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Efficient synthetic methods are urgently needed to produce graphene nanoribbons (GNRs) with diverse
structures and functions. Precise control over the topological edges of GNRs is also crucial for achieving
diverse molecular topologies and desirable electro-optical properties. This study demonstrates a highly
efficient "shotgun” synthesis of thiophene-backbone arcuate GNRs, offering a significant advantage over
tedious iterative synthesis. This method utilizes a one-pot, three component Suzuki—Miyaura coupling
for the precursor, followed by a Scholl reaction for cyclization. The resulting arcuate GNRs have sulfur
atoms embedded in the carbon backbone with a combined armchair, cove, and fjord edge structure.
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to electron-deficient sulfones, enabling precise regulation of the GNRs' electronic properties. These
DOI: 10.1039/d4sc08353a arcuate GNRs with diverse edge structures, heteroatom doping and precise lengths open exciting

rsc.li/chemical-science avenues for their application in optoelectronic devices.

linear counterparts, GNRs with different lengths are usually
prepared by iterative synthesis (Fig. 1a).'>'”*"*> These methods
often involve complex and expensive starting materials,

Introduction

Atomically precise graphene nanoribbons (GNRs) have attracted
significant attention recently due to their intriguing electronic
properties and applications in next-generation optoelectronic
devices."® Their optical and electronic properties strongly

depend on their structural parameters, such as lengths, widths,
shapes, and edges.”'® Besides control over the above- (8) +(¢) —(cHBHCS) — (AHBHCcHBHCcHBHA

mentioned structural parameters, properties can be fine-tuned ,,@_,ﬂ__“ :gg:;zlzxs;%sredmus
by incorporation of heteroatoms into the conjugated nano- [essmasonnas=msasnas =

ribbon backbones.""” Organic chemists have focused on
developing new synthetic strategies and easily accessible b) This work : “Shotgun” Synthesis for Congeners of Various Lengths
structure-rich building blocks for the production of GNRs and
heteroatom-doped GNRs over decades.'®>* @, *

The solution-phase synthesis that is the formation of a line- ©

arly extended precursor followed by a ring-closing step is one of
the most promising strategies for the preparation of well-
defined GNRs on a large scale.**® For the study of length-
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Fig. 1 Synthesis of thiophene-backbone arcuate graphene nano-
ribbons. (a) The precursor of GNRs was constructed by an iterative
strategy. (b) Schematic illustration of rapid construction of thiophene-
backbone arcuate GNRs.
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restricting structural and functional diversity. The “shotgun”
approach to macrocycles®**” involves using a one-pot multi-
component cyclization of small monomers, to access the mac-
rocycle. This approach shows great advantages to quickly
construct macrocycles with diverse sizes and functionalities. In
addition, phenanthrene is an important polycyclic aromatic
hydrocarbon (PAH), which has an armchair side. We envision
that 1,8-diaryl phenanthrene derivatives would be promising
building blocks for the “shotgun” synthesis of GNRs, which are
readily available.®®

Herein, we report a series of arcuate GNRs with thiophene
backbones with high efficiency. The precursor of GNRs was
constructed by Suzuki-Miyaura coupling with 1,8-diaryl phen-
anthrene as a key building block and then dehydrogenation to
obtain GNRs of different lengths. In this case, three GNRs (AR-
11, AR-17, and AR-23) with multiple edge structures were ach-
ieved (the numbering indicates the number of longitudinally
fused rings along their backbone) (Fig. 1a). Oxidizing electron-
rich sulfur atoms to electron-deficient sulfones yielded ARO-
11 and ARO-17 with high efficiency, respectively. Detailed
theoretical and experimental studies demonstrate that length
and the oxidation state greatly affect not only molecular
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conformations but also electronic structures and photophysical
properties.

Results and discussion
Synthesis

To achieve the synthesis of GNRs, a key building block, that is,
1,8-diaryl phenanthrene-2,7-diboronic acid pinacol ester 3 was
synthesized in three steps on a gram scale (Scheme S27),*
which features armchair and cove type edges (Scheme 1a). The
introduction of sulfur into GNRs is achieved by the addition of
2,5-dibromothiophene 2 as the functional block. In addition, 2-
substituted biphenyl 1 was introduced as the end block. Tert-
butyl substituents were installed respectively on 1 and 3 to
ensure the good solubility of the intermediates and the corre-
sponding GNRs. With the key link block 3, functional block 2,
and end block 1 in hand, a series of precursors of sulfur-doped
AR-n were obtained by one-pot synthesis and isolated through
column chromatography in 53% (4a), 19% (4b), and 12% (4c)
yield, respectively. By varying the end groups and adjusting the
molar ratio of the three components, congeners with diverse
lengths can be obtained (see Scheme S3 and Table S2t for
further details).®® This “shotgun” approach demonstrates

i
E—

Cond.: [ 2.10 nm, 37.2°

AR-11 (95%)

