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mer design for synthetically
accessible polymers†

Seonghwan Kim, a Charles M. Schroeder abcd and Nicholas E. Jackson *bc

Machine learning (ML) has emerged as a powerful tool to navigate polymer structure–property

relationships. Despite recent progress, data sparsity is a major obstacle hindering the practical application

of ML in polymer science. In this work, we explore functional monomer design by developing the first

comprehensive database of monomer-level chemical and physical properties for approximately 12M

synthetically accessible polymers. We generated diverse monomer-level properties by integrating

quantum chemistry calculations with active learning to efficiently probe a vast chemical space of

synthetically feasible polymers. Monomer-level property descriptors are benchmarked against both

higher level computational predictions and experimental data to the extent possible, demonstrating their

relevance to polymer design. Our results show that many monomer-level properties are weakly

correlated, implying a strong freedom for functional design such that multiple physical properties can be

simultaneously optimized by monomer selection. Moreover, the synthetically accessible nature of this

chemical space allows targeted monomers to be considered by common polymerization mechanisms to

facilitate their synthetic realization. Overall, this work opens new avenues for creating synthetically

accessible polymers and provides new insights for designing next generation polymeric materials.
1 Introduction

A grand challenge in polymer science lies in establishing
structure–property relationships that integrate monomer
chemistry, topological structure, statistical heterogeneity,
morphology, and processing within a single framework.
Computational modeling strategies have previously focused on
modulating polymer properties using coarse-grained represen-
tations of polymer chemistry to describe the effects of branch-
ing, molecular weight, and topology.1–4 Such strategies have
underscored the study of well-known olen-based chemistries
that continue to dominate the commercial landscape with
precise stereochemical and topological properties combined
with desired mechanical and thermal performance.5–7 Although
chemistry-agnostic approaches to polymer design have been
useful, the modern era of materials discovery requires the
integration of new chemistries to address critical issues in
functional design and performance such as degradability,
Engineering, University of Illinois at

, USA

Illinois at Urbana-Champaign, Urbana,

ois.edu

nd Technology, University of Illinois at

, USA

ar Engineering, University of Illinois at

, USA

tion (ESI) available. See DOI:

y the Royal Society of Chemistry
sustainability, synthetic cost, and electronic and optoelectronic
properties.8–13 Although top-down tting of monomer specic
parameters to experimental data is a powerful modeling
approach, key knowledge gaps exist in using in silicomethods to
predict the monomer specic parameters that enter into coarse-
grained theoretical approaches. Moving forward, computa-
tional methodologies that place monomer chemistry at the
forefront of polymer design hold strong promise to offer
powerful design strategies for polymeric materials.

The range of monomer chemistries currently used for
common polymeric materials is relatively narrow compared to
the vast chemical space for organic compounds. Many
commercially relevant polymers such as polyolens are
prepared by chain-growth polymerization methods.5–7 More
chemically diverse polymer backbones can be prepared by step-
growth polymerization methods, though many of these
approaches have well-known limitations that practically
reduces their chemical space.14,15 In addition, sustainability is
a major consideration in designing new polymer materials,8–10

which motivates new and alternative polymer chemistries that
allow for renewable feedstocks or enable circular lifecycle
materials. To address these constraints, fundamental issues in
functional design need to be considered across the entire
hypothetical chemical space of polymeric materials. Polymer
property prediction directly from monomer chemical structure
is an exceedingly difficult task,4,16 especially given that most
practical polymer applications require the simultaneous opti-
mization of multiple potentially correlated polymer
Chem. Sci.
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properties.17 Successfully addressing the design challenge for
polymer property prediction generally requires multiple dispa-
rate theoretical methods, e.g., quantum chemistry and
continuum-level theories, to achieve specic design goals.4,18

Consequently, alternative strategies are needed to understand
the role of monomer chemistry on polymer properties across
a broad chemical space.

Given sufficient experimental and computational data,
complex polymer structure–property relationships can be
effectively learned using machine learning (ML) methods. For
example, polymer properties such as the radius of gyration or
the end-to-end decorrelation time can be predicted based on
a featurized representation of a polymer's molecular structure.19

Moreover, these learned structure–property relationships can
be utilized to screen polymer candidates with desired
functionality.20–23 Transformer-based language models24 have
recently attracted attention by providing foundational numer-
ical representations of polymer structures aimed at enabling
general polymer property predictions.25,26 Beyond polymer
property prediction, new functional polymers can be discovered
via generative ML approaches such as the popular variational
autoencoder,27 which allows polymer structure–property rela-
tionships to be learned from data.28–31 Given the recent success
of using ML in polymer science, data-driven approaches appear
to hold strong promise for transforming polymer research.

Despite recent progress, however, a major obstacle
hindering the practical implementation of data-driven ML for
polymer design is the scarcity of openly available data in poly-
mer science. Although several sub-disciplines of chemistry
operate in data scarce regimes, this problem has been suffi-
ciently offset in the small molecule design community32–36 via
supplementation with abundant small organic molecule
databases.37–40 In recent years, the polymer science community
has made signicant efforts26,29,41–61 to address the data sparsity
of polymeric materials. The review paper by Tran et al.62

provides a comprehensive summary of the current status of
polymer informatics. However, existing polymer databases are
limited by several factors including synthetic feasibility, lack of
accessibility, or insufficient data quantities, which hinders their
use in state-of-the-art and data-hungry ML algorithms. For
example, millions of molecules are oen required for data-
driven molecular property prediction or generative molecular
design via transformer-based chemical language models to
achieve generalizable molecular representations for efficient
knowledge adaptations,25,26,63,64 and these data scales have yet to
be robustly achieved for polymers.

