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To achieve reversible metallic Zn anodes for aqueous rechargeable zinc batteries, regulating the
electrolyte—Zn interface is the key to addressing the side reactions on Zn. Beyond water-deficiency,
design rules for constructing the highly efficient electrochemical interface are still vague. Anions, as
primary electrolyte constituents, not only play a role in solvation structure, but also influence the
electrolyte—Zn interface. Here, the characteristics of representative anions in current aqueous zinc
electrolytes are surveyed. A candidate combining polarizability, H-bond tuning ability and high solubility
is proposed to construct a high-dielectric water-deficient electrolyte—Zn interface to regulate the
interfacial chemistry on Zn. The anion-dominated electrochemical interface promotes the Zn deposition
kinetics and achieves uniform Zn deposition with high stability, which further enables the in situ

formation of an SEI for highly stable Zn stripping/plating, e.g., at 20 mA cm™2 and 20 mA h cm™.
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Accepted 11th March 2025 urthermore, this built-in interface exhibits an effect in stabilizing the V,Os cathode, endowing the V,0s5
Zn cell with ultra-stable long-term cycling, e.g., 10 000 cycles at 10 A g~ with a high retention rate of

DOI: 10.1039/d55c00364d 89.7%. Our design offers insight into guidelines for the development of novel electrolytes towards
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Introduction

Aqueous rechargeable batteries are attracting attention as next-
generation energy storage alternatives. Benefitting from their
metallic Zn anode, zinc metal batteries (ZMBs) have the merits
of natural abundance, promising electrochemical performance,
and environmental friendliness.”® However, uncontrolled
detrimental water-induced side reactions lead to deterioration
in the lifespan of the Zn anode.*” Water molecules can be
reduced on Zn, where the hydrogen evolution reaction (HER)
leads to an increase in local pH. This causes the uncontrollable
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rationally designed electrochemical interfaces.

formation of surface by-products, and the resulting uneven
surface aggravates the nonuniform distribution of the electric
field, accelerating dendrite growth and the HER. The above
entangled factors significantly reduce the Zn utilization effi-
ciency. To regulate the interfacial reactions on Zn anodes,
a water-deficient inner Helmholtz plane (IHP) in an electric
double layer (EDL) is typically proposed, which depresses water
activity by altering the hydrogen bond (H-bond) characteristics
via zinc salt concentration, additive, gelation, etc.;*** however,
these approaches have been insufficient to achieve the stable
high utilization of Zn.

In the emerging zinc salts for ZMBs,**~*° organic anions play
an indispensable role in reshaping solvation structure from the
conventional [Zn(H,0)s]*" configuration and H-bond network,
based on their metal chelating characteristics and
hydrophilicity/hydrophobicity. Unlike the solvent-dominant
EDL in conventional nonaqueous electrolytes, anions can
present strong affinity to the metal surface, causing water
solvent molecules to be repelled. Hence, it is imperative to
provide a comprehensive insight into the contributions of
anions to constructing IHPs via the tuning of zincophilic
interactions and H-bond characteristics. Additionally, the
dielectric constant (i.e., relative permittivity) represents the
response of a material to an external electric field, where the
regulated migration of charged species generates a collective
electric dipole moment. The importance of dielectric properties
is being underscored for rechargeable batteries,* e.g., dielectric