3.29 nm, 51.4°
AR-17 (93%)

Armchair ..
4.49 nm, 70.6°
AR-23
Comfirmed By HRMS

2163.9706
—— AR-23

measured

simulated

2163.9709
2162 2164 2166 2168
m/z

ARO-17 (90%)

4
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1

Scheme 1 The synthesis of thiophene-backbone arcuate GNRs. (a) (i) 1 (2.4 equiv.), 2 (1.0 equiv.), 3 (2.0 equiv.), Pd(PPhs)4 (0.5 equiv.), K;COs (25
equiv.), 1,4-dioxane: H,O =8:1; 90 °C, 36 h. Isolated yields were based on the amount of compound 1. Thin-layer chromatography: TLC was run
three times with the eluent system (PE/DCM = 8/1). (ii) DDQ (1.2 equiv. for each C-C bond), CF3SOzH, CH,Cl,, —10 °C, 1 h. DDQ: 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone. Electrochemical continuous flow conditions: a carbon anode, a Ni cathode, "BusNBF4(0.13 M), DCM/TFA, 4a
(0.1 mmol), 1.65 V, 0.10 mL min~%, rt. (b) Synthetic route of ARO-11 and ARO-17. (c) High-resolution MALDI-TOF mass spectra of AR-23.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Chem. Sci., 2025, 16, 7366-7373 | 7367


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc08353a

Open Access Article. Published on 19 March 2025. Downloaded on 1/20/2026 7:32:48 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

significant advantages over conventional iterative synthesis in
terms of time efficilency and material economy. A direct
comparison reveals that the iterative strategy requires six reac-
tions spanning 216 hours to produce 4a, 4b, and 4c, while our
protocol achieves identical product formation in just 36 hours
(an 84% reduction in total reaction time). Critically, this
method also exhibits marked improvement in synthetic
economy: equimolar quantities of target products can be ob-
tained using significantly less starting material compared to the
traditional approach (Scheme S4t). The drastic reduction in
both operational steps (from six to one) and experimental
duration highlights the exceptional practicality and scalability
of this synthesis strategy for multi-component molecular
construction.

The following ring-closing reactions of 4a and 4b by intra-
molecular oxidative cyclodehydrogenation in the presence of
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and
CF5;SO;H gave the desired GNRs AR-11 and AR-17 in 95% and
93% yields, which were well-characterized by NMR analysis and
HRMS. Due to the poor solubility of AR-23, well-resolved 'H and
13C NMR spectra could not be recorded. However, character-
ization was achieved by matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF MS),
Fourier transform infrared spectroscopy (FT-IR) and the Raman
spectrum (Scheme 1c and Fig. S6-S81). The Scholl reaction is
conducted using super stoichiometric oxidants, limiting its
scalability. To address these challenges, we also developed an
electrochemical continuous flow Scholl reaction. This method

a) X-ray structure of AR-11 at 50% thermal probability
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eliminates the need for oxidants and enables the production of
AR-11 in larger quantities. The arc lengths and radians of AR-11,
AR-17 and AR-23 are 2.10 nm and 37.2° for AR-11, 3.29 nm and
51.4° for AR-17, and 4.49 nm and 70.6° for AR-23 based on
density functional theory (DFT) optimized structures (Scheme
1a and Fig. S9-S137). The source code of the program for the
measurement of lengths and the radians is listed in Table S5.}
In addition, AR-11 and AR-17 were oxidized to give orange solid
ARO-11 and ARO-17 with excessive meta-chloroperoxybenzoic
acid (mCPBA) in 90% yields (Scheme 1b).

