Chemical Science ## **EDGE ARTICLE** View Article Online View Journal | View Issue Cite this: Chem. Sci., 2025, 16, 5967 dll publication charges for this article have been paid for by the Royal Society of Chemistry Received 2nd January 2025 Accepted 26th February 2025 DOI: 10.1039/d5sc00026b rsc.li/chemical-science # Photo-induced dehalogenative deuteration and elimination of alkyl halides enabled by phosphine-mediated halogen-atom transfer† Wei Shi,‡^{ab} Bin Guan,‡^{ab} Jian Tian,^b Chao Yang, ^b Lin Guo,^b Yating Zhao*^a and Wujiong Xia ^b*^{bc} Dehalogenative deuteration of organic halides is an efficient and straightforward method for incorporating deuterium atoms at specific locations within target molecules. However, utilizing organic halides in photoredox chemistry, particularly unactivated alkyl halides, presents challenges due to their low reduction potentials. In this work, we present a general and effective photoinduced dehalogenative deuteration method for a diverse array of alkyl halides, employing D_2O as an economical source of deuterium. The use of Cy_3P as a halogen-atom transfer reagent facilitates the dehalogenation of alkyl halides. This method demonstrates a broad scope, with over 70 examples, and shows excellent tolerance for various alkyl halides. The precise dehalogenation of complex alkyl halides highlights the potential of this protocol for late-stage dehalogenative deuteration of natural product derivatives and pharmaceutical compounds. Additionally, the dehalogenative elimination of unactivated alkyl halides can also be achieved by integrating photoredox and cobalt catalysis using the same halogen-atom transfer agents. #### Introduction Deuterium-labeled compounds play a significant role in organic synthesis and pharmaceutical chemistry.1 In particular, incorporating deuterium atoms into bioactive compounds can enhance the absorption, distribution, metabolism, and excretion properties of drug candidates while preserving their biopotency.² For example, deutetrabenazine deucravacitinib have been approved by FDA in succession over the past few years, and numerous deuterated drug candidates have entered clinical trials (Scheme 1a).³ Thus, their importance as medicinally privileged functionalities has driven the development of effective deuteration methods to access these deuterium-containing molecules. Among the current methods for synthesizing deuterium-containing compounds, direct hydrogen isotope (H/D) exchange is generally considered one of the most efficient and straightforward strategies.4 However, this methodology still faces significant limitations, such as low deuterium incorporation and unsatisfactory regioselectivity. Dehalogenative deuteration of organic halides represents a key alternative method for obtaining deuterated target compounds, as it allows for the incorporation of deuterium atoms at specific positions. Consequently, a range of environmentally friendly photocatalytic and organic electrochemical strategies have been explored for C–X/C–D exchange.⁵ Organic halides are important and versatile compounds, but their use in photoredox chemistry is limited by their highly negative reduction potentials ($E_{\rm red} \leq 2.0 \text{ V} \text{ vs. SCE}$ for unactivated alkyl iodides).6 In recent years, the development of halogen-atom transfer (XAT) processes has made significant strides in generating carbon radicals for synthetic chemistry.7 Within this framework, several innovative methods for cleaving carbon-halogen bonds have been focused on advancing dehalogenative deuteration through XAT pathways. For example, the Renaud group developed an excellent deuterative deiodination of alkyl iodides using Et₃B as the XAT reagent (Scheme 1b(i)).8 Leonori and Juliá demonstrated that strongly nucleophilic αaminoalkyl radicals could be designed as XAT reagents for dehalogenative deuteration reaction, thus expanding the scope beyond the previously limited alkyl iodides albeit with lower conversion rates (Scheme 1b(ii)).9 More recently, Lee et al. reported a thiyl