In this paper, we explore functional monomer design via the
development of the rst comprehensive database of monomer-
level chemical and physical properties for approximately 12M
synthetically feasible polymers. We begin by providing a brief
overview of ML-based monomer-level property generation
integrating quantum chemistry calculations with active
learning. Next, the performance of predictive ML models is
evaluated with a focus on prediction accuracy and uncertainty.
We then use our accurate ML models to label monomer-level
chemical and physical properties that are intimately related to
polymer properties across 12M synthetically accessible
Chem. Sci.
polymers within the Open Macromolecular Genome (OMG),29

thereby elucidating the intrinsic nature of property design
across polymer chemical space. The freedom in functional
monomer design is then explored by examining the correlations
between monomer-level properties and investigating functional
monomer design with weakly correlated properties. Impor-
tantly, our work shows how diverse polymerizationmechanisms
can facilitate access to a wide range of functional properties.
Broadly, our work highlights future directions for leveraging
ML-based monomer-level properties in data-driven approaches
to polymer science.

2 Methods
2.1 Selection of monomer-level properties

A comprehensive set of 25 monomer-level properties for OMG
polymers was prepared, encompassing chemistry descriptors,
molecular exibility, geometry descriptors, electronic proper-
ties, optical properties, and phase behavior descriptors
(Table 1). All geometric, electronic, and optical properties were
derived via density functional theory (DFT) single point calcu-
lations, Boltzmann averaged over up to ve distinct conformers
of the methyl-terminated OMG constitutional repeating units
(CRUs).65 Flory–Huggins c interaction parameters of polymer
solutions were estimated from the distributions of the surface
screening charges (i.e., s-proles66) of the methyl-terminated
OMG CRUs and averaged over up to ve distinct conformers.
Conformer searches67 were performed with GFN2-xTB68 (ESI,†
generation of atomic coordinates for OMG CRUs). The opti-
mized molecular conformer geometries are available at https://
zenodo.org/records/13863778.

A baseline set of essential cheminformatics-derived charac-
terizations is included in the dataset to characterize molecular
size (MW, molecular weight), lipophilicity (log P, log 10 of the
partition coefficient between 1-octanol and water69), drug-
likeness (QED, quantitative estimate of drug-likeness70) and
lipid solubility (TPSA, topological polar surface area71) calcu-
lated using RDKit.72 Complementing these cheminformatics-
derived descriptors is a set of essential three-dimensional
structural characterizations including the monomer's aspher-
icity (UA), eccentricity (3), inertial shape factor (SI), radius of
gyration (Rg), and spherocity index (US). These ve geometry
descriptors were computed with the principal moments of
inertia and the gyration tensor of OMG CRUs (ESI,† mathe-
matical denitions for geometry descriptors).

Given the critical importance of polymer structural exibility
in dictating polymer properties, we used a scalable monomer-
level calculation of molecular conformational entropy via the
F index.73 Monomers with a high F index are more exible than
those with a low F index. To distinguish the contributions of
polymer backbones and side chains to molecular exibility, the
F index was computed for both OMG CRUs (Fmon) as well as
just the OMG CRU backbone (Fbb, where the backbone is
dened by the shortest bonded path between polymerization
sites of the CRU). Because the F index is an approximate
characterization of exibility derived by analysis of the molec-
ular graph structure, we validated the calculation of this metric
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Diverse monomer-level properties investigated for synthetically accessible polymers in the OpenMacromolecular Genome (OMG). The
symbol, description, unit, and property classification of monomer-level properties are provided. a0 represents the atomic unit of length (Bohr
radius)

Symbol Description Unit Property category

1 MW Molecular weight g mol−1 Chemistry descriptor
2 Log P Octanol–water partition

coefficient
Unitless Chemistry descriptor

3 QED Quantitative estimate of
drug-likeness

Unitless Chemistry descriptor

4 TPSA Functional group-based
polar surface area

Å2 Chemistry descriptor

5 Fmon Monomer structural
exibility

Unitless Molecular exibility

6 Fbb Backbone structural
exibility

Unitless Molecular exibility

7 UA Asphericity to describe
deviation from a spherical
form

Unitless Geometry descriptor

8 3 Eccentricity to describe
anisometry of a molecule

Unitless Geometry descriptor

9 SI Inertial shape factor based
on principal moments of
inertia

Å−2 g−1 mol Geometry descriptor

10 Rg Radius of gyration Å Geometry descriptor
11 US Spherocity index to describe

a resemblance of a shape to
a perfect sphere

Unitless Geometry descriptor

12 EHOMO−1 HOMO−1 energy eV Electronic property
13 EHOMO HOMO energy eV Electronic property
14 ELUMO LUMO energy eV Electronic property
15 ELUMO+1 LUMO+1 energy eV Electronic property
16 m Magnitude of dipole

moment
e × a0 Electronic property

17 q Isotropic quadrupole
moment

e × a0
2 Electronic property

18 a Isotropic polarizability a0
3 Electronic property

19 ES1 Energy of the lowest singlet
excited state

eV Optical property

20 E
0
singlet

Singlet excitation energy
with the largest oscillator
strength

eV Optical property

21 f
0
osc

Largest oscillator strength
among the rst 15 singlet
transitions

Unitless Optical property

22 ET1
Energy of the lowest triplet
excited state

eV Optical property

23 cwater Flory–Huggins c parameter
of a polymer solution with
water as a solvent (3 = 80.4)

