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Iron-catalyzed three-component 1,2-
azidoalkylation of conjugated dienes via activation
of aliphatic C—H bondsf

Zhen-Yao Dai, Chenxi Lin, Derek B. Hu and Jennifer M. Schomaker {2 *

Azidoalkyation is an efficient strategy for the conversion of unsaturated precursors into nitrogen-containing
structural motifs. Herein, we describe a convenient and highly regioselective iron-catalyzed 1,2-
azidoalkylation of 1,3-dienes that employs TMSNsz as a coupling partner with hydrocarbons that bear
diverse C—H bonds. This chemistry is achieved through the direct functionalization of strong C(sp®)—H
bonds and is facilitated by a combination of hydrogen atom transfer (HAT) and iron catalysis. Notably,
the protocol operates with catalyst loadings as low as 0.2 mol% and furnishes access to versatile B-
unsaturated azido products with high levels of site-, regio-, and stereoselectivities. Mechanistic studies
suggest that the reaction proceeds via a radical pathway; depending on the electronic properties of the
diene, the allylic radical intermediate may engage through either group transfer or a single electron

rsc.li/chemical-science oxidation process.

Introduction

The selective transformation of feedstock chemicals into value-
added molecules is a key objective of modern synthetic chem-
istry, where the development of new methods offers significant
potential to simplify synthetic routes and modify complex
molecules through later-stage functionalization. Conjugated
dienes are a readily available class of synthetic precursors that
have emerged as a versatile platform for the efficient prepara-
tion of more elaborate building blocks." Over the past few
decades, extensive research has focused on transition metal-
catalyzed difunctionalizations of 1,3-dienes.>* This process
typically involves the generation of a metal-carbon species,
followed by migratory insertion to form an allyl metal inter-
mediate (Scheme 1A).°*® The use of dienes as substrates intro-
duces additional challenges that include the high reactivity of
allylic intermediates generated from azidation of 1,3-dienes, as
well as control over the site-, regio-, and Z/E-selectivities. Addi-
tionally, side reactions such as polymerization can further
reduce the efficiency of the reaction. In prior work, we devel-
oped iron-catalyzed site- and regioselective 1,2-azidoamidations
of 1,3-dienes, utilizing N-fluorobenzenesulfonimide (NFSI) as
a dual oxidant and radical precursor to furnish versatile
precursors to 1,2-diamines (Scheme 1B).*

The majority of the current methodologies for the carboa-

zidation of alkenes require pre-functionalized radical

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
53706, USA. E-mail: schomakerj@chem.wisc.edu

+ Electronic  supplementary
https://doi.org/10.1039/d55c¢00307¢

information  (ESI) available. See DOI:

6336 | Chem. Sci, 2025, 16, 6336-6344

precursors, such as alkyl halides, alkyl sulfonyl chlorides, or
Togni-type reagents; this need adds additional steps and
reduces the overall efficiency of the process (Scheme 1C).>**”
The C(sp®)-H bonds of hydrocarbons are abundant chemical
feedstocks, but display relatively high bond dissociation ener-
gies (BDEs) and low bond polarity, challenges that must be
overcome to use them as radical precursors.?®>' Therefore, the
development of carboazidation approaches that can directly
activate a wide variety of simple hydrocarbons is highly desir-
able. In this context, hydrogen atom transfer (HAT) is an
appealing strategy for the homolytic cleavage of diverse C(sp®)-
H bonds.***”

Organic azides are an important class of molecules that are
present in many natural products and bioactive molecules; in
addition, the azide is a highly versatile handle for subsequent
organic transformations.**** The Luo** and Nishihara groups*
reported the azidoalkylation of terminal styrenes using Fe or Cu
catalysts, respectively; however, the C-H partners were limited
to cycloalkanes, chloroalkanes, or cyclic ethers. More recently,
Feng and coworkers described the asymmetric azidoalkylation
of activated alkenes, but substrates were restricted to o-aryl-
substituted aryl enones.** Although these reports advanced
the state-of-the-art,>>>**>*” carboazidations of 1,3-dienes via
direct C-H activation is still underdeveloped, particularly in
applications to more complex molecular scaffolds. There are
only a few reported examples where the hydrocarbon coupling
partner is limited to dichloromethane,* aldehydes*®** and
acetonitrile.>®