radical-catalyzed deuterative debromination reaction of alkyl and aryl bromides using a stoichiometric amount of (TMS)3SiH as the XAT reagent (Scheme 1b(iii)).10 Despite the advantages demonstrated by these XAT-mediated transformations, the development of general and robust ^aCollege of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China. E-mail: liveagain@126.com ^bState Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China. E-mail: xiawj@hit.edu. cn ^cSchool of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China [†] Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5sc00026b $[\]ddagger$ These authors contributed equally to this work. Scheme 1 Dehalogenative deuteration *via* halogen atom transfer. (a) Several representative deuterated drugs. (b) Current status for deuteration of alkyl halides *via* XAT. (c) Application of phosphoranyl radicals in organic synthesis. (d) This work: phosphoranyl radical mediacted C(sp³)-halogen activation *via* XAT process. strategies for the dehalogenative deuteration of organic bromides or chlorides with novel XAT reagents remains an attractive and highly desirable goal. Recent advances in phosphine-mediated radical chemistry have shown that using phosphoranyl radicals via homolytic cleavage provides an efficient and straightforward route to access diverse radical species for further transformations. 11 With the advent of visible light catalysis, phosphoranyl radicals can be generated under mild conditions through radical addition or single-electron oxidation followed by nucleophilic addition (Scheme 1c). In this context, the application of phosphoranyl radicals for deoxygenation and desulfurization reactions via β-scission has been extensively investigated.¹² More recently, Doyle et al. achieved the homolytic cleavage of the P-N bond via α-scission to facilitate the hydroamination of olefins with primary sulfonamides or azoles.13 However, the synthetic application of phosphoranyl radicals through the XAT pathway with alkyl halides remains an intriguing frontier in contemporary research and is yet to be fully explored.14 The highly nucleophilic nature of phosphoranyl radicals¹⁵ may lead to kinetic polar effects that enhance the XAT process. Herein, we report an unprecedented photocatalytic deuterodehalogenation of unactivated alkyl halides using photoredox and thiol organocatalysis, with PCy_3 serving as the halogenabstracting reagent (Scheme 1d). Furthermore, the dehalogenative elimination of unactivated alkyl halides can also be achieved by integrating photoredox with cobalt catalysis using the same halogen-atom transfer agents. Notable features of this protocol include (1) novel C–X bond activation, (2) broad functional group tolerance (>70 examples), (3) D_2O as an economical deuterium source, and (4) late-stage deuteration of complex natural products and drug derivatives. #### Results and discussion Our study began with the optimization of photocatalytic deuterodehalogenation of 4-bromo-1-tosylpiperidine (1a) with D_2O . The optimized reaction conditions were successfully achieved by using PC1 (1 mol%) as a photocatalyst, 2,4,6-triisopropylbenzenethiol (HAT1, 10 mol%) as the co-catalyst for deuterium atom transfer,16 P1 (2.5 equiv.) as a halogen-atom transfer reagent, and $CH_3CN/D_2O(5:1, v/v)$ as the solvent under 455 nm light irradiation. Gratifyingly, the deuterated product 2a was obtained in 91% yield with 95% deuterium incorporation (Dinc.) using commercially inexpensive D2O as an ideal deuterium source (Table 1, entry 1). The use of tris(4-methoxyphenyl) phosphane (P2) and triphenylphosphine (P3) led to unsatisfying results (entries and addition. Table 1 Optimization studies^a | Entry | Variation | n of standard cor | nditions Yield ¹ | (%) D-inc. ^c (%) | |--|--|---|-----------------------------|-----------------------------| | 1 | None | | 91 | 95 | | 2 | P2 instead of P1 | | 25 | 90 | | 3 | P3 instead of P1 | | <5 | _ | | 4 | No P1 | | N.D. | _ | | 5 | HAT2 instead of HAT1 | | 62 | 94 | | 6 | HAT3 instead of HAT1 | | 81 | 91 | | 7 | HAT4 instead of HAT1 | | 88 | 87 | | 8 | PC2 instead of PC1 | | 79 | 93 | | 9 | PC3 instead of PC1 | | 12 | _ | | 10 | DMSO as solvent | | 41 | 83 | | 11 | THF | | 26 | 76 | | 12 | DMF | | 19 | 85 | | 13 | No light | | N.D. | _ | | 14 | No photocatalyst | | N.D. | _ | | 15 | No HAT1 | | 35 | 95 | | PC1: $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$