© 2025 The Author(s). Published by the Royal Society of Chemistry
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solvent protocols to manipulate interphase characteristics in
liquid state electrolytes,*+** lithium salt dissociation in solid
state polymer electrolytes,* and built-in field promoted ion
transport in 3D gradient hosts.** In addition to influencing the
solvation structure, the dielectric properties inherent to the
molecular species in electrolytes could fine-tune the EDL region
via intermolecular fields, facilitate charge transfer, diminish the
ion concentration gradient and circumvent ion depletion to
suppress dendrite growth. However, the impact of the dielectric
contribution from anions has rarely been explored in aqueous
electrolytes. Further, the formation of an in situ solid-electrolyte
interface (SEI) is a feasible approach to address the deteriora-
tion of the interphase due to water-induced reactions; the
constituents of the EDL and their electrochemical stabilities
determine the SEI characteristics. Among the current novel
approaches towards the formation of in situ SEIs on Zn, such as
electrolyte  additives,>?®  aqueous/non-aqueous  hybrid
solvents,* and water-in-salt electrolytes,*” the ability to form
anion-derived SEIs is highly attractive for constructing stable
electrolyte-Zn interfaces,*® where the relatively positive reduc-
tion potential of Zn° (—0.76 V vs. SHE) compared with that of Li°
makes the decomposition of anions in the electrolyte system
become contentious.**** Hence, the effects of anion-dominant
IHPs on interfacial reactions on Zn warrants scrutinization.
Herein, the characteristics of representative anions in
aqueous zinc electrolytes are first surveyed. Based on the
correlated intrinsic properties, anions combining polarizability,
H-bond tuning ability and aqueous solubility for the construc-
tion of a high-dielectric water-deficient electrolyte-Zn interface
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are proposed (Fig. 1a). We then demonstrate the tuning of the
EDL, which impacts the interfacial chemistry on Zn, via a satu-
rated fluorine-free hydrophilic eco-friendly anion without the
use of additives or nonaqueous co-solvents. The anion-
dominated high-dielectric interface can effectively repel water
molecules and favor the desolvation process as verified by MD,
thus promoting Zn deposition kinetics and achieving uniform
Zn deposition. It further enables the in situ formation of an SEI
for highly stable Zn stripping/plating, e.g. at 20 mA ¢cm > and
20 mA h em™2 Further, the V,05/Zn ZMB cell exhibits ultra-
stable long-term cycling, e.g., 10 000 cycles at 10 A g~ ' with
a high retention rate of 89.7%, and the role of the electro-
chemical interface in stabilizing the V,0s cathode is revealed.
We further demonstrate the extension of the high-dielectric
interface via a gel electrolyte with the same type of anion.

Results and discussion

Correlation among the intrinsic properties of anions in
aqueous zinc electrolytes

Via the Clausius-Mossotti relation, the macroscopic dielectric
constant (¢;) is correlated with microscopic polarizability («).*>
To explore the contribution of anions to the dielectric proper-
ties, an investigation of the molecular polarizabilities of repre-
sentative anions was first conducted using density functional
theory (DFT) (Fig. 1b); their molecular polarizabilities followed
the order PS™ (phenolsulfonate) > OTf™ (trifluorosulfonate) >
SA™ (sulfamate) > SO,>~ (sulfate) > OAc™ (acetate). The ESP
values of anions represent their electronegativities,** and the
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Fig. 1 Key factors for the construction of a high-dielectric water-deficient electrochemical interface. (a) Critical factors of anions for elec-
trolyte—Zn interfaces. (b) Polarizabilities of anions in zinc salts. (c) ESP values of anions. (d) Dielectric constants of representative aqueous zinc
electrolytes. (e) Solubilities of zinc salts expressed as the molar ratio of n(Zn?*) : n(H,O) = 1: x. () Relative proportions of isolated water in aqueous

zinc electrolytes.
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calculated ESP values followed the order OTf > SA™ > PS™ >
OAc™ > SO, (Fig. 1c). A more negative electrostatic potential
(ESP) value indicates stronger interaction between opposite
charges, suggesting high rigidity of the charge distribution and
consequently low «. Except for PS™, the decreasing « values with
anions show increasing ESP values. The largest ESP value of
SO, can be attributed to its divalent nature, and the
discrepancy for PS™ might be ascribed to the delocalization of
electrons on the benzene ring.

The dielectric properties of the corresponding aqueous zinc
electrolytes for ZMB were then measured (Fig. 1d) at standard-
ized molar concentrations and at their saturation concentra-
tions. Among the saturated electrolytes, 4 M Zn(SA), presents
the highest dielectric constant; the dielectric constants of the
saturated zinc electrolytes follow the order 4 M Zn(SA), > 3 M
Zn(OTf), > 3 M ZnSO, > 2 M Zn(OAc), > 1.6 M Zn(PS),. Note that
the trend of the measured dielectric constants of the aqueous
zinc electrolytes does not follow that of their anion polariz-
abilities exactly. Additionally, for a given zinc salt, increasing
concentration leads to an enhanced dielectric constant. The
above suggests that the dielectric contribution from the solvent,
i.e., water molecules, cannot be overlooked. Thus, the aqueous
solubilities of the zinc salts were considered. To dissolve an
ionic solid, its lattice energy must be overcome by the solvent. A
large ¢, value for an anion favors the dissociation of the metallic
cation and anion and leads to strong ion-dipolar interactions
with solvent molecules, promoting salt dissolution. However,
this intuitive model is a simplified one, since the solubility of
a salt is complex, involving hydrophobicity, ion-pair interac-
tions, deep eutectic interactions, etc. As a result, the empirical
saturation concentrations of the zinc salts were determined
(Fig. 1e) and expressed explicitly as the molar ratios of zinc ions
to water molecules. Among the candidates, Zn(SA), presents the
highest solubility, i.e., the molar ratio of n(Zn>") : n(H,0) of 1:
5.5, which could be ascribed to the large ¢, and H-bond donor/
acceptor characteristics of SA™. The solubility trend of the
aqueous zinc electrolytes coincides with that of their dielectric
constants. This implies that anions with high polarizability and
solubility are desirable in order to endow the electrolyte with
promising dielectric properties.

