in the CIF le and nally merge them into graph
Table 2 Performance comparison between two topologies

Full crystal
topology model

Atomic environment
topology model

MAE 0.0470 0.0233
R2 0.9149 0.9791
Time per epoch (s) 57.6210 8.0402
Total time (h) 12.8047 1.7867

15576 | Chem. Sci., 2025, 16, 15571–15586
data, as shown in Fig. 4c. For the physical properties of XANES
that are sensitive to the local atomic environment, a topological
approach based on the centered absorbing atom has been
dedicated in this study. Foreseeably, this atomic environment
topology approach will surely reduce the computation time.
Both topological approaches were used to train the model on
the EM-Dataset considering the specic impact of the two
topological approaches. In fact, the performance of the model
trained by utilizing the full crystal topology approach to
composition as shown in Table 2 has an MAE of 0.0470 and an
R2 of 0.9149, which is far inferior to the atomic environment
topology. This disparity is caused by the fact that the full crystal
topology approach makes it difficult for the neural network to
pin down absorbing atoms or absorbing elements on the EM-
Dataset. In addition, unsurprisingly, the time it takes to train
the model on graph data is greatly reduced by the topological
approach based on the atomic environment of the absorbing
atom. The full crystal topology graph data takes about 7.17
times longer to train than the atomic environment topology.
Therefore, the new topological approach not only improves the
training efficiency but also improves the prediction accuracy of
the model. At the same time, this is the reason why the model
was able to be trained on the EM-Dataset.

Model ablation

Ablation analysis experiments were conducted to investigate
whether and how much the multi-head graph attention mech-
anism plays a role. Models were trained using simple graph
convolution, single-head graph attention convolution, three-
head graph attention convolution, and ve-head graph atten-
tion convolution as the last convolutional layer (layer 4) of the
network. The model's scores are shown in Fig. 4d, which shows
similar results for the MAE and R2. There is a signicant
difference between the model using simple graph convolution
compared to the model using graph attention convolution, with
about a 0.01 difference in MAE. The operation from single to
multiple heads also improves the performance of the model.
However, both scoring functions remained essentially
unchanged when the number of heads was increased from
three to ve. This suggests that constantly increasing the
number of heads is meaningless. In other words, crudely
increasing the model parameters does not improve the model
performance, which illustrates the role of the graph attention
mechanism in another direction. Therefore, the three-head
graph attention convolution model is treated as the nal model.

Performance presentation

The MAE and R2 of the best model are shown in Fig. 4d, which
are 0.0233 and 0.9791, respectively. To insight into the predic-
tive ability of the model, the absorption intensities predicted by
the model in the test set were binned by energies and elements
to calculate the MAE with the true values yielding the thermo-
grams shown in Fig. 4e. The error range indicates that the error
between the true value and the predicted value is from 0.00 to
0.10, and is not simply clustered around the mean of 0.02. In
terms of energy, the model generally predicts more accurately in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the high energy region, in which the MAE is generally below
0.03. In terms of elements, the model predicts XANES more
accurately for the 5th period elements with MAE below 0.03. For
the 4th period elements, the overall MAE of the model is below
0.06, but there are regions of energies where the MAE exceeds
0.06 for the elements V and Sc. In particular, the model even has
regions with MAE of 0.09 when predicting K-edge XANES for Sc
element. However, what is presented in Fig. 4e is still the result
aer averaging. To further observe the prediction of XANES,
Fig. 5 presents the four samples at the 25% and 75% quantiles
following the sorting of MAE from low to high (more in Fig. S1
and S2†). As shown in Fig. 5a–d, the predicted XANES for
samples with MAEs at 25% basically overlap with the true
XANES, and the model reproduces almost all peaks for these
samples. There are slight disparities between the predicted and
true values in some of the details, and the MAE is around
0.0094. The predicted XANES for samples lying at 75% can still
overlap with the true XANES in terms of the overall trend, and
the MAE is usually about 0.0289. The positions of the main
Fig. 5 Prediction samples. (a)–(d) Comparison between the calculated a
from low to high. (e)–(h) Comparison between the calculated and predic
to high.

