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-driven global optimization
reveals nanometre-scale mixed phases of
borophene on Ag(100)†

Yunlei Wang, Haifeng Lv * and Xiaojun Wu *

Metal-supported borophene exhibits significant polymorphism and an inherently complex potential energy

landscape, posing challenges to exploring its structural diversity. In this study, we integrate a neural

network-driven machine learning potential with stochastic surface walking global optimization and an

active learning framework to comprehensively map the potential energy surface (PES) of large-size

borophene on an Ag(100) substrate. Our exhaustive search identifies 59 857 local minima across 556

distinct supercells, revealing a PES segmented into multiple energy basins and three major funnels.

Among the low-energy configurations, 1391 low-energy structures extend to the nanometre scale,

showcasing a diverse array of mixed-phase borophene architectures, including monolayer ribbons (b12
and c3) and bilayer fragments (BL-a5, BL-a7, BL-a1, BL-a6, and BL-a1a6). Notably, the global minimum

structures feature monolayers composed of alternating c3 and b12 ribbons and bilayers formed from BL-

a5, BL-a1a6, and BL-a1 fragments. All mixed-phase borophenes exhibit metallic properties, and their

simulated scanning tunneling microscopy (STM) images are provided to facilitate future experimental

validation. These findings highlight the extraordinary structural complexity and rich polymorphism of

borophene on extended metal surfaces, offering valuable insight into their formation, stability, and

potential for tunable electronic properties.
Introduction

Borophene has attracted extensive attention due to its structural
diversity1,2 and intriguing physical properties,3–5 suggesting
potential applications in nanoelectronics. Owing to its electron-
deciency, borophene oen adopts frameworks composed of
mixed triangles and hexagons6,7 resulting in a high degree of
polymorphism. Unlike many two-dimensional (2D) materials,
borophene does not have a bulk counterpart and generally
requires a metallic substrate for stabilization.8,9 In experiment,
various polymorphs of borophene have been synthesized on
different substrates, with the atomic arrangements highly
inuenced by experimental conditions, highlighting the
potential to achieve specic polymorphs with tailored func-
tionalities.8,10 However, the identication of synthesized bor-
ophene oen relies on comparing experimental scanning
tunneling microscopy (STM) images with simulated ones. This
method is limited in capturing the detailed structural features
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of large superlattices, such as mixed phases,11,12 ribbon dislo-
cation,13 and twin boundaries.14

Accurately predicting the structures of these large super-
lattices is essential to capture the complex atomic patterns in
borophene.15–17 So far, theoretically reported phases are limited
to be single-phase at the Angstrom scale. This is because of the
exponential increase of local minima with the number of atoms
and the rapid growth of computational cost with the number of
atoms.18,19 Machine learning methods are powerful tools to
overcome these limitations, enabling data-driven exploration of
broader congurational spaces at a fraction of the computa-
tional cost.18,20 Machine learning-driven simulations have
offered valuable insights into realistic structural motifs,
properties,21–24 and complex structure–property relationships in
a variety of systems.25–27 Specically, the realization of mixed-
ribbon monolayer phases on Ag(100) motivates us to fully
explore the congurational space. While machine learning-
based global structure prediction has successfully discovered
new phases of bulk boron28–30 and boron clusters,31 applying
these strategies to borophene on metal substrates remains
challenging due to the intricate interplay between boron–boron
and boron–metal bonding.

In this work, we develop an on-the-y neural network (NN)
potential combined with stochastic surface walking (SSW)
global optimization and an active learning framework to
comprehensively explore the PES of borophene on an Ag(100)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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substrate. Our global dataset comprises 177 023 data points,
revealing a complex energy landscape with multiple basins and
three distinct energy funnels. By examining 59 857 local minima
across 556 diverse supercells, we identify 1391 low-energy
congurations extending to nanometre-scale lattice constants.
Detailed structural analysis shows that the rst two energy
funnels predominantly host monolayer phases, while the third
funnel is characterized by bilayers. Notably, both the rst and
third funnels display a range of mixed phases, whereas the
second funnel remains predominantly single-phase borophene.
The rst funnel reproduces experimentally observed monolayer
structures, validating our computational approach. In partic-
ular, the global minimum mixed phases feature monolayers
composed of alternating c3 and b12 ribbons and bilayers formed
from BL-a5, BL-a1a6, and BL-a1 fragments. All these mixed-
phase borophenes exhibit metallic properties, and their simu-
lated STM images are provided to support future experimental
investigations. This study establishes a general framework for
leveraging ML-driven global optimization to uncover the struc-
tural characteristics of experimental mixed phases, aiming to
achieve the targeted polymorph of borophene.
Methods and models
First-principles calculations