Further, the ability of anion to alter the water states as well as
the H-bond network was evaluated by deconvoluting the ~-OH
stretching in the Fourier-transform infrared (FTIR) spectra of
the zinc electrolytes (Fig. 1f and S1t). Three types of water states
can be differentiated,**** namely, weakly bonded isolated water
(~3550 em™"), cluster water with an ice-like liquid state
(~3400 cm™"), and bulk water with an icelike state
(~3240 cm™); the relative proportion of free water was chosen
to reflect the change in the water state. Among the candidates,
4 M Zn(SA), significantly reduced the relative proportion of free
water to ~6.0%. The ability of the anions to alter water state was
further tested by fixing the molar ratios of the anion (SA™, OTf ",
OAc™, SO,>7) relative to the water molecules (Fig. S21), and the
promising ability of SA™ was associated with it having both an
H-bond acceptor and donor.

Based on the intercorrelated characteristics/intrinsic prop-
erties of the anions, the fluorine-free and eco-friendly anion SA™
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was selected to demonstrate the impact of a high-dielectric
water-deficient electrolyte-Zn interface on regulating the inter-
facial chemistry.

Physicochemical properties of Zn(SA), electrolytes

The inherited vibrational characteristics of the aqueous Zn(SA),
electrolytes from the corresponding zinc salt can be clearly
observed in Fig. 2a (Fig. S3 and Table S1t), i.e., deformation of -
NH, at 1557 cm ', symmetric and asymmetric stretching
vibrations of -SO,~ at 1245 and 1048 cm ™', and -SO,~ defor-
mation at 562 cm ™. Additionally, the concentration-dependent
tuning of the water states in the Zn(SA), electrolytes shows that
isolated and cluster water transform to bulk water as the elec-
trolyte approaches saturation (Fig. S41), ie., the relative
percentage of bulk water increases from 80.6% to 87.5%, while
those of isolated and cluster water drop from 10.3% to 6.0% and
9.1% to 6.5%, respectively (Fig. 2b and c), which indicates the
effective adjustment of water activity and reshaping of the H-
bond network. The changes in H-bond induced by Zn(SA),
were then verified via the deshielding effect as revealed in the
'H NMR spectra; the significant broadening was attributed to
complex interactions surrounding the H,O molecules (Fig. S57).
To explore the solvation structure of Zn>* in Zn(SA), electrolytes,
molecular dynamics (MD) simulations of the radial distribution
functions (RDF) and coordination number (CN) distribution
functions were conducted. The relatively shorter Zn-O length
for O in SA™ (~1.8 A) than that for water molecules (~1.9 A)
indicates the incorporation of SA™ into the zinc solvation sheath
(Fig. 2d). As the salt concentration increases, CNg,- drastically
increases from 0.8 (2 M) to 1.6 (4 M), indicating the significant
replacement of water molecules in the first solvation sheath
with CNyo decreasing from 4.7 to 3.5. DFT calculations
revealed the much stronger binding energy of Zn**-SA (—18.36
eV) compared to that of Zn>~H,0 (—4.73 eV) (Fig. 2e), indi-
cating that Zn>" prefers to bind with SA™ rather than H,O. ESP
mapping further confirmed the affinity of -SO; ™~ to Zn”*, with
the NH;" group being exposed outwards (Fig. 2e). Thus, the MD
snapshots in Fig. 2f display the solvation structure of 4 M
Zn(SA), (see also Fig. S61), where Zn>" is coordinated with three
H,0 molecules and two SA™ in 4 M Zn(SA),.