X-ray crystal structures

The arcuate and curved shape structures of AR-11 and ARO-11
were confirmed by single-crystal X-ray diffraction analysis
(Fig. 2). Slow diffusion of acetone into a CDCl;/CS, solution of
AR-11 at room temperature resulted in the formation of AR-11
single crystals. The single crystals of ARO-11 were obtained by
the slow diffusion of CH;OH into the CHCI; solution. Single-
crystal structure analysis indicated that the m-skeletons of AR-
11 and ARO-11 are highly twisted along their longitudinal axes
(Fig. 2a and b). With the presence of bulky tert-butyl groups on
the fjord edges of AR-11 and ARO-11, the benzenoid rings adopt
an interlacing “up-down” conformation with dihedral angles
ranging from 36° to 47° (also see Fig. S2t). The end-to-end arc
lengths for the m-backbone of AR-11 and ARO-11 are 2.05 nm
and 2.06 nm, respectively, which correspond to the DFT opti-
mized structures (Scheme 1a). In the packing structures of AR-
11 and ARO-11 (Fig. 2c and d), every two identical molecules

b) X-ray structure of ARO-11 at 50% thermal probability

2.06 nm

Fig. 2 Crystal structures of AR-11 and ARO-11. (a and b) X-ray crystal structures of AR-11 and ARO-11. (Thermal ellipsoids are shown at 50%
probability). (c and d) The packing structure of AR-11 and ARO-11. (Solvent molecules, hydrogen atoms and partial tertiary butyl are omitted for

clarity).
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(shown in green and blue) surround each other in the form of
face to edge, forming a dimer. This dimer presents a slip-
stacked packing mode along the plane of the g-axis and c-axis.
In the stacking structures of AR-11, the dimer has intermolec-
ular - interactions with an interlayer distance as short as 3.3
A (Fig. 2c and S2bf). In the crystal structure of ARO-11 the
distance of - interactions between the adjacent molecules is
3.0 A. Besides, there are face-to-edge intermolecular C-H...O
hydrogen bonding interactions (2.5 A) and the arrangement is
closer for ARO-11 (Fig. 2d and S2b¥).

Calculations and photophysical properties

Considering the 4-fold helicity of AR-11, we can depict ten
stereoisomers including four pairs of enantiomers and two
meso isomers (six diastereomers in total, Fig. 3), which are
categorized as follows: C; symmetry (C;-I and Cy-II), C,
symmetry (C,-I and C,-II), and Cg symmetry (Cs-I and Cg-II)
(Fig. 3). Density Functional Theory (DFT) calculations were
performed to explore their relative stability. Calculation details
are given in the ESI (Fig. S14 and S15)7***¢ Based on the DFT
calculations, the (P,M,P,M) conformation is the most stable,
which is consistent with the X-ray crystal structure result, fol-
lowed by the alternated (P,M,M,P) (+0.9 kcal mol *). The
conversion barrier of AR-11 from the (P,M,M,P) to the (P,M,P,M)
is 20.1 kcal mol " (Fig. S15t). Furthermore, AR-17 exhibits 6-
fold helicity and affords 36 types of isomers with varying Gibbs
free energies (Fig. S161). Semi-empirical calculations were
conducted over them. Based on the calculations, the
(P,M,P,M,P,M,P) conformation is the most stable, followed by
the alternated conformation (P,M,P,M,P,P,M) (+0.8 kcal mol ).

To gain insight into the length-dependent photophysical
properties of AR-n and ARO-n, UV/vis absorption and fluores-
cence emission were measured in diluted CH,Cl, solutions at
room temperature (Fig. 4a and b). The results are summarized
in Table 1. AR-17 (A;ps = 434 nm, loge = 5.24) exhibited
a bathochromic shift compared to AR-11 (2,55 = 415 nm, log ¢ =
5.07), which was attributed to the extended w-backbone. ARO-11
exhibited a pronounced bathochromic shift in its absorption
maximum (A,ps = 466 nm, log ¢ = 4.79) compared to AR-11 as
well, attributable to the integration of the electron-withdrawing

Cy symmetry C, symmetry Cs symmetry

a®
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C-ll : Corll : Cell
(P, P, M, P) , (P, M, M, P) , (P, M, P, M)
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Fig. 3 Stereoisomers of AR-11 and their relative Gibbs free energies
(kcal mol™).
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thiophene-S,S-dioxide unit into the extended 7t-system. Notably,
ARO-11 displayed broader absorption features than AR-11.
Similar trends were observed for ARO-17 and AR-17.

