#® ROYAL SOCIETY

Chemical
P OF CHEMISTRY

Science

View Article Online
View Journal | View Issue,

EDGE ARTICLE

A BODIPY-tagged trivalent glycocluster for
receptor-targeting fluorescence imaging of live
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Multivalent glycoclusters have been extensively used as a targeting agent for drug delivery. However, tools
capable of investigating their dynamic interactions with a target receptor remain elusive. Here, we
synthesized fluorescently-tagged galactoclusters for the fluorescence imaging of cells that overly
express the asialoglycoprotein receptor (ASGPr). A trivalent galactoside was synthesized, to which
a boron dipyrromethene (BODIPY) dye was conjugated. The resulting fluorescent glycocluster was used
for the targeted fluorescence imaging of liver cancer cells with a high ASGPr expression level. The
trivalent probe was also demonstrated to be applicable for super-resolution imaging of ASGPr-mediated
ligand endocytosis and the dynamic intracellular translocation to the lysosomes. As such, this study
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Introduction

Sugar-receptor interactions are known to mediate a number of
biological processes.' A representative example is the selective
interaction between the asialoglycoprotein receptor (ASGPr)
and glycoconjugates bearing galactosyl (Gal) or N-acetyl-
galactosaminyl (GalNAc) residues, which leads to cell endocy-
tosis.* ASGPr has been determined to be highly expressed in
hepatocytes.” Previous studies suggest that ASGPr exhibits
important biological functions including disruption of choles-
terol metabolism,® alleviation of liver injury”® and degradation
of serum glycoproteins.®™**
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ASGPr has long been exploited as a molecular target for
targeted drug delivery. To enhance the receptor-binding avidity,
multivalent glycoclusters have been designed and synthesized.
Considering the trimeric nature of ASGPr, a variety of trivalent
Gal and GalNAc-based glycoclusters have been developed and
used for conjugation with therapeutics for targeted drug
delivery."> For example, several GalNAc-conjugated small-
interfering RNA (siRNA) therapeutics have been approved by
the FDA."*'* Bertozzi et al. developed lysosome-targeting
chimeras (LYTACs), a novel protein degradation strategy
exploiting sugar receptors including ASGPr to mediate endocy-
tosis of membrane-bound proteins.'® Furthermore, by targeting
ASGPr, small-molecule drugs such as docetaxel'” and immuno-
virotherapeutics such as oncolytic herpes simplex virus'® have
been delivered to liver cancer cells in a target-specific manner.

A survey of literature also indicates extensive interest in the
development of fluorescent glycoprobes for targeted imaging of
live cells and animals. Yan et al. synthesized a Gal-conjugated
amphiphilic small molecular dye, which can form multivalent
nanoparticles in aqueous solution, for NIR-II imaging-guided
photothermal therapy (PTT) of liver cancer cells.' Wang et al.
developed Gal-conjugated fluorescent probes for the targeted
detection of Fe*" in the lysosomes of hepatocytes.?® Xing et al.
designed lactosylated fluorescent prodrugs that self-assemble
into multivalent nanoparticles for photodynamic therapy and
chemotherapy of liver cancer.**** The same group also con-
structed aggregation-induced emission (AIE)-active fluorescent
nanoparticles bearing multiple copies of glucosamine,
mannose or sialic acid for the inhibition of insulin fibrillation.**
We have also developed series of fluorescent dye-conjugated
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Fig. 1 (a) Chemical structures of Gals-BODIPY, Gal-BODIPY and
PEG3-BODIPY. (b) Schematic illustration of receptor-targeting cell
imaging.

glycoprobes® ¢ and glycoclusters®—* for targeted imaging and
therapy of bacterial infection as well as cancer. Despite the
rapid development of glycocluster-based delivery systems,
fluorescent tools capable of tracking glycocluster-receptor
interactions remain elusive.

Here, we developed boron dipyrromethene (BODIPY) tagged
galactoclusters for the multimodal fluorescence imaging of live
cells that overly express ASGPr (Fig. 1). Owing to the unique
photophysical properties of BODIPY, we were able to achieve the
visualization of the glycoclusters upon cell endocytosis and
their dynamic translocation to the lysosomes via super-
resolution imaging techniques. This offers scope for the
monitoring of receptor dynamics upon sugar-receptor
interactions.