$Ir^{II}/*Ir^{III} = +1.21 \text{ V vs SCE}$ | | | \bigcirc | R | | PC2: $[Ir(dF(CF_3)ppy)_2(bpy)]PF_6$
$Ir^{II}/*Ir^{III} = +0.97 \text{ V vs SCE}$ | | | 00 | | | PCS | 3: $[Ir(dF(CF_3)pp)$
$Ir^{II}/*Ir^{III} = +1.6$ | y) ₂ (4,4'-dCF ₃ bpy)]PF ₆
5 V vs SCE | → P1 | P2, R = OMe
P3, R = H | | Y | SH | Si-SH | MeOOC SH | SH | | | HAT1 | HAT2 | HAT3 | HAT4 | ^a Reaction conditions: **1a** (0.20 mmol, 1.0 equiv.), **PC1** (0.002 mmol, 1 mol%), **P1** (0.50 mmol, 2.5 equiv.), **HAT1** (0.02 mmol, 10 mol%) in CH₃CN/D₂O (2.0 mL, v/v = 5:1, 0.1 M) at room temperature under an Ar atmosphere, 455 nm LEDs (10 W), 24 h. ^b Yields are of isolated products after chromatographic purification. ^c D-inc. determined by ¹H NMR. Ts = p-toluenesulfonyl, PC = photocatalyst, HAT = hydrogen atom transfer, D-inc. = deuterium incorporation, N.D. = not detected. deuterodehalogenation could not occur in the absence of the phosphine mediator (entry 4), suggesting that the halogentransfer reagent was crucial for the success of the reaction. Other thiol co-catalysts were employed under the same conditions, and the reaction yield decreased to varying degrees, although D inc. remained at a high level (entries 6-7). Upon evaluating a selection of frequently used photocatalysts (see ESI, Table S2†), we found that photocatalysts with excited state oxidation potentials below that of PCy3 were ineffective for the reaction. Ir-based photocatalysts (PC2) were explored but provided no improvement over PC1 (entries 8). Furthermore, catalysts with higher oxidation potentials also led to decreased yields likely due to over-oxidation of the phosphoranyl radical (PC3). Moreover, optimization studies were carried out by screening a variety of solvents, such as DMSO, THF, and DMF, but they all provided unsatisfactory results (entries 10-12). Control experiments demonstrated that light irradiation and photocatalyst are both requisite for the desired transformation (entries 13 and 14), while the use of TRIP thiol significantly increased the yield (entry 15). #### Dehalogenative deuteration of alkyl halides Under the existing optimized conditions, we investigated the scope of deuterodehalogenation with respect to alkyl halides, as shown in Scheme 2. It is noteworthy to mention that the developed phosphoranyl radical assisted dehalogenation could overcome the limitation of the highly negative reduction potentials of alkyl halides, and thus a wide variety of unactivated secondary alkyl bromides were first investigated. In most cases, good vields, and high levels of D-incorporation of the products (73-91 yields, 89-97% D-inc.) were obtained. Cyclic bromides were found to be suitable C(sp³)-X substrates, which were smoothly converted into the desired deuterated (2a-2c) in 73-91% yields. Bromoalkanes containing two aromatic rings could also be applied to give (2d) in 87% yield (96% D-inc.). Different lengths of carbon chains were all well tolerated in our XAT strategy, and gave the products (2e-2g) in 79-91% yields. Several activated secondary alkyl bromides were also tested, providing the deuterated products (2h-2j) in good efficiency with moderate to high D-incorporation. Next, we turned our attention to more challenging unactivated primary alkyl bromides. A wide range of primary alkyl bromides bearing amide or ester moieties were amenable to our strategy, delivering the corresponding deuterated products (2k2o) in 63-81% yields with high deuterium incorporation (>90%). Besides, heterocyclic aromatics including pyridine and thiophene were also found to be competent substrates, giving the desired products 2p and 2q in 85% and 61% yields with high D-incorporation, respectively. Furthermore, other