Unitless Phase behavior descriptors

24 cethanol Flory–Huggins c parameter
of a polymer solution with
ethanol as a solvent
(3 = 24.3)

Unitless Phase behavior descriptors

25 cchloroform Flory–Huggins c parameter
of a polymer solution with
chloroform as a solvent
(3 = 4.9)

Unitless Phase behavior descriptors
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against experimental measurements (Fig. S1†). Specically, our
results show that the experimentally measured mean squared
end-to-end distance per mass (hh2i0/M) of polymers in the melt74

can be estimated from Fmon and Fbb with high accuracy
(Fig. S1a†). Given that Fmon and Fbb exhibit high predictive
© 2025 The Author(s). Published by the Royal Society of Chemistry
correlation with hh2i0/M, these results suggest that Fmon and
Fbb can be further used to estimate the characteristic ratio (CN).
This robust correlation implies that these molecular exibility
indices can provide semi-quantitative estimates of key polymer
properties such as the plateau modulus, molecular weight
Chem. Sci.
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between entanglements, and the reptation tube diameter of
polymer melts.74 In addition, Fmon exhibits a strong negative
linear correlation with experimental glass transition tempera-
tures (Tg),75,76 further indicating thatFmon can capture the chain
stiffness77 (Fig. S1b†). These experimental correlations support
thatFmon and Fbb can be useful descriptors to quantify polymer
structural exibility.

Electronic descriptors were also computed for the dataset to
characterize the monomer's ionization potential, electron
affinity, optical gap, and dielectric constant/refractive index,
and several additional electronic descriptors. These properties
include the highest occupied molecular orbital (HOMO) energy
(EHOMO), HOMO−1 energy (EHOMO−1), lowest unoccupied
molecular orbital (LUMO) energy (ELUMO), LUMO+1 energy
(ELUMO+1), magnitude of dipole moment (m), isotropic quadru-
pole moment (q), and isotropic polarizability (a). These seven
electronic properties were calculated with DFT single point
calculations at the revPBE-D3 (ref. 78 and 79)/def2-SVP level of
theory using geometries optimized at the GFN2-xTB level of
theory. The CPCM80 implicit solvation model was employed
with a dielectric constant 3 = 2.4 to approximate the dielectric
constant of conventional polymers at room temperature.81

Further, time-dependent DFT (TDDFT) was employed to
compute optical properties of the monomers, including the
energy of the lowest singlet excited state (ES1), the singlet tran-
sition energy with the largest oscillator strength ðE0

singletÞ among
the rst 15 singlet transitions, the largest oscillator strength
among the rst 15 singlet transitions ðf 0

oscÞ, and energy of the
lowest triplet excited state (ET1

). These excited state properties
are strongly correlated with experimental color82 and
photostability83–85 metrics. All calculations were performed
using Orca.86 Additional details are available in the ESI (ESI,
DFT calculations).†

Flory–Huggins c interaction parameters for OMG polymer
solutions were estimated to describe phase behaviors of poly-
mers with three different solvents of varying dielectric constants
and included in the dataset: water (3 = 80.4), ethanol (3 = 24.3),
and chloroform (3 = 4.9). Flory–Huggins c interaction
parameters87–90 describe thermodynamics of polymer solutions
of OMG CRUs with different solvents. We estimated Flory–
Huggins c parameters from COSMO-SAC91 calculations
following the work of Aoki et al.92 using COSMO-RS calcula-
tions.93 The estimated Flory–Huggins c parameters from the
COSMO-SAC calculations showed a strong linear correlation
with experimental c parameters (R2 z 0.75) (Fig. S2†).
Fig. 1 Active learning campaign to obtain monomer-level properties
for 12M synthetically accessible OMG polymers. (a) The 12M synthet-
ically accessible OMG polymers are leveraged to develop ML models
for monomer-level property predictions by adopting uncertainty-
guided active learning. (b) The active learning campaign was initiated
with randomly sampled OMG CRUs. Monomer-level properties are
obtained using DFT calculations, followed by training ML models to
predict monomer-level properties and corresponding prediction
uncertainties. New OMG CRUs are then sampled for the next round of
active learning by locating OMG CRUs on the Pareto front in a high-
dimensional prediction uncertainty space. (c) At the conclusion of the
active learning campaign, the trained ML models are utilized to predict
monomer-level geometry descriptors, electronic properties, optical
properties, and phase behavior descriptors for 12M OMG CRUs.
2.2 Development of surrogate ML models for OMG CRU
property prediction

To bypass the intractable computational cost of performing
DFT calculations on all 12M OMG CRUs, we developed
computationally efficient surrogate ML models via uncertainty-
guided active learning targeting high prediction uncertainty
chemistries.94,95 Specically, we combined evidential learning96

with a directed message-passing 2D graph neural network (D-
MPNN)97 to predict monomer-level properties and correspond-
ing prediction uncertainties. It is important to note that D-
Chem. Sci.
MPNN evidential networks predict monomer-level properties
and corresponding prediction uncertainties directly from the
molecular graph without needing to compute 3D molecular
geometries of 12M OMG CRUs. Further details on the active
learning campaign, including the active learning strategy
benchmarked on QM9, are available in the ESI (ESI, details on
active learning).†