Results and discussion

The synthesis of the glycocluster is detailed in Schemes S1 and
S2.1 Gallic acid was used as a template, on which three mole-
cules of galactose (Gal) displayed. Three tert-
butoxycarbonyl-protected alkylamines were first introduced to
the phenolic positions of gallic acid, and then an azido poly(-
ethylene glycol) (PEG) was coupled with the carboxylic group of
the template through an amidation reaction. After removal of
the Boc groups, three pentanoic acid-modified per-O-acetyl-1-O-
B-galactosides were coupled to the template through amide
bonds. Finally, reaction with an alkynyl BODIPY derivative via
Cu()-catalyzed azide-alkyne cycloaddition reaction, and
removal of the acetyl protecting groups resulted in the desired
product Gal;-BODIPY being obtained. A monovalent probe (Gal-
BODIPY) was synthesized as control with just one galactosyl
group introduced to the BODIPY. Another control compound
(PEG;-BODIPY) where the Gal groups were replaced with methyl
groups was also synthesized in a similar manner.

With the glycocluster in hand, we determined its photo-
physical properties. To our delight, the glycocluster is well
soluble in phosphate buffered saline (PBS). Therefore, the
absorption and fluorescence emission spectra for Gal;-BODIPY
(Fig. 2a), PEG3;-BODIPY (Fig. 2b) and Gal-BODIPY (Fig. S171) were
readily obtained. A quantum yield of 0.49 and a lifetime of 1.4
ns was determined for Gal;-BODIPY in PBS (Table S1t). In

were
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Fig. 2 Absorption (40 uM) and fluorescence emission (10 pM, Aex =
488 nm) spectra of (a) Galz-BODIPY and (b) PEGz-BODIPY measured
in PBS buffer (0.01 M, pH 7.4) (c) fluorescence changes of Gals-
BODIPY (10 pM) and PEGs-BODIPY (10 pM) in PBS buffer (0.01 M, pH
7.4) under white light (560 nm, 1 W cm™2) and UV light (365 nm, 1 W
cm™?) irradiation with time. (d) Fluorescence changes of Gals-BODIPY
(5 uM) and PEG3-BODIPY (5 uM) in 21 different pH PBS buffers (0.01 M,
pH 2-12). The slit width was set as 5 nm.

addition, the fluorescence of the glycocluster was not compro-
mised by continuous light irradiation for up to 30 min (Fig. 2c)
or exposure to a wide range of pH conditions (Fig. 2d). These
results suggest that the BODIPY-tagged glycocluster is suitable
for cellular imaging applications.

Next, we turned our attention to evaluate the applicability of
the fluorescent glycocluster for targeted cell imaging. Six cell
lines including HepG2 (human hepatoma cell), Huh7 (human
hepatoma cell), MHCC-97H (human hepatoma cell), MDA-MB-
231 (human triple-negative breast cancer cell), HeLa (human
cervical cancer cell) and RAW264.7 (mouse macrophage cell)
with different ASGPr expression levels were used (HepG2, Huh7,
MDA-MB-231, HeLa and RAW264.7 cell lines were purchased
from American Type Culture Collection (ATCC), and MHCC-
97H cell line was purchased from National Collection of
Authenticated Cell Cultures). First the quantitative polymerase
chain reaction was first used to determine the relative ASGPr
mRNA level of all six cell lines. Then, cells were incubated with
Gal;-BODIPY, PEG;-BODIPY or Gal-BODIPY, and imaged by
a high-content screening system. We determined that the
fluorescence of Gal;-BODIPY was stronger in HepG2 than in
other cells (Fig. 3a and b). The quantified fluorescence intensity
of the probe agreed with the endogenous ASPGr expression level
of the cells (Fig. 3c). Interestingly, the fluorescence intensity of
Gal-BODIPY in all the tested cells was seen to be constantly
smaller than that of Gal;-BODIPY, suggesting a stronger
binding between the trivalent ligand and ASGPr. This agrees
with the observation in a previous study.** In contrast, a similar
level of fluorescence was detected in all six cells for PEG;-
BODIPY without Gal modification (Fig. 3a and b). We also
determined that the fluorescence imaging of HepG2 cells by
Gal;-BODIPY was concentration (Fig. S21) and time-dependent
(Fig. S27), and that the glycocluster was not toxic to the cells

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Fluorescence imaging and (b) quantification of HepG2, Huh7, MHCC-97H, MDA-MB-231, HelLa and RAW264.7 cells after treatment

with Galz-BODIPY (5 uM), PEG3-BODIPY (5 uM) or Gal-BODIPY (5 uM) for 1 h. (c) ASGPr mRNA expression level of the cell lines used for imaging

measured by RT gPCR (scale bar = 100 pm).

tested (Fig. S371). These results help confirm the ASGPr-targeting
ability of Gal;-BODIPY.