All rst-principles calculations were performed using the
Vienna Ab initio Simulation Package (VASP)32,33 with the
projector augmented wave (PAW)34,35 method to describe ionic
cores and valence electrons. The exchange-correlation func-
tional is treated within the generalized gradient approximation
(GGA), in the Perdew–Burke–Ernzerhof (PBE) functional.36,37

The D3 correction38 was employed to describe the van der Waals
interaction between substrates and borophenes. The kinetic
energy cutoff for the plane wave basis is 400 eV and the rst
Fig. 1 Workflow for building the on-the-fly neural network (NN) potentia
redefined matrix and represents the multiple of the supercell relative to t
on the Ag(100) surface is defined as the number of boron atoms/M. Dur
criterion is DE # 5 meV per atom, in which DE = jENN − EDFTj/N. ENN
method, respectively, N is the number of total atoms. The screening of

© 2025 The Author(s). Published by the Royal Society of Chemistry
Brillouin zone is sampled using the G-centered Monkhorst–
Pack scheme with a k-space density of 2p × 0.04 Å−1.
Structure search driven by the neutral network potential

The stochastic surface walking (SSW) global optimization39,40

implemented in the Large-scale Atomistic Simulation with
neural network Potential (LASP) soware41 is used to sample
and search the global potential energy surface (PES). The high
dimensional neural network (HDNN) scheme in LASP soware
is employed to train the global dataset. For more detailed
information about SSW methods and HDNN architecture, refer
to the ESI.†
Structural models

The Ag(100) substrate model contains two layers with the
bottom layer xed during the SSW optimization. To evaluate the
stability of borophene on Ag(100), formation energy (Eform) is
used, which is dened as Eform = (Etot − Esub)/NB. Etot and Esub
denote the energy of the total system and Ag(100) substrate,
respectively, and NB is the number of boron atoms. For addi-
tional details, refer to the ESI.†
Results and discussion
Construction of the neutral network potential and global
dataset

Fig. 1 illustrates the workow for constructing the NN potential
used to identify global minima of borophene on an Ag(100)
surface. This procedure involves three main steps. First, we
generate metal substrate supercells of varying sizes and shapes
by redening a matrix based on the primitive cell, with the
supercell size denoted by M. To ensure balanced cell dimen-
sions and avoid extremely small angles, only those supercells
l of the borophene/Ag(100) system.M denotes the determinant of the
he primitive cell. a, b and g are lattice parameters. The boron coverage
ing iterative refinement of the global dataset, the energy convergence
and EDFT denote the energies calculated by the NN potential and DFT
minima is conducted based on the formation energy (Eform).

Chem. Sci., 2025, 16, 7320–7328 | 7321
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meeting the criteria ja− bj#M and 40°# g# 140° are selected.
In total, 556 supercells with M values ranging from 2 to 30 are
chosen (Table S1†). Then, boron atoms are deposited onto these
supercells at coverage (BC) ranging from 2.3 to 7.3, as detailed
in Fig. S1.†

In the second step, we iteratively build a global dataset that
captures the diverse bonding environments encountered in
borophene on Ag(100). We initiate this by performing stochastic
surface walking (SSW) pathway sampling on 174 smaller
systems (2 # M # 5) containing up to 47 atoms, each starting
from random congurations. This comprehensive sampling
generates approximately 7 million raw structure data points,
from which around 120 000 are selected to form the initial
global dataset (Fig. S2†).

The initial global dataset is used to train the NN potential.
Once trained, the NN potential is applied to predict 59 857
larger systems (6 # M # 30, BC = 2.3 to 7.3). If inaccuracies are
detected in predicting minima, additional structures are
extracted from SSW trajectories and subjected to ab initio
calculations. These newly calculated structures are then added
to the global dataset, and the NN potential is retrained. This
iterative, active learning-like approach27,42 ensures the robust-
ness and reliability of the NN potential for exploring the global
PES. Performance metrics of the resulting NN potential are
provided in Fig. S3, S4 and ESI.†
Overview of the global dataset