We envisioned that combining azidation with an HAT
process that is compatible with diverse hydrocarbon coupling
partners could provide efficient carboazidation of 1,3-dienes to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A. Transition metal-catalyzed difunctionalization of 1,3-dienes
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B. Our previous work: site- and regioselective azidoamination of 1,3-dienes
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Scheme 1 Radical azido-difunctionalization of alkenes and 1,3-dienes.

furnish allylic azides as useful precursors to amine building
blocks for syntheses of bioactive and pharmaceutically relevant
compounds (Scheme 1D).>*>*%4! Herein, we describe the 1,2-
azidoalkylation of diverse 1,3-dienes employing a broad array of
inexpensive hydrocarbon chemical feedstocks. The chemistry
proceeds through the direct and selective activation of the
aliphatic C-H bonds and merges HAT with iron-catalyzed azi-
dation. The reaction mechanism depends on the electronic
features of the 1,3-diene precursor and proceeds via a single-
electron transfer/HAT/radical addition through either group
transfer or a single-electron oxidation process to construct the
new C-C bond.

Results and discussion

Our study of the three-component azidoalkylation reaction
commenced using 1-phenyl-1,3-butadiene 1a as the model
substrate, toluene as both the radical precursor and the solvent,
di-tert-butyl peroxide (DTBP) as an oxidant and Fe(OTf), as the
catalyst. We found that the use of only a 0.5 mol% loading of the
catalyst, coupled with vigorous stirring of the reaction mixture
at 110 °C under nitrogen for 16 h, resulted in the desired adduct

© 2025 The Author(s). Published by the Royal Society of Chemistry

single electron
oxidation

1 in a yield of 70% (Table 1, entry 1). Next, different catalyst
loadings were explored; results indicated that increasing the
amount of catalyst increased the formation of unwanted dia-
zidation products, while reducing the loading gave diminished
reactivity (entries 2-5). A variety of other iron salts were inves-
tigated (entries 6-11); however, Fe(OTf), proved to be the
optimal catalyst. Control experiments underscored the neces-
sity for both the iron salt and heat for the reaction to proceed
(entries 12 and 13). Furthermore, substituting DTBP with either
tert-butylperoxybenzoate (TBPB) or tert-butylhydroperoxide
(TBHP) resulted in no detectable amount of 1,2-azido benzyla-
tion product 1 (entries 13, 14).

With the optimal reaction conditions in hand, the scope of
the radical azidoalkylation reaction was investigated by evalu-
ating an array of 1,3-dienes, as shown in Table 2. First, diverse 1-
phenyl-1,3-butadienes, bearing both electron-donating and
electron-withdrawing substituents at the para-, meta-, or ortho-
positions of the phenyl group, were explored and found to be
suitable substrates in this protocol. The corresponding azi-
doalkylation products 3-19 were obtained in good yields with
high levels of regio-, site- and stereocontrol, largely favoring 1,2-
over 1,4-addition and selectively installing the azide at the more
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Table 1 Optimization of reaction conditions®

N3
Fe(OTf); (0.5 mol %)
TMSN; (2.5 equiv.) Ph/\/\/ Bn
DTBP (2.5 equiv.) 1 +
PhM
PhMe (0.05 M) N,
1a 110°C, 20 h o AN
2
Entry Variation from standard conditions yield” (1/2)/%

1 None 70/<5
2 1 mol% of Fe(OTf), 53/10
3 2 mol% of Fe(OTf), 35/30
4 0.2 mol% of Fe(OTf), 62/<5
5 0.1 mol% of Fe(OTf), 24/<5
6 FeCl, instead of Fe(OTf), 21/<5
7 FeBr, instead of Fe(OTf), 41/<5
8 FeSO, instead of Fe(OTf), 20/<5
9 FeCl; instead of Fe(OTf), 44/<5
10 Fe(acac); instead of Fe(OTf), 45/<5
11 Fe(OTf); instead of Fe(OTf), 58/12

12 w/o Fe(OTf), <5

13 Conducted at room temperature <5

14 TBPB instead of DTBP <5

15 TBHP instead of DTBP <5
(0}

(0]
(ON J< 3
X o X OH >rO\O)J\Ph

DTBP TBHP TBPB

“ Reaction conditions: 1 (0.10 mmol), TMSN; (0.25 mmol), DTBP (0.25
mmol), Fe(OTf), (0.5 mol%), toluene (2 mL), 20 h, under N,.
b Determined by 'H NMR analysis using 1,3,5-triacetylbenzene as an
internal standard.