© 2025 The Author(s). Published by the Royal Society of Chemistry
peaks were generally predicted accurately, with larger devia-
tions in the absorption intensities. In fact, the predictions for
these samples lose more detail as shown in Fig. 5e–g. For
example, the prediction for sample mp-416-0-Cr-XANES-K is not
sufficiently accurate in reproducing the ne features of the
absorption intensity, particularly at the pre-edge peak and in
the region aer the main peak. As a result, the model is able to
predict K-edge XANES for a variety of elements simultaneously
and retains an acceptable accuracy for about 75% of the data.
However, the average prediction accuracy for Sc and V still
needs to improve.

Interpretability analysis

Interpretability analysis is an important part of the process of
evaluating a model.56–59 It increases trust for a model while also
allowing us to notice aws and bugs in the model. In the next
section, our MEM-XANES model will be analyzed from three
dimensions: the neurons of the model, the homology of the
data, and the topological structures.
nd predicted values for samples in the first quartile (Q1) sorted by MAE
ted values for samples in the third quartile (Q3) sorted by MAE from low
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Interpretability of the neurons of the model

To break the black box of deep learning, a new perspective is
introduced in which six layers of neurons in the network,
excluding the input and output layers, are analyzed by the
UMAP. The behavior of the neurons is characterized by
response dynamics, which are the activation values produced by
neurons when processing a series of samples, collected from all
the samples in the test set. An extremely striking result is that
the neurons in layer 4, unlike the other layers, are clearly clus-
tered into six groups (as shown in Fig. S3†). To further investi-
gate the signicance of each group for the model, the six
neuronal groups were manually divided and stained, and the
results are shown in Fig. S4.† Aer that, the sample features are
analyzed by dimensionality reduction, which is computed from
these six different neuron groups. As shown in Fig. 6a, there is
a unique rule for each group of neurons that distinguishes the
samples into two categories, which reveals the differentiated
“thought patterns” between different groups of neurons. It is
remarkable that there is functional differentiation among
Fig. 6 Visualization of the behavior of the model neurons. (a) The result
binary classification by a specific rule based on features provided by a
Response dynamics of layer 4 neurons for a set of samples. The inset is

15578 | Chem. Sci., 2025, 16, 15571–15586
neurons, akin to the specialization of different regions in the
human cerebral cortex for processing different information.

The rule for region 1 is whether the average rst ionization
energy of the near-neighboring atoms is greater than
850 kJ mol−1. The region 2 rule is whether the two nearest
neighboring atoms are N, O or F. This may be due to the
consideration that highly electronegative near-neighboring
atoms have a greater inuence on the electron cloud of the
central absorbing metal atom.60–62 Regions 3 and 4 are both
divided relying on the rst shell layer (Dr < 0.6 Å). Region 3 is
divided according to whether the average rst ionization energy
of the rst shell layer is less than 1300 kJ mol−1. Region 4 is
ruled by whether the average distance of the rst shell layer is
less than 2.24 Å. In fact, the rst shell layer is exactly the concept
commonly used in X-ray near-edge absorption spectroscopy.63–66

The rule for region 5 is whether the nearest-neighbor atom
distance is less than 2.20 Å. This is similar to region 2, which
also considers the nearest-neighbor atoms. The rule for region 6
is whether the average distance of neighboring atoms within
2.70 Å is less than 2.30 Å. The results for the source attribution
after coloring the neurons in layer 4. The inset illustrates the result of
set of neurons for samples after UMAP dimensionality reduction. (b)
a localized zoomed-in result of the response dynamics.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of neurons (Tables S6–S11†) suggest that the clustering of these
neurons and the functional results are not coincidental. Basi-
cally, each attention head corresponds to two neuron clusters
and there are similarities in the rules between homologous
neuron clusters. For example, almost all of the neurons in
regions 1 and 6 come from the rst attention head, while both
rules take into account the average information of the broad
near-neighbor atoms. Regions 2 and 5 from the third head are
more focused on the 1–2 nearest-neighbor atoms. Regions 3 and
4 are both considered from the rst shell layer. As a matter of
fact, this is consistent with the UMAP result for neurons, which
corresponds to the many gray lines connecting area 1 and area
6, area 2 and area 5, and area 3 and area 4.