The nal global dataset includes 177 023 structures, with the
trained NN potential achieving root-mean-square errors (RMSE)
of 11.281 meV per atom for energies and 0.456 eV Å−1 for forces,
demonstrating high accuracy (Fig. S3†). Fig. 2a presents the
formation energy (Eform) versus Steinhardt-type order parameter
(OP2), spanning from −6.5 to −1 eV per atom and 0 to 6,
respectively. The broad distribution of Eform and OP2 values
(Fig. S5†) highlights the dataset's extensive diversity and the NN
potential's exibility. Additional details regarding M, BC, and
OP2 are provided in Fig. S6.†
Fig. 2 (a) Illustration of the global dataset from first principles for boroph
(Eform) vs.OP2. The density is indicated by color. The OP2 parameter refle
Schematic diagram of the potential energy surface (PES) for borophene

7322 | Chem. Sci., 2025, 16, 7320–7328
Focusing on the low-energy region (Eform < −6.0 eV per
atom), which comprises approximately 130 000 structures, we
utilize BC and OP2 as descriptors and apply dimensionality
reduction techniques43,44 to visualize the multidimensional PES
(Fig. 2b). This analysis uncovers three distinct energy funnels at
BC ranges of 2.7 to 2.9, 3.4 to 3.5, and 6.3 to 6.8, alongside
numerous energy basins across different BC values, indicating
the presence of multiple stable structural motifs in borophene
on Ag(100). An energy funnel represents regions where the
lowest-energy local minimum, including the global minimum,
is most likely to occur, facilitating the steepest descent path-
ways on the PES. In contrast, the energy basin indicates clusters
of local minima.43,45 The rst two funnels exhibit similar energy
levels, while the third energy funnel is slightly deeper, sug-
gesting that borophene congurations with varying boron
coverage in the rst two funnels can coexist with comparable
stability and the congurations in the third funnel are inher-
ently more stable. OP2 values for funnels and basins primarily
lie between 1 and 2 (the most stable and ordered structures),
with OP2 > 4 corresponding to high-energy ridges (less stable
and more disordered congurations). These ndings provide
a conceptual map of the global PES, aiding in the identication
of stable minima from highly disordered starting congura-
tions and enhancing the predictive power for discovering new
and experimentally relevant phases.
Identied local minima and low-energy congurations

Using the established PES, we identied 59 857 local minima
from random initial structures, as shown in Fig. 3a. The
distribution of these minima in terms of OP2 and BC is color-
coded by Eform. The corresponding minima exhibit mean
absolute errors of 3.278 meV per atom for energies and 0.299 eV
Å−1 for forces, indicating the reliability of our NN potential.

To isolate the most stable low-energy congurations, we
screened these minima by selecting, at each BC value, the
structure with the lowest Eform across all supercell shapes and
sizes. This screening yielded 1391 low-energy minima, whose
OP2–BC distribution and Eform data are shown in Fig. 3b. Three
ene on Ag(100) systems shown as a contour map of formation energy
cts the averaged geometrical environment of bonded boron atoms. (b)
on Ag(100) systems scaled by BC and OP2 dimensionality.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The OP2–BC distribution of (a) minima and (b) lowest-energy minima borophenes on Ag(100) colored by the formation energy (Eform). (c)
The proportion of different coordination numbers (CN) ranging from 3 to 8 and (d) Eform of low-energy minima structures as a function of boron
coverage (BC). In (c), the transparent colored lines represent raw data, and the solid lines are the result of applying an adjacent-averaging filter.
The ML, MixL, and BL denote the monolayer, mixed-layer, and bilayer, respectively. The black dashed line located at BC of 3.6 separates the ML
from the MixL, and that at BC of 6 separates the MixL from the BL. Each data point under specific BC value represents the most stable
configuration. The luminance of light blue spheres denotes the magnitude of theM value, and the higher luminance corresponds to the smaller
M value. The (e) statistical count and (f) the maximal lattice constant (L) of the low-energy minima under differentM values ranging from 6 to 30.
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prominent low-energy regions emerge at OP2 values between 1.6
and 2.0, consistent with the three energy funnels identied in
the global PES. Additionally, the overall OP2–BC distribution of
these minima also aligns with the previously mapped low-
energy landscape, conrming that our global dataset effec-
tively captures the key atomic environments of borophene on
Ag(100).