alkyl bromides, especially tertiary substrates that did not work well in previous studies,17 were found to be well compatible using our method and yielded the desired products (2r-2v) in satisfactory D-incorporation. Moreover, the use of activated primary alkyl bromides as substrates gave the corresponding deuterated products 2w and 2x in 82% and 72% yields, respectively. The dibromomethylene unit was then subjected to test the adaptability of our XAT method, furnishing the desired monodeuterated products 2y and 2z in good yields with excellent Dincorporation (both 99% D). Interestingly, alkyl chlorides at benzylic and tertiary alkyl positions also proved to be viable substrates (2aa and 2ab). To further demonstrate the practicality of the method, late-stage deuteration of complex molecules was conducted using our XAT strategy. The deuterodehalogenation of pharmaceutical derivatives including estrone (2ac), triclosan (2ad), parmenthol (2ae), and probenecid (2aj) was successfully achieved in 62–79% yield with 94–97% D-incorporation. The nonsteroidal analgesics or anti-inflammatory, such as ibuprofen (2af), naproxen (2ag), zaltoprofen (2ah), and nabumetone (2ai) can also be reacted smoothly in this protocol. In addition, amino acid (2ak) and glucose derivatives (2al) that widely exist in organisms were also effectively transformed into deuterated Scheme 2 Application of the XAT methodology in deuteration of alkyl halides. Reaction conditions: halides (0.20 mmol, 1.0 equiv.), PC1 (0.002 mmol, 1 mol%), P1 (0.50 mmol, 2.5 equiv.), HAT1 (0.02 mmol, 10 mol%) in CH₃CN/D₂O (2.0 mL, v/v = 5:1, 0.1 M) at room temperature under an Ar atmosphere, 455 nm LEDs (10 W), 24 h. Yields are of isolated products after chromatographic purification. PC = photocatalyst. HAT = hydrogen atom transfer. The D content was determined by 1 H NMR spectroscopy. a Time = 48 h. b Time = 72 h. **Edge Article Chemical Science** products in 75% and 65% yields. Furthermore, the generality and practicality of this strategy to tertiary bromides can be further extended to complex pharmaceuticals (2am and 2an). The incorporation of a deuterium atom to parent drugs and drug candidates can dramatically enhance the metabolism and pharmacokinetic properties, without altering their desired traits.18 Clofibrate is a lipid-lowering drug that is also effective in the treatment of neonatal jaundice. 19 Utilizing our strategy, deuterated clofibrate (2ao) was smoothly achieved from commercially available clofibric acid. #### Dehalogenative elimination of alkyl halides After successful validation of dehalogenative deuteration via our XAT strategy, we envisioned the synthesis of olefins based on a dual photoredox-cobalt catalytic cycle, using XAT mediated by phosphoranyl radicals as a blueprint for halide activation. We began our investigation by using alkyl bromide 1a as the model substrate under 455 nm light irradiation. After careful optimization (ESI, Table S6†), the use of PC1 (1 mol%) as the photocatalyst, Co(dmgH)₂(DMAP)Cl (Co-1, 10 mol%) as the commercially available cobaloxime, P1 (2.5 equiv.) as the XAT reagent, and CsF as the base in CH₃CN solvent under 455 nm light irradiation at room temperature produced the product 3a in 72% yield (Scheme 3). Subsequently, a wide range of terminal and symmetrical substrates were screened. N-Boc protected amines (3b and 3c) were all well compatible with the modified reaction conditions, furnishing the desired olefins in 75% and 81% yields, respectively. The use of (4-bromobutyl)benzene as the substrate generated the corresponding product 3d in moderate yield. Moreover, the influence of electronic properties of aryl ethers on the phenyl rings was investigated, revealing that electron-withdrawing groups (Cl, CF₃, CN, NO₂) or electrondonating groups (Me, OMe) were compatible and showed little Scheme 3 Application of the XAT methodology in β-elimination of alkyl halides. Reaction conditions: halides (0.20 mmol, 1.0 equiv.), PC1 (0.002 mmol, 1 mol%), P1 (0.50 mmol, 2.5 equiv.), Co-1 (0.02 