The physicochemical properties of Zn(SA), electrolytes were
studied. The decreased water activity with increasing Zn(SA),
concentration leads to a higher onset potential of the oxygen
evolution reaction, increasing from 2.26 V to 2.67 V vs. Zn/Zn>*
for 4 M Zn(SA), with depressed current density compared to its
counterpart (Fig. 2g), thus widening the electrochemical
window from 2.32 V to 2.72 V vs. Zn/Zn** for 4 M Zn(SA),. Note
that the lower intensity of the redox peak could be attributed to
slower ion transport as discussed below. Additionally, better
anti-corrosion properties can be obtained by tuning the Zn(SA),
concentration, with a positive shift of the corrosion voltage
(from —0.94 V to —0.89 V vs. Ag/AgCl) and lower corrosion
current density (from 5.90 to 5.28 mA cm™*) being observed
with increasing the concentration to saturation (Fig. 2h). The
ion transport behavior of the Zn(SA), electrolytes was also
studied. The ion conductivity of the Zn(SA), electrolytes

© 2025 The Author(s). Published by the Royal Society of Chemistry
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s . (h) Tafel plots comparing Zn(SA), electrolytes. (i) lon conductivities and transference numbers comparing different Zn(SA), electrolytes.

decreases from 73.92 to 34.85 mS cm ' with increasing
concentration, which could be related to its large solvation
structure (Fig. 2i). The transference number (") was also
measured to understand the contribution of the cations to ion
transport (Fig. 2i and S77). The significant enhancement of ¢,,>+
from 0.24 (2 M) to 0.76 (4 M) suggests the hindrance of anion
motion, which could be ascribed to the greater incorporation of
anions in the solvation sheath in 4 M Zn(SA),.

Zn deposition behavior on the Zn(SA),-Zn interface

The impact of the Zn(SA),-Zn interface on the Zn deposition
behavior was then investigated. Coulombic efficiency (CE) was
first evaluated by assembling Cu|Zn asymmetric cells under
a constant current/capacity density of 1 mA cm > and
1 mA h em ™2 During cycling, the Cu|Zn cell with 4 M Zn(SA),
exhibits a high CE of 99.9% from the first cycle, with the over-
potential stabilizing from 76 mV (1st cycle) to 68 mV (10th

© 2025 The Author(s). Published by the Royal Society of Chemistry

cycle), 62 mV (50th cycle), and gradually to 60 mV (100th cycle)
(Fig. 3a). In contrast, the cell with 2 M Zn(SA), presents fluctu-
ating polarization after ~82 cycles (Fig. S81).

Using chronopotentiometry, the nucleation overpotentials
for the Cu|Zn cells with 4 M and 2 M Zn(SA), cells were deter-
mined to be 56.4 mV and 65.9 mV (Fig. 3b), respectively. The
lower nucleation overpotential of the cell with 4 M Zn(SA),
indicates its favorable nucleation kinetics, leading to more
uniform Zn deposition. The deposition behaviors for the
Zn(SA), electrolytes were further studied using chro-
noamperometry (CA) under a constant overpotential of
—150 mV (Fig. 3¢), which can sensitively reflect the changes in
the active surface area during nucleation.***” The cell with 4 M
Zn(SA), shows quick stabilization of the current density at
~472 s compared to ~1500 s for its 2 M counterpart, indicating
a switch from a 2D mode (lateral nucleation/growth) to a 3D
mode (vertical deposition). The fast switch to the 3D mode
implies the saturation of the exposed surface area for Zn

Chem. Sci., 2025, 16, 6918-6929 | 6921
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deposition, suggesting that 4 M Zn(SA), is more conducive to
uniform Zn deposition. Scharifker-Hills analysis*® indicates
that the CA of the 4 M Zn(SA), electrolyte closely approaches the
curve predicted by the instantaneous nucleation theory
(Fig. S97). X-ray diffraction (XRD) spectra was performed for Zn
electroplated on Cu (Fig. 3d). At an applied current/capacity
density of 10 mA em > and 10 mA h em™?, the intensity ratio
of (002)/(101) is 2.02 for the deposited Zn using 4 M Zn(SA),,
which is much higher than that of only 0.28 obtained using 2 M
Zn(SA),. Clearly, using 4 M Zn(SA), is more conducive to expo-
sure of the Zn(002) crystal plane (see also Fig. S10t for Zn

6922 | Chem. Sci., 2025, 16, 6918-6929

deposition at 1 mA cm™ 2 and 1 mA h cm ™). The exposure of the
Zn(002) crystal planes using 4 M Zn(SA), can be clearly verified
by SEM (Fig. 3e and S117), in contrast to the diversely oriented
crystal planes obtained using its 2 M counterpart with a much
rougher surface morphology (Fig. 3f). Additionally, the promo-
tion of uniform Zn (002) deposition is exemplified at 1 mA cm >
and 1 mA h em ™ (Fig. S127).