To elucidate the bonding environments within these low-
energy minima, we calculated the boron coordination number
(CN) using a 2.3 Å f boron–boron distance cutoff. Fig. 3c shows
the relative percentages of each CN value as a function of BC.
The presence of CN values ranging from 2 to 8 underscores the
complex multi-center bonding, akin to bulk boron.29 While CN
= 2 and CN = 8 are relatively rare, CN = 3 briey appears at low
BC values (2.33 to 2.5) before disappearing. In contrast, CN
values of 4, 5, 6, and 7 become increasingly prominent across
the entire BC range, indicating evolving coordination patterns
in these low-energy minima.

As BC increases from 3.6 to 6, the CN of 7 gradually rises,
indicating the formation of borophene structures beyond
a monolayer. Distinct shis in CN distribution are observed
around BC = 3.6 and BC = 6, as evident from both the average
CN (ave_CN) and average bond length (ave_bond) (Fig. S7a and
b†). Consequently, we dene BC = 3.6 as the boundary between
© 2025 The Author(s). Published by the Royal Society of Chemistry
monolayer (ML) and mixed-layer (MixL) phases, and BC = 6 as
the boundary between MixL and bilayer (BL) phases. In this
classication, the ML refers to a single-atomic-layer sheet, MixL
denotes an ML with attached boron nanostructures, and the BL
signies two covalently bonded MLs, following our previous
work.46 Although some structures may not conform strictly to
these categories, this classication provides a useful framework
for understanding the structural evolution with increasing BC.

Fig. 3d correlates these structural transitions with stability
by plotting Eform versus BC. Three distinct energy valleys emerge,
corresponding to the three PES funnels. Energy valley 1 (BC z
2.7 to 2.85) and energy valley 2 (BCz 3.45 to 3.6) correspond to
ML congurations, while energy valley 3 (BC z 6.3 to 6.45)
pertains to BL congurations. The rst two valleys exhibit
comparable stability, whereas the third valley is approximately
57 meV per atom deeper, reecting the enhanced structural
complexity and stronger bonding networks in bilayers. Within
energy valley 1, CN values of 4, 5, and 6 appear in a 25 : 50 : 25
ratio, while energy valley 2's minima exclusively feature CN = 6.
Energy valley 3 displays a mix of CN = 5, 6, and 7 (40%, 52%,
and 8%, respectively), resulting in a higher average CN (5.5 to
5.75) and increased stability.

The inuence of supercell sizeM is also evident. As shown in
Fig. 3e, the vast majority (88.7%) of low-energy minima are
Chem. Sci., 2025, 16, 7320–7328 | 7323
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found in supercells with M values between 15 and 30. Indeed,
most structures with Eform <−6.50 eV per atom haveM > 15 (Fig.
S7c†). Fig. 3f further demonstrates that the maximal lattice
constants (L) of these low-energy minima range from 8.667 Å up
to 38.75 Å, underscoring the critical importance of large
supercells in accurately capturing the global minima of bor-
ophene on Ag(100). These results highlight the necessity of the
extended-scale supercells to reect the inherent structural
complexity of borophene phases.
Structural analysis of energy valleys

To gain deeper insight into the structural motifs within each of
three energy valleys, we selected ten lowest-energy congura-
tions from each valley. The corresponding Eform–BC plots are
shown in Fig. 4a to c, and detailed information about these
structures is listed in Tables S3 to S5.† For convenience, we label
the structures in energy valleys 1, 2, and 3 as ML1 to ML10,
ML11 to ML20, and BL1 to BL10, respectively, based on their
Fig. 4 The formation energy (Eform) varying with boron coverage (BC) fo
and (c) 3. The structures from energy valleys 1, 2, and 3 are numbered by M
light blue spheres denotes the magnitude of the M value, and the high
patterns of several representative structures (ML1, ML4, ML5, ML8, ML11, B
unit cell. For ML1, ML4, ML5, and ML8, only top view is provided. For ML11
spheres denote Ag atoms, and the pink colors denote boron atoms in
structures are colored by light cyan. Different bilayer borophene fragme

7324 | Chem. Sci., 2025, 16, 7320–7328
Eform values. Within these sets, the top ten structures in valleys
1, 2, and 3 lie within energy windows of 19.4, 11.3, and 19.7 meV
per atom, respectively, and their M value ranges from 19 to 30,
16 to 29, and 16 to 27.