mmol, 10 mol%), CsF (1.0 equiv.) in CH₃CN (0.1 M) at room temperature under an Ar atmosphere, 455 nm LEDs (10 W), 24 h. Yields are of isolated products after chromatographic purification. PC = photocatalyst. Ts = p-toluenesulfonyl. Boc = tert-butoxycarbonyl. effect on the reaction, giving products 3e-3k in 64-74% yields. Aryl esters are also suitable substrates, and could successfully generate the desired products 31-30 in 58-67% yields. Besides, heteroaromatic rings such as pyridine and quinoline all showed good compatibility with the reaction system, generating 3p and 3q in acceptable yields. Notably, the use of tertiary alkyl bromide exhibited remarkable regioselectivity, yielding the internal olefins (3r-3t) in 65-74% yields. In addition, late-stage modification of drug molecules is the basis for the evaluation of a practical protocol. Alkyl bromides derived from complex molecules, such as ibuprofen (3u) gemfibrozil (3v), naproxen $(3\mathbf{w})$, and thymol $(3\mathbf{x})$, provided the desired terminal olefins in 43-56% yields. Furthermore, iodoalkanes could also be Scheme 4 Mechanistic investigations. (a) Radical-trapping experiment. (b) Control experiment. (c) Studies of the photoredox catalytic cycle. (d) Radical clock experiment. (e) Reaction to confirm the source of the deuterium atom. (f) Plausible catalytic cycle of dehalogenative deuteration. (g) Plausible catalytic cycle of dehalogenative elimination. employed as viable substrates, and varied formation of the corresponding olefines was observed (3v-3ae). Next, in order to gain more insights into the reaction mechanism, we performed a series of mechanistic experiments. A Giese reaction was first conducted with 1a and ethyl acrylate, but no desired product 4 was afforded under condition A (Scheme 4a.1). Subsequently, the addition of the radical scavenger TEMPO (2,2,6,6-tetramethylpiperidinooxy) led to significant inhibition of the desired reaction, indicating possible radical mechanism involvement, and the trapping product 2a' was detected by HRMS analysis (Scheme 4a.2). The phosphoranyl radical intermediate can exhibit the reactivity of a 'free' hydrogen atom, which might be a suitable reagent to perform the XAT process.20 To experimentally validate the formation of a 'free' hydrogen atom from the phosphoranyl radical intermediate, tricyclohexylphosphane (PCy3)-mediated hydrogen evolution was investigated. To our delight, combined with PC1 as the photocatalyst and H₂O as the hydrogen source in acetonitrile under irradiation with blue LEDs, the generation of H₂ was experimentally verified in the solution phase. At the same time, tricyclohexylphosphine oxide was provided as the byproduct (Scheme 4b.1). Furthermore, to explore the importance of this PR₃-OH radical intermediate in the XAT process, we chose the dehalogenation of 4-bromo-1-tosylpiperidine 1a, using PCy3 as the XAT-agent precursor and 2,4,6-triisopropylbenzenethiol (HAT1)-H2O as the H-atom donor (Scheme 4b.2). The generation of the R₃P-OH radical intermediate occurred via photochemical or thermal modes through single electron transfer (SET) followed by deprotonation. The debromination product 2a' was obtained by the combination of PCy₃ and single electron oxidants (PC1, benzophenone, and $K_2S_2O_8$). When P1 was not involved in these cases, no product was observed, indicating that the PR₃-OH radical was an indispensable intermediate in the dehalogenation process. Cyclic Voltammetry (CV) experiments and analyses were carried out, and the potential of PCy3 was measured (half-wave potential $E_{1/2}(E^{+*}/E) = +0.86 \text{ V} \text{ vs.