Fig. 1 schematically illustrates the active learning campaign
with D-MPNN evidential networks. Approximately 12 000 OMG
CRUs (z0.1% of the OMG chemical space) were randomly
sampled for each polymerization mechanism (i.e., stratied
random sampling) as an initial dataset incorporating diverse
monomer chemistries to jumpstart the active learning
campaign, as detailed in the ESI (Fig. S3).† DFT calculations
were then applied to the sampled OMG CRUs to obtain
monomer-level properties to train D-MPNN evidential networks.
The trained D-MPNN evidential networks estimated prediction
uncertainties for monomer-level properties for the unseen OMG
CRUs. To sample OMG CRUs for the next round of active
learning, we searched for non-dominated OMG CRUs located
on the Pareto front of a high-dimensional prediction uncer-
tainty space using a non-dominated sorting algorithm.98 The
Pareto front represents the set of non-dominated OMG CRUs
where an increase in ML prediction uncertainty for given
© 2025 The Author(s). Published by the Royal Society of Chemistry
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monomer-level property is only possible by reducing the ML
prediction uncertainties associated with other properties. The
active learning campaign continued with the sampled OMG
CRUs from the Pareto front in the uncertainty space until the
ML models stopped showing a signicant improvement in
prediction performance (Fig. S7†). Aer the active learning
campaign, the trained D-MPNN evidential networks were used
to predict monomer-level geometry descriptors, electronic
properties, optical properties, and phase behavior descriptors
for 12M OMG CRUs.
3 Results
3.1 Assessing surrogate ML model quality

We evaluated the ML prediction performance for 19 monomer-
level properties for geometry descriptors, electronic properties,
optical properties, and phase behavior descriptors in the active
learning campaign. Chemistry descriptors and molecular exi-
bility were directly computed with RDKit72 due to their extremely
low computational cost relative to DFT. Four D-MPNN evidential
networks were trained on subsets of the 19 monomer-level
properties. These ML models were evaluated on a test set of
OMG CRUs (z15 000) that were randomly sampled for each
polymerization mechanism (i.e., stratied random sampling)
(Fig. S3†). The D-MPNN evidential networks showed increasing
averaged R2 scores and achieved an average R2 z 0.807 at Round
3, as shown in Fig. S7.† The active learning campaign was
stopped aer Round 3 when the MLmodels exhibited saturation
in the test set performance. We also assessed a different criterion
for stopping the active learning process based on prediction
accuracy of the sampled OMG CRUs,99 but this analysis also
indicated a saturation in the prediction performance aer Round
3 (Fig. S8†). Our results show that there is a broad range of R2

values for 19 monomer-level properties at Round 3. For example,
the D-MPNN evidential networks predicted eccentricity (3) with
R2 z 0.342, whereas isotropic polarizability (a) was estimated
with R2 z 0.996. The prediction performance was also relatively
low for other geometry descriptors such as spherocity (US) and
Fig. 2 Monomer-level property prediction for the test set of OMG CR
gyration (Rg). (b) Prediction for the energy of the lowest singlet excited st
solution with water as a solvent (cwater). The colorbar indicates predictio

© 2025 The Author(s). Published by the Royal Society of Chemistry
asphericity (UA), as well as the magnitude of dipole moment (m)
which relies on molecular geometry. All monomer-level proper-
ties exhibiting low predictive performance were intimately tied to
the 3D geometry of the molecule, which is consistent with the
fact that D-MPNN evidential networks do not utilize molecular
geometry for monomer-level property prediction. Moreover,
incorporation of Boltzmann averaging via conformational
searches induces an unavoidable noise on the prediction quality
for characterizing the 3D geometry. However, all other monomer-
level properties achieved R2 values larger than 0.7 aer Round 3
(Fig. S9†).

Fig. 2a–c show the test ML prediction performance aer the
active learning campaign for the radius of gyration (Rg), energy of
the lowest singlet excited state (ES1), and Flory–Huggins c

parameter of a polymer solution with water as a solvent (cwater),
respectively. For example, Fig. 2a shows that the ML model
predicts Rg with R2 z 0.85 while also providing prediction
uncertainties. The prediction uncertainty quanties the standard
deviation of a predictive Gaussian distribution of N(ŷi,prediction,-
s2i,uncertainty) where ŷi,prediction is a property prediction for given
OMG CRU i, and si,uncertainty is the corresponding prediction
uncertainty. We calibrated our prediction uncertainties to obtain
a better scale match of prediction uncertainty with absolute
prediction errors, as detailed in the ESI (Fig. S10).† As antici-
pated, high prediction uncertainties tend to be associated with
OMG CRUs in the regions with the least training data (i.e., large
Rg values in the case of radius of gyration) or with a large
prediction error. The rank correlations between prediction
uncertainties and absolute prediction errors are available in the
ESI (Fig. S10)† for all 19 monomer-level properties to quantify
their ordinal association. Fig. 2b and c can be similarly inter-
preted as Fig. 2a, and the remaining monomer-level property
predictions are provided in the ESI (Fig. S9).†

3.2 Structure of monomer-level property space via principal
component analysis

To leverage this unprecedentedly large collection of monomer-
level physical property data for synthetically accessible
Us after the active learning campaign. (a) Prediction for the radius of
ate (ES1). (c) Prediction for the Flory–Huggins c parameter of a polymer
n uncertainties.