To unveil the atomic patterns in different energy valleys,
several representative structures are displayed in Fig. 4d to k,
with additional structures shown in Fig. S8 to S10.† The names,
BC, Eform, interfacial charge transfer (C), M values, and struc-
tural descriptions of these selected structures are summarized
in Table 1 (see more details in Tables S3 to S5†). Structures in
the energy valleys 1 and 3 exhibit mixed phases. In energy valley
1, monolayers (MLs) feature combinations of different bor-
ophene ribbons, such as c3, b12, and so on (Fig. 4d–g and S8†).
In energy valley 3, bilayers (BLs) are characterized by mixtures of
various borophene phases, including BL-a5, BL-a7, BL-a1, BL-a6,
and BL-a1a6 (Fig. 4i–k and S10†). Note that BL-a5 denotes the
bilayer covalently stacked by two a5 monolayers. Interestingly,
energy valley 2 shows a high degree of structural degeneracy,
with ML10 to ML20 all being buckled triangular lattices (d6)
r the top ten most stable configurations from energy valleys (a) 1, (b) 2,
L1–ML10, ML11–ML20, and BL1–BL10, respectively. The luminance of

er luminance corresponds to the smaller M value. (d)–(k) The atomic
L1, BL2, and BL5) of (a)–(c), in which the black dashed lines denote the
, BL1, BL2, and BL5, both top and side views are provided. The light gray
which the lower boron atoms of ML11 and the bottom sheet of BL
nts are depicted by different shapes with different colors.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The name, boron coverage (BC), formation energy (Eform), and
structural components of the unit cell for representative structures
from three energy valleys. The structures denote the type and corre-
sponding number of different borophene phases included in the unit
cell of mixed-phase borophenes. C is the averaged number of elec-
trons transferred from Ag to B

Name BC Eform (eV per atom) Structures C (e per atom)

ML1 2.700 −6.5371 1c31b12 0.0265
ML4 2.720 −6.5316 3c31b12 0.0274
ML5 2.769 −6.5299 1c31b12 0.0290
ML8 2.731 −6.5200 1c32b12-dislocation 0.0268
ML11 3.600 −6.5285 d6 0.0108
BL1 6.312 −6.5966 2BL-a51BL-a11BL-a1a6 0.0103
BL2 6.444 −6.5917 3BL-a53BL-a7 0.0095
BL5 6.375 −6.5870 2BL-a52BL-a1a6 0.0110
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(Fig. 4h and S9†). The simulated STM images of all these
structures are provided in Fig. S11 and S12,† Fig. 5a–h. The
nomenclature of all borophene structures follows the rules
proposed in previous work.1 The structures of MLs in this work,
including new structures (a6 and a7) and borophene ribbons
(c3, b12, and R1), are shown in Fig. S13.† Fig. S14† provides
detailed atomic patterns of BL-a5, BL-a7, BL-a1, BL-a6 and BL-
a1a6. Here, BL-ai or BL-aiaj denotes the bilayer covalently
stacked by two ai monolayers or ai and aj monolayers,
respectively.

In energy valley 1, MLs feature combinations of different
borophene ribbons, such as c3 and b12 with varying ratios
Fig. 5 Simulated images of (a) ML1, (b) ML4, (c) ML5, (d) ML8, (e) ML11, (f
primitive cell. The (i)–(l) corresponding projected density of states, in wh
fermi energy level is set as 0 eV.

© 2025 The Author(s). Published by the Royal Society of Chemistry
(Fig. 4d–g, S8 and Table S3†). ML1 comprises one c3 and one b12
ribbon in the unit cell (Fig. 4d), and its simulated STM image is
shown in Fig. 5a. It is more stable thanML2 (Fig. S8a†) and ML3
(Fig. S8b†) by 4.6 and 5.1 meV per atom, respectively (Table 1).
ML2 and ML3 comprise two c3 and one b12 ribbon and one c3

and two b12 ribbons, respectively, which closely match experi-
mental phases C and A based on simulated STM images (Fig.
S11a and b†).12 Additionally, the simulated STM images of the
pure b12 sheet (ML6, Fig. S8c†) are consistent with phase B (Fig.
S11c†). Minor discrepancies, such as the position of a less
bright stripe in the simulated STM images, may arise from
undulation uctuations due to substrate interactions. ML4
(Fig. 4e), composed of three c3 and one b12 ribbon, and ML5
(Fig. 4f), composed of one c3 and one b12, possess comparable
stability to ML2 and ML3. Note that ML5 shares the same
atomic pattern as ML1, but ML1 has a lower lattice mismatch,
enhancing its stability (Table S3†). The pure b12 (ML6, Fig. S8c†)
and c3 (ML7, Fig. S8d†) phases, which have been experimentally
synthesized, are less stable than the mixed ribbons (ML1 to
ML5) according to their Eform values. Therefore, the newly
identied ML1 and ML4 are thermodynamically feasible under
experimental conditions. Additionally, structures featuring
ribbon dislocation (ML8, Fig. 4g) and hybridized c3-b12 ribbons
(ML10, Fig. S8f†) have been predicted. These structural defects
are inevitable in as-grown borophene,11 and can only be
captured in large supercells.