In addition, the specic response of neurons to a cluster of
samples is shown in Fig. 6c. It is obvious that the response
dynamics of neurons in regions 3 and 4 to different samples are
different from those in the other regions. The local zoom results
further indicate that neurons in regions 3 and 4 respond with
very weak dynamics for this cluster samples compared to the
other regions. This almost inactivated state is similar to recent
ndings in human neuroscience.67 Thus, the neurons of the
MEM-XANES model have behaviors like a human brain whose
different functional regions focus on processing different
information. The MEM-XANES model analyzes the local struc-
ture of the crystals to obtain the X-ray near-side absorption
spectra from the nearest atoms, the rst shell layer, and the
broad near-neighbor atoms. The phenomenon of different
regions being responsible for processing distinct information is
quite similar to the specialized processing mechanisms
observed in the Brodmann areas of the cerebral cortex. Mean-
while, the comparison of the activated and inactivated states of
neurons in different regions when confronted with a cluster of
similar samples further corroborates this notion. Additionally,
the normative thinking of neurons and the interpretability of
their behavior may require the embedding or guidance of
innate computational mechanisms. Attention mechanism is
one of the powerful tools that can help the neural network brain
to evolve.
Interpretability of the homology of data

For intuitive comprehension of the role of graph convolution in
encoding crystal information at the dataset level, the test set
was projected into two dimensions and analyzed by T-SNE
technology. Specically, T-SNE dimensionality reduction is
applied to the last graph convolutional layer output, which is
a 900-dimensional graph data encoding. Staining visualization
of the reduction results based on absorbing elements, space
groups, coordination numbers, and mean nearest-neighbor
distance is shown in Fig. 7a–d. As shown by the absorbing
element staining maps in Fig. 7a, samples of the same
absorbing element tend to cluster, most notably for the
elements Cd and Zn, with the two species essentially clustered
into two groups. This conrms that the MEM-XANES model has
the ability to distinguish between samples of different
absorbing elements. However, it is important to note that the
samples, which have the same absorbing elements, may also be
© 2025 The Author(s). Published by the Royal Society of Chemistry
multi-clustered or even dispersed distributionally. In total, this
dispersion is bounded by the red dotted line, showing that
samples of the same element are distributed both above and
below it. This phenomenon insightfully reveals the inherent
complexity in embedding space. The distribution of samples in
the embedding space is not only determined by absorbing
elements, but also inuenced by other hidden laws. For space
group staining, the regularity is not signicant, showing a few
sporadic clusters, which are framed by a solid black line in
Fig. 7b. It was due to the fact that the processing during the
graph data construction stage largely lost the information about
the crystal structure in terms of space. A clearly patterned
distribution is then observed in the coordination number
staining maps, as shown in the inset of Fig. 7c, where the
coordination number shows a decreasing trend from top le to
bottom right in the embedding space. For the mean nearest-
neighbor distance a continuous variation can be observed, as
shown in Fig. 7d. This continuous variation even allows us to
sketch the corresponding contours.