Chem. Sci.
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polymers, we focused on analyzing the intrinsic structure of the
functional monomer design space. In particular, we used
principal component analysis (PCA) to examine the distribu-
tions of ML-based monomer-level properties of OMG CRUs.
Here, 100k OMG CRUs were randomly sampled from 12M OMG
CRUs, and PCA was applied to their 25-dimensional monomer-
level property vectors.

PCA results on the chemical space of OMG CRUs show
correlations in OMG monomer-level properties, with a domi-
nant role played by the size of the OMG CRU (e.g., Rg). Fig. 3a
shows the two largest principal components where the color
represents the Rg of methyl-terminated OMG CRUs, with Fig. 3b
showing the top ve monomer-level properties with their linear
coefficients to the PC1 vector. This straightforward analysis of
the property space shows that the PC1 vector has a strong
contribution from Rg, correlating with the increasing size of the
CRUs in Fig. 3c and suggesting that molecular size plays
a dominant role in the distribution of the 25 monomer-level
properties. The explained variance corresponding to Fig. 3b is
available in the ESI (Fig. S11).†
Fig. 3 Principal component analysis (PCA) of ML-based monomer-leve
monomer-level property vectors for 100k randomly sampled OMGCRUs
to the PC1 vector. (c) The three methyl-terminated OMG CRUs marked
molecules represents the functional groups for step-growth polymeriza

Chem. Sci.
The monomer size dependence similarly manifests in
several intuitive ways in other computed physical properties.
For example, Fig. 3b shows that isotropic polarizability (a) and
molecular weight (MW) both have a negative contribution to the
PC1 vector and are correlated with Rg. This indicates that both
a and MW decrease as Rg decreases, an effect due to OMG CRUs
with a small molecular size (i.e., smaller Rg) typically possessing
fewer atoms, leading to decreased a and MW values.100 More-
over, reduced a values are known to correlate with increasing
HOMO–LUMO gap (Egap) through an inverse relationship,101–103

which is consistent with its relationship to Rg in Fig. 3b when
considering Egap as a proxy for E

0
singlet. This set of correlations is

consistent with the well known association between band gap
and electron delocalization over larger molecular sizes. Simi-
larly, decreased Rg values are anticipated to correlate with
increased q values due to electrons having less negative
quadratic contributions due to reduced molecular volumes.104

Taken together, these results clearly show the intuitively
sensible trend that many molecular properties exhibit a strong
correlation with molecular size (i.e., Rg), and that molecular size
l properties for the OMG CRUs. (a) PCA applied to the 25-dimensional
. (b) The top five monomer-level properties with their linear coefficients
in (a) with their top five monomer-level properties. The red color in

tion of dicarboxylic acid and diol.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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is a natural structuring variable for variations in the computed
property space, as shown in Fig. 3c. We also provide several
chemical and physical properties normalized by the number of
heavy atoms in OMG CRUs to approximately compensate for
molecular size effects (Fig. S12 and S13†).
3.3 Exploring functional monomer design

We next analyzed pair correlations between all 25 monomer-
level properties to understand the potential for functional
monomer design across multiple property targets. In brief, the
strength of these correlations will dictate the freedom for multi-
target property optimization across polymer chemical space.
Fig. 4 Property pair correlations between 25 monomer-level propertie
ficients (jrj) between monomer-level property pairs. The three regimes
regime (0.57 # jrj < 0.80), and a strong regime (jrj $ 0.80).

© 2025 The Author(s). Published by the Royal Society of Chemistry
For the pair correlation analysis, approximately 135k OMG
polymers were randomly sampled across polymerization
mechanisms (i.e. stratied random sampling) to incorporate
diverse chemistries (Fig. S14†). Fig. 4 shows the pair correla-
tions between 25 monomer-level properties and the histogram
of Pearson correlation coefficients jrj between property pairs.
To aid with visualization, we classied weak (jrj < 0.57), inter-
mediate (0.57 # jrj < 0.80), and strong (jrj $ 0.80) regimes of
correlations based on three clusters identied in the histogram
in Fig. 4 following the approach of Sandonas et al.105

The histogram in Fig. 4 shows thatmost of themonomer-level
property pairs exhibit weak linear correlations (jrj < 0.57). The
abundant weak linear correlations suggest that multiple
s. The histogram shows the distributions of Pearson correlation coef-
are defined based on jrj: a weak regime (jrj < 0.57), an intermediate

Chem. Sci.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc08617a


Fig. 5 Functional monomer design with three weakly correlated
monomer-level properties. (a) The distributions of cwater from kernel
density estimation over four different regimes of Fmon and E

0
singlet are

plotted with the number of OMG CRUs within a range of cwater. (b)
Each box displays methyl-terminated OMG CRUs representing one of
four different regimes of Fmon and E

0
singlet with low cwater and high

cwater. Colors denote functional groups for polymerization (red for
step growth, green for chain growth, and purple for metathesis).
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monomer-level properties relevant to functional monomer
design can be simultaneously and orthogonally optimized. For
instance, a practical multi-target polymer design campaign
might target chain stiffness (Fmon, monomer structural exi-
bility), color (E