The regulated deposition behavior reflects the importance of
a high-dielectric interface. In situ Raman spectroscopy was then
applied to monitor the vibrational species on the interface.
Compared to the spectrum of the bulk electrolyte, the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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significantly blue-shifted O-S-O, degenerate -SO;  deforma-
tion, and symmetric -SO;~ stretching at the electrolyte-Zn
interface suggest the reshaping of the EDL by SA™ (Fig. S137).
These interfacial vibrational features were well retained during
Zn deposition (Fig. 3g), reflecting the stabilization of the EDL,
which will be further explored. MD simulation was applied to
visualize the anion-dominated interface for 4 M Zn(SA),, in
which water molecules are largely repelled from the interface
(Fig. 3i and S14t). Accordingly, the merits of high-dielectric
electrolyte-Zn have been depicted in Fig. 3h. The anion-
induced high dielectric interface can effectively reshape the
IHP, which presents a tendency to retain anion species.*” The
reshaped IHP can regulate the interfacial electric field and
homogenize ion flux,*® favoring interfacial ion transport and
desolvation kinetics. This leads to an accelerated switch to the
vertical growth mode and promotes uniform deposition with
a Zn (002) texture, which can significantly suppress the growth
of Zn dendrites,**® in contrast to the nonuniform and dis-
oriented deposits obtained using its low dielectric counterpart.

Electrochemical performance of the Zn(SA),-Zn interface

The rate performance of Zn stripping/plating in Zn|Zn
symmetric cells was evaluated under a series of current densi-
ties from 0.1 to 20 mA cm > (Fig. 4a). The long-term cycling
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stability of the Zn|Zn cells using Zn(SA), electrolytes was
compared at 10 mA cm~ > and 10 mA h em ™~ (Fig. 4b and S157).
The polarization of the symmetric cell cycled in 4 M Zn(SA),
remained nearly constant (~143.8 mV at 10th cycle) after 2000 h
(~112.2 mV), demonstrating its promising lifespan (see also
Fig. $167 for comparison of 1 mA cm™ > and 1 mA h ecm™?). The
cell with 4 M Zn(SA), presents steady polarization even under
a high current/capacity density of 20 mA cm™> and
20 mA h cm 2 (DOD of ~34%) (Fig. S171), in contrast to the
rapid shorting with 2 M Zn(SA),; the symmetric cell with 2 M
Zn(SA), shorts after only ~100 h. In electrochemical impedance
spectroscopy (EIS), the cell with 4 M Zn(SA), shows a lower
charge transfer resistance (Rcy) of 7.6 Q than its 2 M Zn(SA),
counterpart (17.7 Q) before cycling (Fig. 4c, S18 and Table S27).
The situation is maintained after cycling, with a lower Ror (37.7
Q) for 4 M Zn(SA), than its 2 M counterpart (56.4 Q). This
indicates the beneficial interfacial charge transfer by 4 M
Zn(SA),, favoring the reaction kinetics. This is further supported
by the favored desolvation process in 4 M Zn(SA), during each
dehydration step (Fig. S197). Additionally, EIS analysis suggests
the possible presence of an SEI on Zn after cycling in Zn(SA),
electrolytes (Rsg; of 13.9 Q, Fig. S187). After cycling in 4 M
Zn(SA),, the Zn anode is uniformly covered by a dark surface
layer (Fig. 4d). An ex situ SEM study reveals that this surface
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Fig. 4 Performance and characterization of the Zn(SA),—Zn interface. (a) Rate performance comparison of 4 M and 2 M Zn(SA),. (b) Zn plating/
stripping at 10 mA cm~2 and 10 mA h cm™2. (c) EIS spectra of the Zn|Zn cell with 4 M Zn(SA), before and after 100 cycles. Ex situ characterization
of the cycled Zn in Zn(SA); electrolytes: (d) optical images of the Zn anode before and after cycling, (e) top-view SEM images with (f) EDX mapping
indicating the presence of Zn, N, O, and S, and (g) cross-sectional view confirming the formation of a surface layer. (h) Non-faradaic capaci-
tance—potential curves for the Zn(SA), electrolytes. The inset shows the reduction potential of SA™ on Zn. Time-dependent (i) FTIR-ATR spectra

and XPS analyses of (j) S 2p and (k) N 1s on the cycled surface.
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layer consists of ~2-5 pum plate-like structures (Fig. 4e) with
a uniform distribution of N, O, S, and Zn observed through EDX
mapping (Fig. 4f), and is ~18 um thick (Fig. 4g).