Compared to AR-11 (Aey, = 459 nm), the bathochromic shift
in the photoluminescence spectra was pronounced for AR-17
(Aem = 479 nm) due to its extended conjugated backbone, or for
ARO-11 (A, = 511 nm) due to incorporation of the electron-
withdrawing thiophene-S,S-dioxide unit (Fig. 4b). The absolute
fluorescence quantum yields (@) were measured by using an
integrating sphere detector.”” In CH,Cl, solution, @y values
increased with 7-backbone extension in AR-11 (15%) and AR-17
(37%). Conversely, ARO-11 (65%) and ARO-17 (71%) displayed
high, m-backbone-independent @y values. In the solid state,
however, @y values decreased to 5.9% for ARO-11 and 1.5% for
ARO-17, likely due to aggregation-caused quenching via strong
intermolecular m-overlap. Similar trends were observed for AR-
11 (4.7%) and AR-17 (0.2%).***° Additionally, the emission
wavelengths of the compounds in the solid state were
measured. Owing to the high molecular rigidity of the
compounds, the emission wavelengths in both the solid and
solution states showed minimal red-shift (Fig. S51). To further
elucidate the photophysical properties, the energy diagrams
and frontier molecular orbitals of AR-n and ARO-n were calcu-
lated by the time-dependent density functional theory (TD-DFT)
method at the PBE0-D3(B])/6-31G(d,p) level of theory (Fig. 4d,
S19 and S20%).°* The lowest energy absorption bands of AR-n
and ARO-n are attributed to the S, — S; excitation (AE, 3.12 eV
for AR-11, 2.74 eV for ARO-11, 2.97 eV for AR-17, and 2.61 eV for
ARO-17), which mainly arises from the HOMO — LUMO tran-
sition (95% for AR-11, 92% for ARO-11, 90% for AR-17, and 87%
for ARO-17) and has an oscillator strength (f) of 1.77 for AR-11,
1.19 for ARO-11, 3.07 for AR-17, and 2.11 for ARO-17 (Tables S6-
S9t). The electrochemical properties of these sulfur-doped
GNRs were studied in CH,Cl, solution by cyclic voltammetry
(CV) and differential pulse voltammetry (DPV). All compounds
exhibited an obvious reduction process, with Ep™® values of
—1.51 eV (AR-11), —1.76 eV (ARO-11), —1.52 eV (AR-17), and
—1.57 eV (ARO-17). Oxidation potentials (Ep®™') were 0.65 eV
(AR-11), 0.74 eV (ARO-11), 0.80 €V (AR-17), and 0.92 eV (ARO-17).
Based on Ep®*' values, HOMO energy levels were estimated to be
—5.34 eV (AR-11), —5.60 eV (ARO-11), —5.66 eV (AR-17), and
—5.41 eV (ARO-17), demonstrating good agreement with the
computational study (Fig. 4c, S31 and Table 1).

The energy levels of the calculated frontier molecular
orbitals of AR-n and ARO-n are shown in Fig. 4d, S19 and S20,7
for example, the HOMO and LUMO of AR-17 and ARO-17 spread
over the whole w-system. After converting the electron-rich
thiophene ring into an electron-poor thiophene-S,S-dioxides,
the sulfone dioxide unit considerably reduces the HOMO energy
level; the LUMO energy level has a greater decrease. Hence, the
energy gap of the molecule is greatly reduced, which leads to
a large redshift of fluorescence emission. Notably, the band
gaps of AR-n and ARO-n are well regulated from 3.90 eV of AR-5
to 3.11 eV of AR-23 and 3.43 eV of ARO-5 to 2.81 eV of ARO-23.
The energies of frontier orbitals of AR-n and ARO-n are plotted
in Fig. 4e (also see Fig. $21-5247). The decrement of the LUMO
energy level and increment of the HOMO energy level are

Chem. Sci., 2025, 16, 7366-7373 | 7369
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Fig.4 Photophysical properties and TD-DFT calculations. (a) UV/vis absorption spectra (AR-11: black line; AR-17: blue line; ARO-11: orange line;
ARO-17: green line) in CH,Cl, solution. (b) photoluminescence spectrum in CH,Cl, solution (Aex = 300 nm). (c) CV and DPV of AR-11, ARO-11
and AR-17, ARO-17 in CH,Cl, solution containing 0.1 M BusNPFg at room temperature at a scan rate of 0.1V s (1.0 x 10~* mol L~ in CH,Cl, for
CV and DPV). (d) Energy diagrams and frontier molecular orbitals of AR-17 and ARO-17 calculated at the PBEO-D3(BJ)/6-31G(d,p) level of theory
(unit: eV). (e) HOMO and LUMO energies of AR-n (blue dotted line) and ARO-n (green dotted line), calculated at the B3LYP/6-31G(d) level of
theory. (f) Calculated NICS(1)zz values and ACID plots (contribution from 7 electrons only) of AR-11 and ARO-11 at the B3LYP/6-31G(d) level of

theory. Aromatic sextet rings are shown in yellow.

observed from AR-5 to AR-23, which leads to a clear shrinkage of
E, in the same sequence. The decreased HOMO level for ARO-n
compared with AR-n strongly suggests the enhanced affinity of
ARO-n to electrons.