0
singlet, singlet excitation energy with the largest

oscillator strength among the rst 15 singlet transitions), and
solubility (cwater, Flory–Huggins c parameter with water as
a solvent). These three common properties exhibit weak linear
pair correlations, which suggests that they can be tuned for
functional monomer design, as explained below. Similar and
potentially desirable sets of properties exhibiting quantitatively
weak correlations with the potential for multi-target optimiza-
tion include: (1) design of polymer dielectrics considering the
dielectric constant (a, isotropic polarizability), and band gap
(EHOMO, HOMO energy and ELUMO, LUMO energy) and (2) design
of photostable polymers targeting photostability (ET1

, energy of
the lowest triplet excited state) and solubility (cchloroform, Flory–
Huggins c parameter of a polymer solution with chloroform as
a solvent). It is important to note that monomer-level properties
provide insights into functional polymer design because several
monomer-level properties are intimately related to polymer
properties, including molecular exibility (Fig. S1†), solubility
(Fig. S2†), and electronic properties (Fig. S15†). In addition, the
weakly correlated pair interactions persist even aer incorpo-
rating several normalized properties to approximately account
for molecular size effects (Fig. S16†). Overall, these results show
that there exists a relative freedom of functional monomer
design where practical property sets relevant to polymeric
materials can be simultaneously optimized.

In addition to the general freedom of design exhibited by the
weak property pair correlations, there are pairs of properties
that exhibit strong correlations. Of all pair correlations, 256
pairs are classied as weak, whereas 30 pairs and 14 pairs are
classied as intermediate and strong correlation, respectively.
Within the intermediate and strongly correlated pairs, six of the
most correlated pairs of features corroborate the PCA analysis of
Fig. 3, reinforcing features that scale strongly with molecular
size: a, E

0
singlet, MW, q, and Rg. Many of these top ve properties

also exhibit intermediate correlations with QED, SI, and TPSA,
supporting the notion that a large molecular size can decrease
QED and SI while increasing TPSA (Fig. S11†).70,71,106

Fig. 4 also shows pairs of properties exhibiting intermediate
or strong correlations. Molecular size correlation is the stron-
gest correlation across polymer property space, but several
additional features emerge from these data. First, molecular
exibility correlates monomer structural exibility (Fmon) and
backbone structural exibility (Fbb). Second, molecular geom-
etry correlates asphericity (UA), spherocity (US), and eccentricity
(3) by describing a molecular shape. Third, electronic structure
correlates HOMO−1 energy (EHOMO−1) and HOMO energy
(EHOMO). Fourth, optical transitions correlate LUMO energy
(ELUMO), LUMO+1 energy (ELUMO+1), energy of the lowest singlet
excited state (ES1), singlet excitation energy with the largest
oscillator strength ðE0

singletÞ, and energy of the lowest triplet
excited state (ET1

). In addition, solubility is directly related to
functional group-based polar surface area (TPSA), magnitude of
dipole moment (m), and Flory–Huggins c parameter of
Chem. Sci.
a polymer solution with water as a solvent (cwater) that is highly
correlated with cethanol. All of these sets of correlated features
are physically consistent because they involve interrelated
molecular features. For example, molecular exibility is ex-
pected to be correlated with the exibility of its subgroups,
excitation energies are correlated with the single electron
orbitals that compose them, and molecular polarity is
a common proxy for molecular solubility.

Given the evidence for weakly correlated molecular proper-
ties within our database, we proceed to demonstrate the
potential freedom for multi-property functional monomer
design in a synthetically accessible chemical space. Specically,
we select three weakly correlated monomer-level properties
previously mentioned: Fmon, E

0
singlet, and cwater. The randomly

sampledz135k OMG polymers were then used for this analysis
(Fig. S14†). Fig. 5a shows the distribution of cwater from kernel
density estimation over four different regimes of Fmon and
E

0
singlet. Each of the four regimes represents: (i) low Fmon and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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high E
0
singlet, (ii) low Fmon and low E

0
singlet, (iii) high Fmon and

high E
0
singlet, and (iv) high Fmon and low E

0
singlet, respectively. The

low and high regimes were determined based on the mean and
standard deviation ofFmon and E

0
singlet for the sampled subset of

OMG polymers. For instance, the low Fmon region includes
values approximately one standard deviation below the mean
Fmon value. Similarly, the high E

0
singlet region includes values

approximately one standard deviation above the mean E
0
singlet

value. Further details about the low and high regimes can be
found in the ESI† (high and low Fmon, E

0
singlet, and cwater).

Fig. 5a shows a broad range of cwater regardless of the low
and high regimes of Fmon and E

0
singlet. This reects freedom of

functional monomer design where cwater is not signicantly
affected by the individual values or targeted optimization of
Fmon and E

0
singlet. Furthermore, Fig. 5a denotes that there are

multiple OMG CRUs located within a range of low cwater and
high cwater. For example, there are 28 OMG CRUs with low cwater

values that possess low Fmon and high E
0
singlet. We also counted

the number of OMG CRUs sharing multiple monomer-level
properties that can provide additional exibility for freedom
of multi-target functional monomer design (Fig. S17†). Overall,
this example demonstration indicates freedom of multi-target
Fig. 6 Functional monomer design with Pareto front search. The distribu
CRUs possessing (a) low cwater and (b) low cchloroform with each color re
chain growth (green), ring opening (blue), and metathesis (purple). The
relationship (i.e., a ∼Egap

−1). The dashed line represents the Pareto front

© 2025 The Author(s). Published by the Royal Society of Chemistry
functional monomer design105 for weakly correlated properties
where a target monomer-level property (e.g., cwater) can be
pursued without being signicantly affected by other monomer-
level properties (e.g., Fmon and E

0
singlet).