To analyze the electrochemical interface, alternating current
voltammetry was applied to determine the concentration-
dependence of the reshaping of the EDL in Zn(SA), electrolytes
(Fig. 4h). 4 M Zn(SA), results in a positive shift in the potential of
zero charge (PZC, defined as the minimum capacitance) and
a lower capacitance. These characteristics verify the design of
a dielectric electrochemical interface via highly polarizable
anions. A recent study presented a comprehensive understanding
of SEI formation by sulfamate anions on Zn anodes, based on the
hypothesized reduction of preferentially adsorbed SA™.** The
stability of the SA™ anion was first studied to examine the details
of the electrolyte-Zn interface. The frontier molecular orbitals,
i.e., the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) of SA™, were calculated
using DFT (Fig. S20f). Its LUMO was located at 0.52 eV, sug-
gesting that SA™ cannot be easily reduced.””* The reduction
stability of SA~ when coupled with metallic Zn was further
investigated. The obtained reduction potential of SA™ (—2.94 V vs.
Zn/Zn>") is well below that of Zn° reduction (Fig. 4h), as evidenced
by a symmetric redox pair at 1.18/0.88 V vs. Zn/Zn** uncovered in
cyclic voltammetry (CV), which could be ascribed to the
adsorption/desorption of SA™ (Fig. S217).°*

Time-dependent ex situ FTIR-ATR and X-ray photoelectron
spectroscopy (XPS) were correlated to monitor the SEI growth
during subsequent plating/stripping steps. After the first charge,
the deposition surface presents broad vibrational features corre-
sponding to NH;" symmetric stretching and degenerate rocking,
and -SO;~ symmetric deformation (Fig. 4i and Table S1+t). In the
corresponding stripped spectrum, the apparent features of NH;"
symmetric stretching, -NH, stretching, -SO;~ asymmetric
stretching and symmetric deformation, and S=O appear with
distinguishable -OH stretching. This is consistent with the
surface vibrational characteristics after long-term cycling, namely,
-NH, stretching vibration (~3172 cm™"), NH;" and -NH, groups
(3085-2925 cm™ '), symmetric NH;" stretching (2880 cm™%),
degenerate NH;" deformation (1559 ¢cm™"), asymmetric -SO;~
stretching (1301 cm™') and symmetric -SO;~ deformation
(1038 cm™ %), which suggests the presence of SA™ anions on the
cycled surface. Accordingly, chemical information was collected
for the deposition surface using XPS (Fig. 4j and k). After the first
charge, NH,SO;~ (170.0 and 168.7 eV, S 2p) and corresponding
N-S (397.3 and 399.2 eV, N 1s) peaks are detected, supporting the
presence of SA™ during Zn deposition. In parallel, the presence of
-SO;™ (167.8 eV, S 2p) and -NH,, (400.8 eV, N 1s) can be observed
in the Zn after the first discharge, and their relative proportions
increase from 9.2% to 12.2% and from 24.23% to 37.9% after
cycling (at the 100th cycle). Additionally, Zn-OH (Zn 2p) appears
on the Zn after the first discharge, and its proportion increases
from 33% to 41.4% (Fig. S22 and Table S37). The XRD spectrum
further displays a narrow diffraction peak emerging at ~9.31°,
reflecting the crystallinity of the surface structure (Fig. S237).
Consequently, the surface evolution information supports the
formation of an SEI on Zn. Considering the electrochemical
stability of SA™, it implies that the structure of the induced SEI
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could be attributed to the SA™ incorporating zinc hydroxide
complex Zn(SO;NH,),(OH),- nH,0.* The ionic conductivity of this
SEI is estimated to be ~0.26 mS cm ™", which is comparable to
those of currently reported novel surface layers for Zn anode.***

V,05/Zn full cell

Further, the influence of anion-derived high-dielectric electro-
chemical interface on the performance of V,0s/Zn full cells was
evaluated. Higher activity was observed for the cell with 4 M
Zn(SA), than its 2 M counterpart or the benchmark 3 M
Zn(OTf), (Fig. 5a). The cell with 4 M Zn(SA), also exhibits lower
polarization gaps of ~90 mV (peak 1 and 2) and ~70 mV (peak 3
and 4) than those for 2 M Zn(SA), (~200 mV and ~120 mV) and
3 M Zn(OTf), (~120 mV and ~80 mV), suggesting faster reaction
kinetics and better reversibility as supported by the stable CV
cycling (Fig. S24t). The advantage of 4 M Zn(SA), is also sup-
ported by the rate performance (Fig. 5b). When the current
density increases to 1 A g™, the cell with 4 M Zn(SA), presents
a capacity of 370.0 mA h ¢, which is higher than those of 2 M
Zn(SA), (261.0 mA h g*) and 3 M Zn(OTf), (336.2 mA h g™ %).
When the current density returns to 0.2 A g, the cell with 4 M
Zn(SA), exhibits a higher capacity retention of 96.6% than its
2 M counterpart (88.0%) and 3 M Zn(OTf), (85.6%). The favor-
able kinetics in the full cell can be attributed to the reduced
charge transfer resistance of the electrochemical interface
achieved using 4 M Zn(SA), (Fig. S25 and Table S4+).