substituted C3 carbon of the diene. In general, electron-rich and
electron-neutral 1-arylsubstituted dienes tended to give higher
yields (3-7) as compared to those bearing electron-poor aryl
substituents (8-14). Dienes bearing pharmaceutically important
heteroaryl groups that include naphthalene, indole, benzofuran
and thiophene effectively furnished the target azides 20-23 in
moderate yields. Notably, introducing an additional alkyl
substituent on the C1, C2 or C3 position of the 1-phenyl-1,3-
butadiene gave smooth conversion to the corresponding prod-
ucts 24-26 in moderate-to-good yields and E/Z selectivity. The
non-terminal 1,3-diene 27a was also tolerated, delivering the
corresponding adduct 27 in 36% yield and in a 1:1.1 diaste-
reomeric ratio (dr). Additionally, alkyl-substituted 1,3-butadi-
enes were effective in the azidoalkylation, affording the desired
products 28 in 63% yield and 29 in 39% yield with 1:1.2 site-
selectivity, respectively. Finally, 1,3-dienes tethered to bioac-
tive molecules, including menthol, borneol, ibuprofen, citro-
nellol, gemfibrozil, cholesterol and tocopherol, all reacted
smoothly in the three-component coupling to deliver the target
products 30-36 in moderate-to-good yield and excellent Z/E
selectivities, showcasing the utility of this chemistry in more
complex molecule settings.
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The scope of aliphatic C-H coupling partners was examined
next with a series of substituted 1-methylarenes (Table 3).
Electron-donating and electron-withdrawing substituents at the
para position of the phenyl group were well-tolerated to deliver
the azides 37-46 with moderate-to-good yields. Compared with
the C-H bond located o to oxygen, the benzylic position of 4-
methylanisole proved more reactive to furnish 39 in 46% yield.
In the case of 4-methylcumene, a 31% yield and 1:1.2 rr of 46
was observed. When substituents on the phenyl group were
moved from the p- to m- or o-positions, the corresponding
products 47-52 were afforded in good yield. A 3-methyl thio-
phene served as an alkylating agent to afford the heteroarene
product 53. Moreover, 2,3-dimethylbutane preferentially reac-
ted at the tertiary C-H bonds to furnish 54 in 54% yield with
a6:1rrandin9:1 site-selectivity. Cycloalkanes of varying ring
sizes (5-to-8 carbons) proceeded smoothly to provide the cor-
responding products 55-58 in moderate-to-good yields. Addi-
tionally, isopropyl ether, anisole and methyl tert-butyl ether
displayed a preference for the o-oxy alkylated products 59-61.
N,N-dimethylamide gave a low yield of 62, while a thiol ether
63a and an acetal 64a gave 63-64 in moderate yields. Unfortu-
nately, the use of methanol as the source of the carbon-centered
radical gave 65 in low yield. Both acetone and acetonitrile were
capable of serving as the radical coupling partner to furnish the
corresponding azides 66 and 67. The tertiary C-H bonds of
methyl isobutyrate engaged the diene to furnish azide 68 in 66%
yield, with a 6 : 1 rr and in 20 : 1 site-selectivity. Notably, the C-H
bond of an aldehyde group in 69a and 70a could be cleaved and
added to the terminal carbon of the 1,3-diene to give the azi-
docarbonylation products 69 and 70 in moderate yields.
However, alkyl aldehydes or formate resulted in decarbon-
ylation and decarboxylation to yield 71 and 72.

The synthetic utility of the azidoalkylation chemistry was
demonstrated by carrying out selected post-functionalizations
of azide 3 (Scheme 2). The reaction of 3a was conducted on
a larger scale employing slightly adjusted conditions to furnish
3in 76% yield. Treatment of the azide 3 with P(OEt); yielded the
phosphoramide 73. Compound 3 was readily reduced using
PPh;/H,0 and subjected to amidation to give 74, followed by
subsequent ring-closing metathesis with Grubbs II at low
concentrations to generate the target lactam 75. The azide was
readily transformed to the primary amine 76 via reduction of 3
with Pd(OH),/C and H, while a copper-catalyzed Huisgen
cycloaddition between azide 3 and phenylacetylene delivered
the corresponding triazole 77 in a 93% yield. Treatment of the
azides 66 and 68 with PPh;/H,O furnished the subsequent
imidization product 78 and lactam 79 in excellent yields of 92%
and 98%, respectively.