In energy valley 2, all structures fromML11 to ML20 adopted
a buckled d6 lattice (Fig. 4h and S9†), despite being observed in
) BL1, (g) BL2, and (h) BL5 on Ag(100). The red dashed lines denote the
ich the gray and cyan lines denote Ag and B atoms, respectively. The
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different supercells (Table S4†). The simulated STM image of
ML11 is provided in Fig. 5e. In energy valley 3, BLs are charac-
terized by mixtures of various borophene phases, including BL-
a5, BL-a7, BL-a1, BL-a6, and BL-a1a6 (Fig. 4i–k and S10†). BL1
(Fig. 4i), BL3, and BL4 are composed of varying proportions of
BL-a5, BL-a1a6, and BL-a1. BL2 (Fig. 4j), composed of BL-a5 and
BL-a7, is more stable than the single-phase BL-a7 (BL6) and BL-
a5 (BL10) by 3.8 and 19.7 meV per atom, respectively. This
indicates a preference for mixed-phase bilayer borophenes on
Ag(100). Additionally, BL5 (Fig. 4k) consists of BL-a5 and BL-
a1a6, while BL7 comprises BL-a5 and BL-a1. Similarly, BL8 and
BL9 are mixtures of BL-a5, BL-a1a6, and BL-a6 in different
proportions. The simulated STM images of BL1, BL2, and BL5
are provided in Fig. 5f–h, and those of the other BLs are shown
in Fig. S12.† Notably, the pattern of BL10 matches well with the
experimental CO-AFM images of bilayer borophene on Ag(111)
in the literature.47 All aforementioned BLs are stacked in an AB
pattern, while AA-stacking variants exhibit lower stability (Fig.
S15†) and their corresponding atomic arrangements are dis-
played in Fig. S16.†
Electronic properties of representative structures

We conducted projected density of states (PDOS) calculations
for representative structures (ML1, ML4, ML5, ML8, ML11, BL1,
BL2, and BL10) on the Ag(100) substrates, as shown in Fig. 5f–i.
Detailed PDOS information, including those for free-standing
borophene, is presented in Fig. S17 and S18.† These calcula-
tions reveal that all analyzed structures exhibit metallicity when
supported on Ag(100). Notably, there is a signicant increase in
the density of states (DOS) near the Fermi level for ML1, ML4,
ML5, and ML8, while ML11, BL1, BL2, and BL10 show
a decrease in DOS in this region. These trends can be directly
compared with the future experimental dI/dV spectra to validate
our computational predictions.

Furthermore, all examined structures, except for BL-a5,
retain their metallicity in free-standing forms and demonstrate
good conductivity. This suggests that the mixed-phase bor-
ophenes not only maintain their electronic properties when
supported on metal substrates but also exhibit promising
conductivity characteristics in isolation, enhancing their
potential applications in nanoelectronics.
Conclusions

In summary, we established a machine learning-driven frame-
work to resolve the complex potential energy landscape of
borophene on Ag(100), revealing unprecedented structural
diversity at the nanometer scale. By integrating active learning
with SSW global optimization, we systematically identied 1391
low-energy congurations across three distinct energy funnels,
including mixed-phase monolayers (c3/b12 ribbons) and bila-
yers (BL-a5/BL-a1a6/BL-a1 assemblies). These ndings not only
reconcile experimental observations of borophene poly-
morphism but also unveil previously unexplored metastable
phases stabilized by substrate interactions. The methodology
developed here, combining scalable neural network potentials
7326 | Chem. Sci., 2025, 16, 7320–7328
with adaptive sampling, transcends borophene systems,
offering a generalized strategy for exploring polymorphism in
substrate-supported 2D materials (e.g., silicene, phosphorene).
Furthermore, the metallic nature of these mixed phases and
their tunable electronic properties suggest promising avenues
for nanoelectronic applications.
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