Notably, to illustrate the electronic structures and the
molecular aromaticity of S-doped GNRs, nucleus-independent
chemical shift (NICS) and anisotropy of the induced current
density (ACID) calculations on AR-11 and ARO-11 are conducted
at the B3LYP/6-31G(d) level of theory based on the optimized
structures (Fig. 4f, S17 and S18%).”> The largely negative
NICS(1),, values (—22.9 to —27.6 of AR-11 and —24.1 to —28.6 of

7370 | Chem. Sci, 2025, 16, 7366-7373

ARO-11 in yellow) indicate that these six-membered rings
exhibit local aromaticity. These analyses are further supported
by ACID calculations, which show clockwise (diamagnetic) ring
currents mainly distributed at hexagonal rings A/B/C/D/E/F at
the outer rims of the whole m-framework. In addition, rings J/L
in AR-11 and ARO-11 also display very negative NICS(1),, values
(—20.3 of AR-11 and —20.6 of ARO-11), manifesting that they
also contribute to the aromatic structures. However, the positive
NICS(1),, values of 13.3 suggest that these sulfur dioxide rings
have no contribution to the overall w-conjugation in Fig. 4f. The
induced ring currents are relatively weak in the fused sulfur

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Spectroscopic characterization and energy levels of AR-11, AR-17, ARO-11, and ARO-17

Compound Aups [NM] emax [10° M em™] Aem [nm] @ “[%] © “I[ns] Aem “[nm] & %] © »“[ns] Exomo V] Eromo’[eV] ELumoTeV] ng[eV]

AR-11 415/392 1.19/1.01 459 15 2.07
AR-17 434/410  1.74/1.56 479 37 4.02
ARO-11 466/441  0.65/0.56 511 65 1.77
ARO-17 486/463  1.04/0.92 530 71 1.77

464 4.7 0.67 —5.34 —5.06 -1.70 3.36
506 0.2 0.54 —5.66 —5.03 —-1.79 3.24
529 5.9 0.74 —5.60 —5.43 —2.40 3.03
549 1.5 1.24 —5.41 —5.40 —2.51 2.89

@ Measured in CH,Cl, solution (1.0 x 10~° M). ? Measured in the solid state. ¢ Fluorescence quantum yield. ¢ Fluorescence lifetime. ¢ From CVs
measured in DCM (1.0 x 10~* M). The HOMO energy levels are adjusted according to the redox half potential of Fc/F¢” and estimated
according to the formula Eyopmo (€V) = ~(4.80 + ESXLe: — E(ge/re')) (also see Scheme S5)./ Calculations were performed at the B3LYP/6-31G(d) level.

dioxide rings H/N of ARO-11, resulting in a break for the global
delocalization of the m-electrons (Fig. 4f). These results
demonstrate that the doping of sulfur dioxide achieves the
delocalization of r-electrons in GNRs.

Conclusions

Graphene nanoribbons (GNRs) hold significant promise for
optoelectronic applications, but their development is hampered
by the limitations of traditional iterative synthetic methods.
These methods often involve complex and expensive starting
materials, restricting structural and functional diversity. This
hinders the rapid exploration of structure-property relation-
ships, especially length-dependent properties of GNRs, and the
discovery of high-performance materials. A more efficient
approach is to employ a modular synthesis, using end blocks,
link blocks, and functional blocks as key components. This
strategy allows for the facile synthesis of GNRs with a wide
range of structures and functionalities by simply varying the
functional block. We have demonstrated a highly efficient
synthetic approach for sulfur-doped GNRs featuring a unique
cove-armchair-fjord edge combination. Notably, sulfur incor-
poration into the backbone yielded arc-shaped GNRs. The
unambiguous crystallographic characterization of AR-11 and
ARO-11 reveals that the combined cove and fjord edge structure
causes it to deviate from planarity due to steric repulsion. By
oxidizing the electron-rich sulfur atoms to electron-deficient
sulfones, we effectively tune the electronic properties of GNRs.
Expanding the GNR family further, we're currently exploring the
versatility of 1,8-diaryl phenanthrene by crafting GNRs with
diverse functional blocks.
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