To further investigate the properties of the embedding
space, the absorbing element-stained map was used as a base
map for detailed comparative analysis with other stained maps.
As shown in Fig. 7e, region 1 is an oversized cluster where only
Zn absorbing element samples are clustered. The samples from
this cluster can be further divided into subregions a (>2.75),
b (z2.50), and c (<2.25) based on the mean nearest-neighbor
distance. Meanwhile, the space groups in region b are nearly
identical, and the coordination number of samples in region
a is essentially more than 5. It suggests that the complexity of
the sample embedding space is caused by a multiple combi-
nation of different information. The dispersion of absorbing
elements bounded by the red dashed line in Fig. 7a is explained.
For region 2, there is a tightly clustered group of Cd absorbing
elemental samples. It is difficult to distinguish between them
for all four staining maps: absorbing elements, space groups,
coordination numbers, and mean nearest-neighbor distance.
To explore such a situation, the samples were further analyzed
by drawing the topologies that corresponded to a smaller region
of the samples. It is not difficult to nd that the topologies of
these samples from different crystals (Fig. S5†) or different local
structures of the same crystal are very similar. They only differ
in the two outermost atoms and in the interatomic distances.
This makes perfect sense, just as humans categorize similar
situations while still retaining the distinction between them.
Region 3 is a dense, small cluster where samples of multiple
absorbing elements are present. In addition to their essentially
identical space groups, coordination numbers, and mean
nearest-neighbor distance properties, there is a contribution of
absorbing elements for their clustering together. The elements
Ti, Cr and Mn just happen to be close to each other in the same
period. It is not unique, and similar to the case in region 4,
where the sample was relatively dispersed with differences
essentially only between absorbing elements. Mn, Fe, Co, and
Ni are just neighbors in the same period. Again, it provides
convincing evidence that the MEM-XANES model can enable
mutual learning between samples of different elements. It is
also further revealed that suchmutual learning is accomplished
Chem. Sci., 2025, 16, 15571–15586 | 15579
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Fig. 7 Visualization of samples reduction on the test dataset. (a) Absorbing elements (EL) stainedmap for sample reduction. (b) Space group (SG)
stained map for sample reduction. (c) Coordination number (CN) stained map for sample reduction. (d) Mean near-neighbor distance (MNND)
stainedmap for sample reduction. (e) Multi-stained contrastmap based on absorbing elementsmap. Regions 1 and 2 are the dispersed and dense
regions for the samples with the same absorbing element, respectively. The inset of region 2 is the topology of the corresponding samples in
a localized zoom of region 2. Regions 3 and 4 are the dispersed and dense regions for the samples with different absorbing elements,
respectively.
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by analogizing similar samples of closely absorbing elements in
the same period. In summary, the local information of the
crystal is transformed to a multi-dimensional, semantic divis-
ible space by graph convolutional encoding. Besides the space
groups, the absorbing elements are the core of the MEM-XANES
model, while the coordination number and the mean nearest-
neighbor distance have been proved to be important bridges
15580 | Chem. Sci., 2025, 16, 15571–15586
between XANES and the structure by Torrisi et al.36 Conse-
quently, the MEM-XANES model in this study does accomplish
the task of encoding the crystal structure information into
multi-dimensional vectors that are highly correlated with the
XANES. Moreover, it also provides a further explanation for the
multi-element mixture model to realize mutual learning among
samples of different elements.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Interpretability of the topological structures

The attention mechanism is not only a useful tool to improve
the performance of the network, but its attention scores are also
an important bridge between the process of networks process-
ing formalized data and human cognition, which is of great
signicance for enhancing the interpretability of the model.68–70

Therefore, the attention scores are utilized for interpretability
analysis of the topological structures. Samples with high
prediction accuracy were assumed to have higher interpret-
ability of results, and 10 samples with different absorbing
elements were randomly selected from a subset with the top
1000 MAE rankings of the test set for analysis. Specically,
maximum–minimum standardization was applied to the
attention scores of each of the three heads from the sample,
with which the differences between the attention scores were
analyzed (Table S12–S21†). The analysis revealed that the
samples can be divided into two cases based on the presence or
Fig. 8 Visualization of sample attention scores. (a) The distribution of nea
corresponding attention scores for the three heads. (b) The distribution of
corresponding attention scores for the three heads. (c) The attention high
1005986-26-Mo-XANES-K. (d) The attention high/low scoring element g

© 2025 The Author(s). Published by the Royal Society of Chemistry
absence of mathematically equivalent atoms of the central
absorbing atom in the group of near-neighbor atoms. Sample
mp-1005986-26-Mo-XANES-K (absence) and sample mp-640381-
6-Cu-XANES-K (presence) are illustrated as examples here. It is
necessary to state that other samples show the same rule.

By arranging the near-neighbor atoms in order of proximity,
the attention scores from three heads for the samplemp-1005986-
26-Mo-XANES-K are shown in Fig. 8a. For a single attention head,
the attention scores for the same element are concentrated in the
same zone, while the zones of different elements do not overlap.
For example, in the rst head, all Zr atoms have relative scores
greater than 0.8, Mo atoms have scores between 0.7 and 0.4, and
Co atoms have scores less than 0.1. The attention scores for the
three heads are similar, which demonstrates that the MEM-
XANES model's attention mechanism is discriminatory for
elemental species of near-neighbor atoms. It is interesting to
mention that the attention scores of the rst head also exhibit
r-neighbor atoms for sample mp-1005986-26-Mo-XANES-K with the
near-neighbor atoms for samplemp-640381-6-Cu-XANES-Kwith the
/low scoring element group labels for the three heads for sample mp-
roup labels for the three heads for samplemp-640381-6-Cu-XANES-K.