Fig. 5b also shows the molecular structures of OMG CRUs in
the four different regimes ofFmon and E

0
singlet with low cwater and

high cwater to extract monomer-structure property relationships.
Each box in Fig. 5b displays methyl-terminated OMG CRUs with
low cwater (favorable to water solvation) and high cwater (less
favorable to water solvation) based on the mean and standard
deviation of cwater (ESI,† high and low Fmon, E

0
singlet, and cwater).

Three monomer structure–property relationships can be iden-
tied in the multi-target optimization corresponding to Fmon,
E

0
singlet, and cwater. First, the OMG CRUs with high Fmon contain

a large fraction of alkyl groups which enhances molecular
exibility. In contrast, the OMG CRUs with low Fmon generally
contain a rigid ring structures which enhances molecular
rigidity. Second, the OMG CRUs with low E

0
singlet have extended

p-conjugation107 or a large molecular size (i.e., large isotropic
polarizability a) that might lead to a narrow HOMO–LUMO gap
contributing to low E

0
singlet. On the contrary, the OMG CRUs with

high E
0
singlet generally have a small number of atoms with
tion of isotropic polarizability (a) and HOMO–LUMO gap (Egap) of OMG
presenting different polymerization mechanisms of step growth (red),
solid line in the distribution plots is the fitting curve for the inverse
for a and Egap.

Chem. Sci.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc08617a


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
2/

20
25

 5
:1

9:
13

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
reduced p-conjugation. Third, the OMG CRUs with low cwater

exhibit hydrogen bonding, which enhances solvation with
water, whereas the OMG CRUs of high cwater do not exhibit
hydrogen bonds. This molecular structure analysis suggests
that ML-based monomer-level properties encode interpretable
monomer structure–property relationships. Importantly, all
example chemistries shown in Fig. 5b are derived via the known
polymerization reactions and purchasable reactants that form
the basis for the OMG dataset,29 providing substantial synthetic
viability for the chemical space examined.

We further investigated functional monomer design with
a Pareto front search to simultaneously maximize two anti-
correlated monomer properties within the synthetically acces-
sible chemical space of OMG. Here, we further explore the rela-
tionships between isotropic polarizability (a) and HOMO–LUMO
gap (Egap) of the randomly sampled z135k OMG CRUs. Fig. 6a
shows the distribution of a and Egap of OMG CRUs possessing
low cwater with each color representing different polymerization
reaction classes of step growth (red), chain growth (green), ring
opening (blue), and metathesis (purple). Likewise, Fig. 6b shows
the distribution of a and Egap for the OMG CRUs with low
cchloroform. The OMG CRUs with low cwater and low cchloroform

were determined based on the mean and standard deviation of
cwater and cchloroform for the sampled subset of OMG polymers
(ESI,† low cwater and cchloroform). Prior work has identied an
inverse relationships between a and Egap for a relatively narrow
chemical space.102,103 Although the OMG CRUs in Fig. 6a and
b generally show a negative correlation between a and Egap,
considerable exceptions exist in the diverse chemical space of the
OMG that do not follow a clear inverse relation.105

We performed a Pareto front search to simultaneously
maximize a and Egap to gain insight into functional monomer
design with opposing properties. The boxes in Fig. 6a and
b show four of the methyl-terminated OMG CRUs on the Pareto
front with colors representing methyl-terminated functional
groups for polymerization (red for step growth, green for chain
growth, and blue for ring opening). The methyl-terminated
OMG CRUs in Fig. 6a have hydrogen bonds or polar atoms to
favor solvation with water (low cwater), whereas the methyl-
terminated OMG CRUs in Fig. 6b contain a large portion of
alkyl groups to favor solvation with chloroform (low cchloroform).
In the Pareto front search, the molecular size of the OMG CRUs
in Fig. 6a and b decreases as a decreases, which is consistent
with the dependence of a on the number of atoms in a CRU.100

Importantly, Fig. 6a and b show that the OMG CRUs from chain
growth or ring opening polymerization can approach high Egap
by their relatively small monomer size during the Pareto front
search. Overall, functional monomer design with Pareto front
search provides interpretable monomer structure–property
relationships while also showing that diverse polymerization
mechanisms for OMG polymers can be useful for accessing
various monomer functionality.

4 Discussion

We propose that the comprehensive monomer-level properties
determined by accurate ML models in this work can be
Chem. Sci.
seamlessly integrated with data-driven approaches in polymer
science to advance functional polymer design. The ML-based
monomer-level properties offer useful insights into functional
polymer design by establishing intimate correlations with
polymer properties such as molecular exibility (Fig. S1†),
solubility (Fig. S2†), and electronic properties (Fig. S15†). Our
work sets the stage for the discovery of next generation synthetic
polymeric materials by leveraging data-driven approaches
applied to tens of millions of monomer-level property data
points serving as proxy properties for synthetically accessible
polymers. Transformer-based language models25,26 enable
accurate predictions of polymer properties, facilitating the
screening of potential polymer chemical spaces. Moreover,
generative ML approaches with variational autoencoders32 can
extract polymer structure–property relationships to enable
inverse multi-target polymer design by linking low-dimensional
polymer structure embeddings to polymer properties. These
data-driven ML methods can signicantly accelerate the trans-
fer of knowledge from intrinsic monomer chemistries to poly-
mer properties for functional polymer design. We also envision
that our approach can be extended to other materials classes
(e.g., inorganic crystals108) by efficiently exploring their vast
candidate space for materials discovery through accurate ML-
based property prediction.