}$ saturated calomel electrode (SCE)) in MeCN. The photocatalyst PC1 $[E_{1/2}(*Ir^{III}/Ir^{II}) = + 1.21 \text{ V}]$ vs. SCE]21 has a higher oxidation potential to oxidize PCy3 (Scheme 4c.1). In addition, Stern-Volmer quenching studies were then conducted, which revealed that PCy3 quenches the photoexcited PC1 (Scheme 4c.2). α-Bromocyclopropane 1bo was chosen to be used as a radical clock, and the resulting ringopening product 5 was formed in 68% yield, which strongly supports the radical dehalogenation involved in this process (Scheme 4d). Finally, the deuterium labeling experiments conducted with D2O and MeCN-d3 as the potential deuterium source demonstrated that the deuterium atom should come from D₂O, and CH₃CN did not act as a hydrogen atom donor (Scheme 4e). This result indicated that the extra water has a great effect on the D-incorporation. Based on these experimental results and literature reports,²⁰ two feasible reaction mechanisms are separately proposed in Scheme 4. For the mechanism of dehalogenative deuteration of halides (Scheme 4f), we postulated that the photoexcited complex *[Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (*PC1, * $E_{\rm red}$ = +1.21 V *versus* SCE) oxidizes P1 to generate a radical cation intermediate (I), at the same time, IrIII was reduced to IrII species. This radical cation reacts with D₂O to form a radical cation intermediate (II), which, after subsequent deprotonation, furnishes the key Cy₃P-OD radical intermediate (III). This highly reactive radical cation undergoes XAT with 4-bromo-1-tosylpiperidine 1a, and the resulting nucleophilic alkyl radical (IV) can readily undergo HAT with 2,4,6-triisopropylbenzenethiol (HAT1, S-H BDE = 80kcal mol⁻¹)^{12d} to provide the deuterated product 2a and the ArS' radical intermediate (Ar = 2,4,6-triisopropylphenyl). Lastly, ArS' oxidizes IrII to ground-state IrIII to complete the photoredox cycle, and the generated ArS⁻ abstracts one deuteron from D₂O or radical intermediate (II) to restart the thiol catalysis. For the mechanism of dehalogenative elimination of alkyl halides (Scheme 4g), reductive quenching of a photoexcited complex *PC1 by P1 would generate a radical cation intermediate (I) and reduced Ir species. The intermediate (I) captures H2O in CH₃CN, followed by deprotonation in the presence of a base to produce the key radical intermediate (VI). At this point, the XAT process between intermediate (VI) and the alkyl halide (e.g., with 4-bromo-1-tosylpiperidine 1a) should generate the alkyl radical (IV), which can be captured by [Co(II)] species, leading to the [Co(III)]-alkyl intermediate (VII),22 then β-hydride elimination from (VII) would give the olefin product 3a and [Co(III)]-H species. Finally, [Co(III)]-H species react with H⁺ to evolve H₂ and deliver [Co(III)] species that can close the cobalt cycle by oxidizing IrII, meanwhile, IrII converts back to IrIII to complete the photoredox cycle. Alternatively, another mechanism based on the direct HAT of the [Co(II)] species with the alkyl radical (IV)23 may lead to the same result. #### Conclusions In summary, we have developed a photocatalytic, phosphine-mediated strategy for the dehalogenative deuteration of unactivated alkyl halides, utilizing D₂O as an inexpensive and safe deuterium source under mild conditions. This study demonstrates the effective conversion of a wide range of unactivated primary, secondary, and tertiary alkyl bromides and chlorides into deuterated products, achieving good to excellent yields and a high level of deuterium incorporation. Notably, the successful gram-scale experiments and late-stage deuteration of complex natural products and drug derivatives underscore the potential applicability of our method. Additionally, our C-X bond activation strategy allows for the dehalogenative elimination of unactivated alkyl halides. We believe this protocol offers an efficient tool for photochemical transformations. # Data availability All data supporting the findings including the experimental procedures and characterization of compounds are available within the article and its ESI.