To corroborate that the targeted imaging is receptor-
dependent, several other experiments were carried out. RNA
interreference was carried out to suppress the ASGPr expression
level in HepG2 cells (Fig. 4c). We determined that cells treated
with ASGPr siRNA exhibited a significantly lower cellular uptake
of the glycoclusters than those without siRNA treatment (Fig. 4a
and b). Incubation of HepG2 cells with Gal;-BODIPY at 4 °C
significantly decreased the fluorescence intensity with respect
to 37 °C incubation (Fig. 4d and e), suggesting the internaliza-
tion of the glycocluster is kinetically controlled.* In addition,
preincubation of the cells with an excess of free Gal suppressed
the fluorescence of the glycocluster (Fig. 4f and g).

With promising imaging results obtained, we set out to
examine the applicability of the BODIPY-tagged glycocluster for
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multimodal cell imaging. BODIPY is a class of popular organic
dyes often used for live cell imaging because of its high
brightness and amenability for super-resolution imaging.**>°
We used a Leica STELLARIS 8 STED (stimulated emission
depletion) system to image HepG2 cells after incubation with 10
uM of Gal;-BODIPY for 5 min under STED and confocal mode
(Fig. S41). With STED, we obtained fluorescence images with
suppressed background signals and higher resolution
compared to the confocal images. We then set out to explore the
super-resolution imaging of ASPGr-mediated endocytic
processes using Galz-BODIPY. Ly-Red-BODIPY, a lysosomal
tracker developed in our laboratory was used for this experi-
ment (Scheme S3 and Fig. S51).

HepG2 and HelLa cells pre-incubated with Ly-Red-BODIPY
were treated with Gal;-BODIPY and then imaged every 30 s
(Fig. 5). During an imaging period of 300 s, we observed that

12 e ockok
—

Normalized ASGPr mRNA

f g
12 *%

Gal,-BODIPY § b
N
k]
£

5 04
z

Merge 0.0

6 ®
D-Gal

(a) Fluorescence imaging, (b) quantification and (c) mRNA expression level of ASGPr knock-down HepG2 cells and relative control cells.

(d) Fluorescence imaging and (e) quantification of Gals-BODIPY cultured HepG2 cells at different temperature. (f) Fluorescence imaging and (g)
quantification of HepG2 cells preincubated with free p-galactose (scale bar = 100 pm). BODIPY channel excitation at 488 nm, emission at 500—
550 nm. Hoechst 33 342 channel excitation at 405 nm, emission at 435-480 nm.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5

(a) Fluorescence imaging and (b) linear quantification of HepG2 cells incubated with Galz-BODIPY and Ly-Red-BODIPY under STED

mode. The Zoom images are those enlarged from the white boxes shown in the STED images. (c) Fluorescence imaging and (d) linear quan-
tification of Hela cells incubated with Galz-BODIPY and Ly-Red-BODIPY under STED mode. BODIPY channel: excitation at 488 nm, emission at
500-550 nm and depletion with 775 nm STED laser. Ly-Red-BODIPY channel: excitation at 638 nm, emission at 640-700 nm and depletion with
775 nm STED laser. Green and red lines represent the fluorescence intensity of Gal;-BODIPY and that of Ly-Red-BODIPY, respectively. The
corresponding Pearson's Correlation Coefficient is labelled in the bottom-right (scale bar = 25 um).

Gal;-BODIPY was rapidly internalized by HepG2 cells from 0-
30 s and translocated to the lysosomes immediately. Then, the
probes resided in the lysosomes over the complete imaging
cycle as evidenced by its high Pearson's coefficient values
determined when overlapped with Ly-Red-BODIPY (Fig. 5a and
b, and ESI movie 1f). In contrast, Gal-BODIPY was hardly
internalized by HeLa cells under the same imaging conditions,
and a low overlap between the fluorescence of the probe and
that of the lysosomal tracker was determined (Fig. 5¢, d, and ESI
movie 21). In the meantime, PEG;-BODIPY used as a control was
found to be barely internalized by both HepG2 and HeLa cell
lines (Fig. S61), which agrees with the results obtained by high-
content fluorescence imaging. We also found that Gal;-BODIPY
was applicable for lifetime imaging, and a lifetime of 3.98 ns
was determined for the probe (Fig. S71). This indicates that
BODIPY-modified glycoclusters can be used for lifetime
imaging of ASGPr-mediated endocytosis.

Conclusions

We have synthesized a BODIPY-tagged galactocluster for tar-
geted imaging of live cells. A gallic acid-based tripod was used to
display three molecules of Gal, and the resulting trivalent gly-
cocluster was shown to be selectively internalized by cells that
overly express ASGPr. In addition, the unique photophysical
properties of BODIPY enabled us to visualize ASGPr-mediated
endocytosis and intracellular translocation to the lysosomes
using super-resolution imaging techniques. This study offers
insights for the elaboration of receptor dynamics in live cells
using BODIPY-tagged glycoclusters.
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