The present study possesses a few limitations. First, the ML
prediction is not highly accurate for several monomer-level
properties such as eccentricity (3) and the magnitude of dipole
moment (m), both of which rely on the 3D molecular geometry.
This is a result of the directed message-passing 2D graph neural
networks (D-MPNN)97 that only utilize 2D molecular graph of
methyl-terminated OMG CRUs without 3D molecular geometry.
To achieve higher prediction accuracy, 3D conformer geome-
tries for the entire set of 12MOMGCRUs could be prepared with
GFN2-xTB, but this would require a prohibitive computational
cost at the present time (approximately 311 CPU years estimated
from OMG CRUs with an average of 23 heavy atoms consisting
of up to 15 conformers). Alternatively, automatic generation of
3D coordinates of molecules109 via atomistic neural network
potentials could be employed to generate the molecular geom-
etries of 12M OMG CRUs. However, this necessitates the veri-
cation of neural network potentials for a broad chemical space
of OMG CRUs, which is outside of the scope of the present
study. Second, the accuracy of ML-based monomer-level prop-
erties is limited by the accuracy of quantum chemistry calcu-
lations. We searched ve distinct conformers for methyl-
terminated OMG CRUs to estimate Boltzmann averaged
values for most of 25 monomer-level properties to train ML
models. We adopted a semi-empirical quantum mechanical
method68 for molecular geometry and a generalized gradient
approximation (GGA) functional for DFT calculations (ESI,†
DFT calculations) to reduce computational costs. However,
a more comprehensive conformer search110 or a higher level of
theory such as hybrid functionals111 could be considered for
more accurate calculations. Third, the ML-training perfor-
mance can be increased by focusing solely on weakly correlated
monomer-level properties. Fig. 4 shows the existence of inter-
mediate or strong correlations between monomer-level
© 2025 The Author(s). Published by the Royal Society of Chemistry
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properties. During active learning, however, we sampled the
OMG CRUs located on the Pareto front of 19 monomer-level
property prediction uncertainties ignoring possible property
pair correlations. Overall, the property pair correlation analysis
indicates that the ML models training can be improved by
focusing only on the weakly correlated monomer-level proper-
ties to reduce the dimension of the uncertainty space and
improve efficiency of Pareto front search (ESI,† details on active
learning). Finally, although the OMG encodes a variety of
synthetic accessibility constraints to form linear homopolymers
detailed in our previous work,29 the suggested chemistries do
not necessarily guarantee synthetic viability. Future efforts
automating an analogous discovery campaign across the OMG
to understand reactivity could further help augment the
synthetic viability of the chemistries considered in this work.

Overall, this work focuses on the diverse structural and
chemical functionalities of monomers to provide new insights
into the chemistry of synthetically accessible polymers. Ideally,
a functional polymer design scheme should consider not only
monomer chemistries but also additional factors that signi-
cantly inuence polymer properties such as chain topology, solid-
phase morphology, polydispersity, monomer compositions, and
processing.16 However, the computational cost for addressing
every possible permutation of polymer chain parameters using
theoretical or computational methods would be intractable
across a broad chemical space. We envision that the compre-
hensive monomer chemistries investigated in this work will
provide a critical steppingstone to inclusion of the full complexity
of the polymer representation and will complement and syner-
gize with ongoing efforts in various aspects of polymer science to
enable a unied framework for functional polymer design.
5 Conclusions

In this work, we explore the intrinsic nature of functional
monomer design via the development of the rst comprehensive
database of monomer-level chemical and physical properties for
12M synthetically accessible polymers. We generated diverse ML-
based monomer-level properties by integrating quantum chem-
istry calculations with active learning to efficiently navigate the
vast chemical space of the synthetically feasible polymers within
the Open Macromolecular Genome (OMG).29 The diverse
monomer-level properties encompass chemistry descriptors,
molecular exibility, geometry descriptors, electronic properties,
optical properties, and phase behavior descriptors. Given
comprehensivemonomer structural and chemical functionalities
labeled by accurate ML models, we demonstrate freedom of
functional monomer design wherein multiple monomer-level
properties can be simultaneously optimized, which is sup-
ported by the abundant weak property pair correlations. In
addition, we illustrate how various polymerization mechanisms
in OMG polymers can be leveraged and applied to a wide range of
monomer functionalities. Overall, this work opens new avenues
regarding intrinsic monomer chemistries of synthetically acces-
sible polymers and provides valuable insights into the develop-
ment of next generation of polymeric materials.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Data availability

The scripts used for active learning and data analysis in this
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trained D-MPNN evidential networks, (2) 3D atomic
geometries of methyl-terminated monomers from quantum
chemistry calculations, and (3) ML-based monomer-level
properties for 12M synthetically accessible polymers.
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