In the galvanostatic charge-discharge (GCD) curve at
0.1 Ag ' (Fig. 5¢), the cell with 4 M Zn(SA), exhibits two distinct
sloping discharge/charge regions at ~0.5 and 1.2 V, consistent
with the redox peaks in the CV curves (Fig. 5a), giving a capacity
of 447.7 mA h g ". The cycling stability of the V,05/Zn cells was
also assessed. At 1 A g ', the cell with 4 M Zn(SA), can retain
88.0% of its maximum capacity after 3000 cycles with nearly
100.0% CE (Fig. S267). In stark contrast, the cell with 2 M
Zn(SA), presents only ~20 mA h g~ " after 1000 cycles with a poor
capacity retention of 5.4%, and that with 3 M Zn(OTf), also
shows a low retention rate of 29.8% after 2000 cycles. Under
a high current density of 10 A g%, the cell with 4 M Zn(SA),
delivers superior capacity retention of 89.7% even after 10 000
cycles, compared to 5.3% and 64.2% for 2 M Zn(SA), and 3 M
Zn(OTf), after only 2000 cycles (Fig. 5d). An ex situ study was
conducted to investigate the change in the V,05 cathode. After
long cycling in 4 M Zn(SA),, the cathode clearly exhibits
a diffraction peak at ~7.36° (corresponding to a slightly reduced
(001) interlayer spacing of 12.0 A compared to that of 14.1 A
calculated from the peak at ~6.28° for the pristine state)
(Fig. 5e), indicating the good retention of the layered structure
of V,0s. In contrast, the cathodes in 2 M Zn(SA), and 3 M
Zn(OTf), do not retain their original layered structure, but
instead exhibit a phase change to zinc vanadate (ZVO, Zn3V,-
0,(OH),-2H,0) (~12.15° for (001)),”* leading to significant
capacity decay. FTIR spectra (Fig. S27 and Table S51) confirmed
that the cathode cycled in 4 M Zn(SA), preserves the vibrational
characteristics of the VOBV stretching (453 cm™') and top VOA
in-plane stretching (987 cm™') with reference to the original
V,05.”” Based on the above, the superior cycling stability of

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc00364d

Open Access Article. Published on 13 March 2025. Downloaded on 11/24/2025 3:43:38 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Edge Article Chemical Science
a b c
600 —~2
o4 @0.1MV s = ‘c | 4M Zn(SA), | /
o ] o 0.1 N Vi
S %02 0.2 = 1A /
o 52 < 00t 05 4 N |\ /// //
~ el > = =
T 00 = >
[} — G 2001 , 4M Zn(SA)2 ..... .
i — (0] 2 —
o2 N awzom,| & {1 MZnOT, 3 —
: ; | oM Zn(SA),| © L, 2M Zn(SA), Unit: A g’ =, 10, 5,2,1,0.5,0.2,0.1A g"
0.0 0.4 08 12 16 0 10 20 30 0 > 0 100 200 300 400 500
Potential (V v.s. Zn/Zn?*) Cycle number Capacity (mAh g)
d 600
= . = L 100
o | @10Ag" L m
é 400 * 0
= 4M Zn(SA), Retention rate: 89.7% 8. Q
= R 3 0
> A 0o 3
Gaofem— 3M Zn(OT), =5
Q \ £
8 N— 2M Zn(SA),
° 2000 4000 6000 8000 10000
Cycle number
e o A f g
. 600 o e
Cycled in 3M Zn(OTf),| ~ ] R 1008) Ty — . L 100
=~ ; g e % g
= Jk' _? o © g &
S Cycled in 2M Zn(SA), < 400 g_ gzoo- a3 o
ot dyrbomtorm et dos? ShepntrAirr s s e s & o £
B E |le— 0 = = 50
B Cycled in 4M Zn(SA), > 50 m > i 08 3
S J S 200 =R E4001 ~
i 26
= Origin V,0 © N/P ratio~1.25 S 4M Zn(SA), gel =~
LA 2Us S 3 8 (SA)2 9
8 12 16 20 %0 2 40 60 80 100 = ) 500 1000