Chem. Sci., 2025, 16, 15571–15586 | 15581
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difference between neighboring near-neighbor atoms of the same
element. Specically, the second nearest-neighbor atom (20-Mo)
and the third one (27-Mo) were signicantly different on the rst
head's attention scores. It is not difficult to observe that this
difference is caused by the change in distance, rather than the
difference in nodes, by comparing the distance line between the
near-neighbor atoms and the central atom. As Table S12† shows,
this situation is also present in the other two heads, but the rst
head is more sensitive to the change in distance. Further, the
highest scores element group and the lowest scores element
group of the different heads are marked on the topology, and the
results are shown in Fig. 8c. In similar fashion to recent ndings,
the model's attention scores also showed complementary and
synergistic behavior across the different heads.71–73 For sample
mp-640381-6-Cu-XANES-K (shown in Table S17†), when the graph
equivalent atoms of the center absorbing atom are present in the
near-neighbor atoms, these atoms receive high attention in all
three heads. It is not difficult to understand that the center
absorbing atom is certainly the most important part of the whole
system. Aer excluding such atoms, the normalized results and
Fig. 9 Validation of FDMNES simulations. (a)–(h) Comprehensive compar
samples.

15582 | Chem. Sci., 2025, 16, 15571–15586
the high/low scoring elemental group labeled results are shown in
Fig. 8b and d, respectively, which are like the samples with no
central absorbing atoms.
Calculated validation

To rigorously evaluate the physical reliability of the model, high
precision FDMNES74–76 benchmark simulations were performed
on 24 representative samples (Fig. 9 and S6†) spanning diverse
elements, coordination numbers, oxidation states, and local
symmetries. To focus the comparison on the physically crucial
spectral shape, all spectra were energy-shied and intensity-
normalized, correcting for the inherent systematic discrep-
ancies in absolute energy and absorption cross section calcu-
lations between theoretical methods.77,78 The results indicate
that beyond excellent agreement in overall spectral shape, the
model has crucially captured the transition selection rules
governed by local symmetry.

As shown in Fig. 9a, the rst coordination shell of the central
Y atom in sample mvc-789-5-Y-XANES-K is composed of six
ison of XANES betweenmodel predictions and FDMNES simulations for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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oxygen atoms with Y–O bond lengths of 2.36, 2.36, 2.40, 2.40,
2.42, and 2.42 Å, forming a highly symmetric, nearly centro-
symmetric octahedral local environment. According to the
selection rules, this high degree of symmetry strongly
suppresses the dipole-forbidden 1s / 4d electronic transition.
Thus, the nearly perfect overlap of the two curves at the smooth
absorption edge, which is dominated by the dipole-allowed 1s
/ 5p transition, conrms the physical reliability of the model.
In stark contrast, a sample also featuring a six-coordinate
oxygen environment around a central V atom exhibits a dis-
torted octahedral geometry, with V–O bond lengths distributed
unevenly over a wider range (1.91–2.20 Å). This conguration
breaks the central inversion symmetry. In such a non-
centrosymmetric crystal eld, the 3d orbitals of the central V
atom hybridize with the 2p orbitals of the surrounding oxygen
atoms. This p–d hybridization lends partial p-character to the
otherwise pure d-orbitals, thereby opening the formerly dipole-
forbidden 1s / 3d electronic transition channel. As shown in
Fig. 9b, the resulting pre-edge peak at ∼5472 eV serves as
a direct spectroscopic ngerprint of this distorted octahedral
environment. The model's success in predicting the presence,
position, and general intensity of this key feature provides
strong evidence that it has learned the core quantum-
mechanical causal chain from structural symmetry breaking
to the emergence of specic spectral features. Furthermore,
another sample (Fig. 9c), also a V-centered distorted octahe-
dron, presents an even more extreme case. With a bond length
distribution spanning 0.77 Å, featuring a very short V]O
double bond (1.63 Å) and a very long, weak V–O bond (2.40 Å),
its local environment deviates severely from centrosymmetry.
This extreme distortion induces a much stronger p–d hybrid-
ization, which boosts the transition probability and conse-
quently yields a pre-edge peak of greater intensity. The direct
comparison of these two distorted vanadium octahedra reveals
a remarkable capability in that the model not only predicts the
existence of the pre-edge peak but also quantitatively captures
the crucial difference in their intensities. This further conrms
that the model has developed a profound understanding of the
physical laws connecting local symmetry to electronic transition
channels. Fig. 9d showcases a tetrahedral coordination envi-
ronment, a geometry that inherently lacks a center of inversion.
This leads to a highly allowed 1s / 3d transition, corre-
sponding to the extremely intense pre-edge peak observed in
the XANES spectrum at ∼5993 eV. This progression, which
ranges from predicting no pre-edge peak for a nearly perfect
octahedron to a weak peak for a distorted one, a stronger peak
for a more extremely distorted one, and nally a very intense
peak for the tetrahedral environment, provides irrefutable
evidence of the model's physical reliability.