† #### Author contributions W. S. and L. G. conceived the concept. W. S. and B. G. performed and analyzed the experiments. J. T. and C. Y. contributed to the data analysis. W. S. and L. G. wrote the manuscript. Y. Z. and W. X. supervised and directed the project. #### Conflicts of interest There are no conflicts to declare. ### Acknowledgements We are grateful for the financial support from the National Natural Science Foundation of China (no. 22471049), and the Science and Technology Plan of Shenzhen (no. JCYJ20230807094408017, JCYJ20220531095016036, and GXWD20220817131550002). W. X. is grateful for the Talent Recruitment Project of Guangdong (no. 2019QN01L753). The project was also supported by the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University. #### References - 1 (a) M. Miyashita, M. Sasaki, I. Hattori, M. Sakai and K. Tanino, Total synthesis of norzoanthamine, Science, 2004, 305, 495-499; (b) K. W. Quasdorf, A. D. Huters, M. W. Lodewyk, D. J. Tantillo and N. K. Garg, Total synthesis of oxidized welwitindolinones and (-)-N methylwelwitindolinone C isonitrile, J. Am. Chem. Soc., 2012, **134**, 1396–1399; (c) M. H. Emmert, J. B. Gary, J. M. Villalobos and M. S. Sanford, Platinum and palladium complexes containing cationic ligands as catalysts for arene H/D exchange and oxidation, Angew. Chem., Int. Ed., 2010, 49, 5884-5886; (d) A. Katsnelson, Heavy drugs draw heavy interest from pharma backers, Nat. Med., 2013, 19, 656; (e) C. S. Elmore and R. A. Bragg, Isotope chemistry; a useful tool in the drug discovery arsenal, Bioorg. Med. Chem. Lett., 2015, 25, 167-171. - 2 T. Pirali, M. Serafini, S. Cargnin and A. A. Genazzani, Applications of deuterium in medicinal chemistry, *J. Med. Chem.*, 2019, **62**, 5276–5297. - 3 (a) S. M. Hoy, Deucravacitinib: First Approval, *Drugs*, 2022, **82**, 1671–1679; (b) C. Schmidt, First deuterated drug approved, *Nat. Biotechnol.*, 2017, **35**, 493–494. - 4 (a) J. Atzrodt, V. Derdau, T. Fey and J. Zimmermann, The renaissance of H/D exchange, *Angew. Chem., Int. Ed.*, 2007, 46, 7744–7765; (b) M. H. Emmert, J. B. Gary, J. M. Villalobos and M. S. Sanford, Platinum and palladium complexes containing cationic ligands as catalysts for arene H/D exchange and oxidation, *Angew. Chem., Int. Ed.*, 2010, 49, 5884–5886; (c) S. Ma, G. Villa, P. S. Thuy-Boun, A. Homs and J.-Q. Yu, Palladium-catalyzed ortho-Selective C-H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles, *Angew. Chem., Int. Ed.*, 2014, 53, 734–737. - 5 (a) R. Zhou, L. Ma, X. Yang and J. Cao, Recent advances in visible-light photocatalytic deuteration reactions, *Org. Chem. Front.*, 2021, 8, 426–444; (b) C.-L. Ji, X. Zhai, Q.-Y. Fang, C. Zhu, J. Han and J. Xie, Photoinduced - activation of alkyl chlorides, Chem. Soc. Rev., 2023, 52, 6120-6138; (c) T. Shao, Y. Li, N. Ma, C. Li, G. Chai, X. Zhao, B. Qiao and Z. Jiang, Photoredox-catalyzed enantioselective α-deuteration of azaarenes with D₂O, iScience, 2019, 16, 410-419; (d) Y. Li, Z. Ye, Y. M. Lin, Y. Liu, Y. Zhang and L. Gong, Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides, Nat. Commun., 2021, 12, 2894; (e) P. Li, C. Guo, S. Wang, D. Ma, T. Feng, Y. Wang and Y. Qiu, Facile and general electrochemical deuteration of unactivated alkyl halides, Nat. Commun., 2022, 13, 3774; (f) D. Wood and S. Lin, Deuterodehalogenation under net reductive or redoxneutral conditions enabled by paired electrolysis, Angew. Chem., Int. Ed., 2023, 62, e202218858; (g) C. Liu, Z. Chen, C. Su, X. Zhao, Q. Gao, G. H. Ning, H. Zhu, W. Tang, K. Leng, W. Fu, B. Tian, X. Peng, J. Li, Q. H. Xu, W. Zhou and K. P. Loh, Controllable deuteration of halogenated compounds by photocatalytic D₂O splitting, Nat. Commun., 2018, 9, 80. - 6 (a) X. Sun and K. Zheng, Electrochemical halogen-atom transfer alkylation via α-aminoalkyl radical activation of alkyl iodides, *Nat. Commun.*, 2023, 14, 6852; (b) M. Cybularczyk-Cecotka, J. Szczepanik and M. Giedyk, Photocatalytic strategies for the activation of organic chlorides, *Nat. Catal.*, 2020, 3, 872–886. - 7 (a) F. Juliá, T. Constantin and D. Leonori, Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis, *Chem. Rev.*, 2022, 122, 2292–2352; (b) K. Sachidanandan, B. Niu and S. Laulhé, An overview of α-aminoalkyl radical mediated halogen atom transfer, *ChemCatChem*, 2023, 15, e202300860. - 8 V. Soulard, G. Villa, D. P. Vollmar and P. Renaud, Radical deuteration with D₂O: catalysis and mechanistic insights, *J. Am. Chem. Soc.