To gain additional insights into the mechanism of this diene
azidoalkylation reaction, we conducted a series of mechanistic
probe experiments. The addition of 2,2,6,6-tetramethyl-1-
piperidinyloxyl (TEMPO) to the reaction of 3a under the stan-
dard conditions completely inhibited the formation of the
desired product 3. The TEMPO-trapped adduct 81 was detected
by high-resolution mass spectrometry, supporting the inter-
mediacy of a benzylic radical likely generated from HAT from
toluene by the tert-butoxyl radical (Scheme 3a, reaction 1).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fe(OTf), (0.5 mol %)
TMSN; (2.5 equiv.)

R
! N
S/ DTBP (2.5 equiv. R ™3
(Het)Ar/\/w““\ +  TMSN, (2.5 equiv) A B
3036 PhMe (0.05 M) (Het)Ar
a-3ba 110°C, 16 h 3-36
R R
R OMe 3 80% yield® OAc 8 45% yield pinB
\©\/\(\ Me 4 69% yield” — OCF3 9 63% yield P
N, B £ 5 78%yield Ne Bn COEt 10 51% yield | Bn
Cl 6 61% yield CF; 11 49% yield 13 37% yield 3
Br 7 72% yield SCF; 12 52% yield
R
R
X = R R
OMe 15 60% yield®
7 = o = Me 18 52% yield
Bn F 16 48% yield Bn E 19 49% vield
N N ) N b yiel
14 40% yield 3 3 cl 17 58% yield 3
BOC\N % Ph
=
S Bn = Bn
e Ao o ; s
Bn Bn 3 e 3
N3 N3
20 46% yield 21 45% yield 22 38% yield 23 44% yield 24 42% yield
3:1E/Z
Me
PhN ph_~¢ Yo Ph = CsHy A
Bn \/\1/\Bn Pho _~ & \WBn \/\ABn
N3 N3 N3 Ns N3
25 55% yield ) 27 36% yield . 29 39% yield
; 26 64% yield ‘ 28 63% yield
81EZ oY 1:1.0dr site-selectivity® = 1.2:1

) : o :
N®) Bn 7 0 Bn Bn o Bn
AL = : = 0 = =
N3 N3 N3 | Ns

30, from menthol
50% yield

34, from gemfibrozil
50% yield

31, from broneol
41% yield

35, from cholesterol
45% yield N3

32, from ibuprofen
61% yield

33, from citronellol
55% yield

=

N3
36, from tocopherol
39% yield

“ Unless indicated, reactions were run with the 1,3-diene (0.1 mmol), TMSN; 2 (0.25 mmol), DTBP (0.25 mmol), Fe(OTf), (0.0005 mmol), PhMe (2
mL), 110 °C, under N, 16 h. 0.2 mol% of Fe(OTf), was used. ¢ Ratio of 1,2- and 1,4-addition.

Notably, when an electron-donating group (EDG) was present
on the C1 phenyl ring in 3a, the allylic radical-trapped product
80a was not observed (Scheme 3a, reaction 1). However, with the
introduction of an electron-withdrawing group (EWG) to the

© 2025 The Author(s). Published by the Royal Society of Chemistry

phenyl ring of 10a, 80b was detect

suggested by these experiments,
allylic radical has a longer lifetime as compared to the more
electron-rich allylic radical, indicating that a dual mechanistic

ed (Scheme 3a, reaction 2). As
the more electron-deficient

Chem. Sci., 2025, 16, 6336-6344 | 6339
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Table 3 Exploring the scope of aliphatic C—H coupling partners in the azidoalkylation of 3a“

Fe(OTf), (0.2 mol %)
TMSN; (2.5 equiv.) N,

N B
PMPT XXy + R-H DTBP (2.5 equiv.) R
3a 110°C, 16 h
PMP = p-methoxyphenyl 37-72
R R N; a
N3 Me 37 74% yield N; ; P

. ) e “ 42 55%yield M
PMP Bu 38 55%yield pyp Ac 43 31% yield .
OMe 39 46% yield pree 46 31% yield
R ¢l 40 56% yield R CN 44 36% yield B =1.2:1