Moreover, the model demonstrated robust physical gener-
alization capability across systems spanning different chemical
bonding types and electronic structure constraints. In inter-
metallic compounds (Fig. 9e and f), the model correctly predicts
the smooth edges or shoulder-like features dominated by
delocalized bands, rather than localized pre-edge peaks. For the
Ag system, where the 4d orbitals are fully occupied and thus
there is no 1s / 4d transition channel (Fig. 9g), the model also
© 2025 The Author(s). Published by the Royal Society of Chemistry
correctly predicts the absence of a pre-edge peak. Together,
these successful validations depict a reliable model that has
grasped core physical principles. At the same time, the presence
of quantitative discrepancies in the sulde system (Fig. 9h)
transparently indicates current model limitations and direc-
tions for future optimization, demonstrating that the assess-
ment of model capabilities is both objective and
comprehensive.

Conclusion

In summary, this work introduces a multi-head graph attention
convolutional neural network for crystal XANES prediction and
contributes signicant insights into neuronal functional
differentiation within neural networks.

The MEM-XANES model was trained to predict multiple
elements K-edge XANES simultaneously through the innovative
combination of a multi-element converged dataset and an
elaborated topological approach. This model effectively learns
the relationships between the local structures of different
absorbing elements and their corresponding XANES spectra,
signicantly enhancing the prediction accuracy for small-scale
sample elements. Remarkably, the MAE achieved by the MEM-
XANES model on the EM-Dataset is approximately 0.023, with
training time reduced to 0.14 of the original duration due to the
absorption atom-centered topological strategy.

Furthermore, the MEM-XANES model demonstrates
extraordinary interpretability across three critical dimensions:
the neurons of the model, the homology of the data, and
topological structures. Notably, a novel perspective is explored
that characterizes the behavior of neurons through their
response dynamics to different samples for insights into the
internal workings of the model. This innovative characteriza-
tion method revealed the presence of neuronal functional
differentiation in the model, guided by the attention mecha-
nism, akin to the functional differentiation observed in cortical
areas. In addition, analysis of the homology of the data
demonstrates that the model indeed realizes the trans-
formation from crystal structure information to implicit XANES
information with multiple semantic separable space via graph
convolution. In this way, different samples of similar absorbing
elements from the same period can mutually learn from each
other. The topological structure analysis of the samples indi-
cates the signicance of attention scores in distinguishing
between atomic environments and reveals a collaborative
working pattern between multiple attention heads.

Consequently, this research not only advances future studies
on the relationship between XANES spectra and material
structures but also provides valuable insights into neuronal
behavior, enhancing the understanding of the internal work-
ings of neural networks.

Data availability

The code in this publication is publicly available at https://
github.com/Shaoruisun/Light-Transition-Metals-K-edge-
XANES.
Chem. Sci., 2025, 16, 15571–15586 | 15583
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