2Theta (deg)

Cycle number

Cycle number

Fig. 5 Performance of ZMB cells. (a) CV curves of the V,Os/Zn cells with Zn(SA), and Zn(OTf), electrolytes at 0.1 mV s~ in which two redox
pairs, e.g., 0.63/0.54 and 1.04/0.97 in 4 M Zn(SA),, can be attributed to H*/Zn?* insertion/desertion in mixed valence state V>05.227° (b) Rate
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t 1A g% which show the presence of crystalline phases of V,Os (O) and

ZVO (A). (f) Cycling of the full cell at 1 A g~* with an N/P ratio of ~1.25. (g) Pouch cell with the gel electrolyte cycled at 1 Ag™.

V,05/Zn with 4 M Zn(SA), could be attributed to the following.
The electrochemical interface constructed by 4 M Zn(SA), favors
uniform Zn deposition, promotes exposure of the electro-
chemically stable Zn (002) facets, and depresses the water
activity and surface corrosion. Further, the uniform ion-
conducting anion-induced SEI facilitates interfacial reactions
compared to its OTf counterpart during cycling. It thereby
enhances the reversibility of Zn stripping/plating at high CEs.
Together with the mildly acidic environment (pH of 4 M
Zn(SA),: ~3.4), it shifts the chemical equilibrium of V,05 +
3H,0 < 2VO,(OH),” + 2H" toward the stabilization of V,0s,”
where an organic-type surface layer formed on V,05 with
sulfonate groups (Fig. S27 and S287) could effectively conduct
cations, favoring the interfacial kinetics.”

Based on the above merits, a full cell with an N/P ratio of
~1.25:1 (i.e., DODy, of 80%) was assembled using the Zn
deposited by the Zn(SA), electrolyte, and showed steady cycling
at 1 A g~ with a retention rate of ~100% (Fig. 5f). To further
extend the proposed electrochemical interface in ZMBs, 4 M

© 2025 The Author(s). Published by the Royal Society of Chemistry

Zn(SA),@polyacrylamide (PAAm) gel was adopted as an elec-
trolyte via in situ polymerization, and greater enhancement of
the dielectric properties was observed for the Zn(SA),@PAAmM
gel (Fig. 1d). In terms of Zn deposition, the switch to the 3D
mode can be further sped up to 152 s (Fig. 3c). The Zn(SA),®@-
PAAm gel provides a DOD of ~85% at 50 mA cm > and
50 mA h cm 2, with a lifespan of over 400 h (Fig. S291). A pouch
cell for the gel electrolyte was then fabricated, which showed
a promising retention rate of 96.2% at 1 A g~ ' (Fig. 5g). The
scalability and cost effectiveness were further estimated to
demonstrate its potential application (Table S61). The above
demonstration verifies the importance of constructing a high-
dielectric water-deficient interface for regulating the interface
reactions in aqueous rechargeable batteries.

Conclusion

Based on the intercorrelated intrinsic properties of anions for
aqueous zinc electrolytes, a high-dielectric water-deficient

Chem. Sci., 2025, 16, 6918-6929 | 6925
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electrolyte-Zn interface was constructed using an anion that
combines polarizability and H-bond tuning ability; specifically,
the representative anion sulfamate was selected. The concen-
tration dependence of the physicochemical properties of
Zn(SA), aqueous electrolytes was correlated with the solvation
structure, which effectively tunes the H-bond characteristics as
well as the transport behavior. The SA™ anion-derived interface
promotes a fast switch from the 2D to the 3D nucleation mode
and achieves uniform Zn deposition with favorable (002) texture
formation, whose stability was verified using in situ Raman
spectroscopy. The constructed electrochemical interface facili-
tates highly stable Zn stripping/plating, e.g., at 10 mA cm > and
10 mA h cm ™2, and the in situ formation of an anion-involved
SEI was unveiled based on electrochemically stable SA™ on the
interface. Furthermore, the electrochemical interface enables
the construction of a V,05/Zn cell with ultra-stable long-term
cycling, e.g., 10000 cycles at 10 A g ', and its role in stabi-
lizing the V,05 cathode is revealed. The concept of a high-
dielectric interface was extended to a gel electrolyte, the use of
which achieved high utilization of Zn in a symmetric cell (DOD
~85%) and a promising cycling stability of 96.2% at 1 A g~ " in
a pouch cell. Hence, the proposed high-dielectric water-
deficient interface provides a regulation platform for the
promising use of metallic Zn anodes, which also provides
guidelines for novel electrolyte design in emerging battery
systems.
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