Br 41 43% yield® CF; 45 46% yield

N3
N N F N N
« 3 “ : “ 3 PMPT N « :
PMP PMP/\/\/\© PMP/\/\/\©/ PMP/\/\/:(:(
47 72% yield 48 46% yield 49 61% yield 50 68% yield 51 60% yield®

N; N3 B N N
X 3 3
pMPA\/\/\Ej/CI PMPW PMPM/ PMp/\/\/O PMP/\/\/O
S

54 54% yield?
52 55% yield 53 55% yield o = 6:1, site-selectivity® = 9:1 55 57% yield® 56 59% yield”

Nt/@ /\JS\/O N I\ /\M J\
SV SV PMP/\)\/\OfBu PMP/\)\/\OPh PMPT 0

61 35% yield®

57 48% yield? 58 60% yield® 59 31% yield® 60 45% yield site-selectivity® = 20:1
N, 0
A A . "ls N3 O’Q « N3 N3 /\/"t)cN
PMP Nig AN AL AN
| PMP SPh pyp XX o PMP OH pup XX PMP
62 16% yield? 63 65% yield? 64 44% yield 65 15% yield 66 31% yield 67 26% yield

N; 5 N, O
PMPM\%(O\ A N; O Ns N;
PMP N w ~ o
0 | PMP Ph PMP PMP

68 66% yield® 69 34% yield® 70 53% yield? 71 59% yield” 72 36% yield
o} = 6:1, site-selectivity® = 20:1 from iso-butyl aldehyde site-selectivity® = 13:1
from tert-butyl formate

“ Unless indicated, reactions were run with 1,3-diene (0.1 mmol), TMSN; (0.25 mmol), DTBP (0.25 mmol), Fe(OTf), (0.0002 mmol), R-H (2 mL),
110 °C, under N,, 16 h. * R-H/PhH = 1/1 (2 mL) as solvent.  R-H/MeCN = 1/1 (2 mL) as solvent. ¢ 10 equiv. of R-H, PhH (2 mL) as solvent.
¢ Ratio of 1,2- and 1,4-addition.

pathway might exist in this reaction. The reaction of the radical In addition, a kinetic isotope effect experiment clearly showed
clock 82 also supported the existence of a radical pathway, as that such an effect was present, as a KIE of 3.03 (ky/kp) was
the ring-opened 83 was obtained in 34% yield in a 16:1 E:Z observed for the reaction of diene 1a in toluene and toluene-dg
ratio, suggesting that the in situ-generated cyclopropylcarbinyl (Scheme 3c), suggesting that the aliphatic C-H bond cleavage
radical undergoes fast ring-opening to give an allylic radical, might be involved in the rate-determining step of the reaction.
which is then rapidly trapped by the azide radical (Scheme 3b). We also conducted parallel KIE experiments and observed a KIE

6340 | Chem. Sci, 2025, 16, 6336-6344 © 2025 The Author(s). Published by the Royal Society of Chemistry
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1) PPhs, THF/H,O o
mn- T (OB 1,20 h
A PIOEY;
PMP™ XY

. DCM, rt, 20 h 2) A~ CoH
73, 81% yield DMAP. EDCI
DCM, rt, 2 h

Fe(OTf), (0.2 mol %)
TMSN3 2.5 equiv.

X DTBP 2.5 equiv.
A
/©/\/\ PhMe (2 mL) PMP/\/\;\/Bn NH
e m
Meo 332“. 110°C, 16 h 76% yield o 78
59% yield
— PMP._~
i P N A EOTIN s
2 o N
e MeOH, tt, 16 h 2:1:0.2 'BUOH:H,O:DCM \ N
76, 92% yield el It :1:0.2 'BUOH:H,0: . =
t.20h 93% yield
PPh N N; oo 0
il — e e QMe : HN
PMp THF/H,0 = - THFH,0 Lo
m,20 h 66 © ,20h

78, 92% yield

Scheme 2 Derivatizations of the azidoalkylation product 3.

of 2.22 (ku/kp) (see the ESIt for details), also supporting the
likelihood that C-H bond cleavage is involved in the rate-
determining step of the reaction. Finally, we conducted

a Reaction in the presence of TEMPO

Fe(OTf), (0.5 mol %)
TMSN; (2.5 equiv.)

79, 98% yield

a series of Hammett studies (Scheme 3d). The negative slope of
the Hammett plot indicated the possibility that allylic cation
intermediates might be generated during the reaction.