*, 2018, 140, 155–158. - 9 T. Constantin, M. Zanini, A. Regni, N. S. Sheikh, F. Juliá and D. Leonori, Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides, *Science*, 2020, 367, 1021–1026. - 10 J. Lee and S. Lee, Dehalogenative deuteration of alkyl and aryl bromides by thiyl radical catalysis under visible-light irradiation, *Chem. Commun.*, 2024, 60, 5526–5529. - 11 (a) D. Leca, L. Fensterbank, E. Lacote and M. Malacria, Recent advances in the use of phosphorus-centered radicals in organic chemistry, *Chem. Soc. Rev.*, 2005, 34, 858–865; (b) K. Luo, W.-C. Yang and L. Wu, Photoredox catalysis in organophosphorus chemistry, *Asian J. Org. Chem.*, 2017, 6, 350–367; (c) J. A. Rossi-Ashton, A. K. Clarke, W. P. Unsworth and R. J. K. Taylor, Phosphoranyl radical fragmentation reactions driven by photoredox catalysis, *ACS Catal.*, 2020, 10, 7250–7261. - 12 (a) M. Zhang, X.-A. Yuan, C. Zhu and J. Xie, Deoxygenative deuteration of carboxylic acids with D₂O, Angew. Chem., Int. Ed., 2019, 58, 312–316; (b) M. Zhang, J. Xie and C. Zhu, A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes, Nat. Commun., 2018, 9, 3517; (c) E. E. Stache, A. B. Ertel, T. Rovis and **Edge Article** 1166-1169. A. G. Doyle, Generation of phosphoranyl radicals via photoredox catalysis enables voltage-independent activation of strong C-O bonds, *ACS Catal.*, 2018, **8**, 11134–11139; (*d*) X. F. Gao, J. J. Du, Z. Liu and J. Guo, Visible-light induced specific desulfurization of cysteinyl peptide and glycopeptide in aqueous solution, *Org. Lett.*, 2016, **18**, - 13 (*a*) A. J. Chinn, K. Sedillo and A. G. Doyle, Phosphine/photoredox catalyzed anti-Markovnikov hydroamination of olefins with primary sulfonamides via α-scission from phosphoranyl radicals, *J. Am. Chem. Soc.*, 2021, 143, 18331–18338; (*b*) K. Sedillo, F. Fan, R. R. Knowles and A. G. Doyle, Cooperative phosphine-photoredox catalysis enables N–H activation of azoles for intermolecular olefin hydroamination, *J. Am. Chem. Soc.*, 2024, 146, 20349–20356. - 14 L. Caiger, C. Sinton, T. Constantin, J. J. Douglas, N. S. Sheikh, F. Juliá and D. Leonori, Radical hydroxymethylation of alkyl iodides using formaldehyde as a C1 synthon, *Chem. Sci.*, 2021, 12, 10448–10454. - 15 W. G. Bentrude, Phosphoranyl radicals-their structure, formation, and reactions, *Acc. Chem. Res.*, 1982, 15, 117–125. - 16 Y. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti, L. W. Davies and D. W. C. MacMillan, Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds, *Science*, 2017, 358, 1182–1187. - 17 A. Xia, X. Xie, X. Hu, W. Xu and Y. Liu, Dehalogenative deuteration of unactivated alkyl halides using D₂O as the deuterium source, *J. Org. Chem.*, 2019, **84**, 13841–13857. - 18 J. Atzrodt, V. Derdau, W. J. Kerr and M. Reid, Deuterium-and tritium-labelled compounds: applications in the life sciences, *Angew. Chem., Int. Ed.*, 2018, 57, 1758–1784. - 19 M. Kochem and P. A. S. Breslin, Lipid-lowering pharmaceutical clofibrate inhibits human sweet taste, *Chem. Senses*, 2017, 42, 79–83. - 20 (a) T. Constantin, B. Górski, M. J. Tilby, S. Chelli, F. Juliá, J. Llaveria, K. J. Gillen, H. Zipse, S. Lakhdar and D. Leonori, Halogen-atom and group transfer reactivity enabled by hydrogen tunnelling, *Science*, 2022, 377, 1323–1328; (b) J. Zhang, C. Mück-Lichtenfeld and A. Studer, Photocatalytic phosphine-mediated water activation for radical hydrogenation, *Nature*, 2023, 619, 506–513. - 21 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis, *Chem. Rev.*, 2013, **113**, 5322–5363. - 22 H. Zhao, A. J. McMillan, T. Constantin, R. C. Mykura, F. Juliá and D. Leonori, Merging halogen-atom transfer (XAT) and cobalt catalysis to override E2-selectivity in the elimination of alkyl halides: a mild route toward contrathermodynamic olefins, *J. Am. Chem. Soc.*, 2021, 143, 14806–14813. - 23 S. Wang, Y. Gao, Z. Liu, D. Ren, H. Sun, L. Niu, D. Yang, D. Zhang, X. Liang, R. Shi, X. Qi and A. Lei, Site-selective amination towards tertiary aliphatic allylamines, *Nat. Catal.*, 2022, 5, 642–651.