N3

DTBP (2.5 equiv.) \ Bn -Bn 81
) /@/\/\ (1.0 equiv.) * X Bn +
MO PhMe (0.05 M) MeO MeO 80a detected by HRMS
110°C, 8 h td 3t red not detected [M+H]* 248.2005
3a not detecte
Fe(OTf), (0.5 mol %)
TMSN; (2.5 equiv.) N3
DTBP (2.5 equiv.) N Bn . X Bn . _Bn
AN f 81
@ /©/\/\ (1.0 equiv.)
- 80b
E10,C PhMe (0.05 M) Et0,C EtO,C

10 detected by HRMS

detected by HRMS

110 © h
10a 0°c,8 not detected [M+H]* 450.3000 [M+H]* 248.2005
b Radical clock experiment d Hammett studies
_OMe 0.25
Fe(OTf), (0.5 mol %) Bn 02
TMSN3 (2.5 equiv)
; 2 X Ph
Ph/\“" DTBP (2.5 equiv) Ph 015
N3 -CO,Et
Ph PhMe (0.05 M) - o,
82 110°C, 8 h 83 Ve
34% vyield, 16:1 E/Z . 0.05 -OCF; _SCF,
° 0
-04 -0.2 0 0.2 0.4 06
¢ Kinetic isotope effect experiment 005
Fe(OTf), (0.5 mol %) o -F ~Br
toluene-dg ~ TMSN3 (2.5 equiv.) N3 )
PP NN 4 g _DTBP @5equv) pMp/\/\/B”(dﬁ -0.15 y = -06331x + 0.0085
an .
110°C 3(dy) , _al R2 = 09339
3a toluene ky/kp = 3.03 Aolog(kx/kH)

Scheme 3 Mechanistic studies.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fe'(OTh), RSy,
D
+
[Fe"(OTf),N4]
{1l
Fell(OTH,Ns Fe™(OTf)2N3
B B
path a path b
R \/\.'/‘\Ar

c \_/<N\

Scheme 4 Proposed catalytic cycle.

However, when electron-withdrawing groups (OCF;, CO,Et,
SCF;, CF;) were introduced on the aryl group of the substrates,
the expected negative trend was not observed (Scheme 3d),
indicating that electron-deficient 1,3-dienes likely proceed
through allylic radical intermediates, followed by a group
transfer process to generate the final products.

Based on our mechanistic studies, a plausible mechanism
for the Fe-catalyzed azidoalkylation of 1,3-dienes is proposed in
Scheme 4. First, a single-electron oxidation process occurs
through the reaction of the iron(u) trifluoromethanesulfonate
complex with DTBP to produce an oxidized iron species A and
a tert-butoxyl radical. Intermediate A then reacts with TMSN; to
produce the iron(m) azide species B. The tert-butoxyl radical
then selectively abstracts an H-atom from the coupling partner
to generate the alkyl radical R". This carbon-centered radical
may add to the terminal carbon atom of the 1,3-diene to
selectively generate the allylic radical C. This allylic radical
intermediate is subsequently captured by B. In pathway a,
electron-deficient dienes are more likely to be favored. A group
transfer process leads to the formation of the final product and
regenerates the active iron catalyst. In contrast, electron-rich
dienes are expected to proceed via pathway b, where a single-
electron transfer (SET) occurs first between the iron(m) azide
B and C, which is then followed by nucleophilic attack by the
azide species. In addition, the tert-butoxyl radical can poten-
tially abstract the TMS group from TMSN;, which leads to the
generation of a free azido radical (Nj). A similar process may
occur to furnish the undesired diazidation product from the
1,3-diene precursor, thereby reducing the overall conversion to
the desired azidoalkylation product.

Conclusion

In conclusion, we have described a practical iron-catalyzed
azidoalkylation of 1,3-dienes based on the direct and selective
abstraction of aliphatic C-H bonds enabled by a HAT process. A
wide array of commercially available hydrocarbons bearing
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diverse C-H bonds were employed in the coupling to provide
access to synthetically useful amines. Mechanistic studies
indicated that the electronic properties of the precursor 1,3-
dienes influence the mechanistic pathway of the trans-
formation, with reaction proceeding via either group transfer
for electron-deficient 1,3-dienes or sequential single-electron
transfer and nucleophilic attack for electron-rich 1,3-dienes to
furnish the azidoalkylation products.
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