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Reversible Redox 19F Magnetic Resonance Imaging Nanoprobes for 
Monitoring Redox State in Vivo

Xiaoyao Xiong, Sijia Li, Yumin Li, Suying Xu, Chang Guo* and Leyu Wang*

Redox processes are indispensable for physiology, and dysregulated redox balance is critical in various metabolic diseases. 
The development of imaging diagnosis tools for real-time monitoring of redox state in vivo is of great importance yet highly 
challenging. Here, we designed the trifluoromethyl (-CF3) grafted selenide polymer nanoprobes for reversible redox sensing 
in vivo. Based on the reversible shift of 19F-nuclear magnetic resonance (NMR) peak between oxidation and reduction state 
of the nanoprobes exposed to different redox species, the 19F-magnetic resonance imaging (MRI) signal ratio of SOX/(SOx+SRed) 
was successfully applied to monitor the redox state in a tumor. These nanoprobes demonstrated good biocompatibility and 
great potential for exploring physiological and pathological redox processes in deep tissues. We envision that this work will 
enable the rational design of 19F-MRI nanoprobes with excellent redox response for the real-time monitoring of the redox 
state at lesion location.

Introduction

Redox processes play a vital role in many biological and physiological 
functions.1-3 Dysregulated redox status is associated with many 
diseases, including cancer,4, 5 cardiological,6 and neurodegenerative 
diseases,7-9 but how the redox status impacts diseases is largely 
unknown. Developing bioimaging probes for dynamic monitoring of 
redox status in deep tissue is critical for understanding and studying 
various diseases.10, 11

Recently, various fluorescent,12 photoacoustic,13, 14 and proton 
magnetic resonance imaging (1H-MRI)15-20 probes have significant 
progressed in monitoring redox processes. However, small-molecule 
fluorescent and photoacoustic probes are only employed to evaluate 
the redox status within cells or superficial tissues due to the limited 
penetration depth of light propagation in tissues, and sometimes 
fluorescence imaging suffers from strong autofluorescence 
interference of tissue. 1H-MRI allows non-invasive visualization of 
deep tissues, but the heterogeneous background of tissues makes 
the interpretation of 1H-MR images more difficult.21 19F-MRI is a 
splendid “hot spot” in vivo imaging technology due to its zero-
background in living organisms.22-27 Most redox-responsive 19F-MRI 
probes28-30 are based on the breakable disulfide bond, which is 
generally irreversible and unsuitable for monitoring redox cycles. The 
other interesting strategy31-34 relies on the metal center switched 
between paramagnetic and diamagnetic states by redox status to 
reversibly modulate the 19F-signal. Despite great progresses, it is still 
highly challenging to fabricate an ideal imaging probe for in vivo 
redox sensing with advantages. Specifically, achieving non-invasive 
and radiation-free imaging with high penetration depth and ultra-

low backgrounds is particularly difficult in current techniques. 
Additionally, ensuring a reversible response for dynamically 
measuring the redox state and excellent biocompatibility of the 
probe itself further complicates the development of an ideal imaging 
probe for redox sensing in vivo.

Herein, we designed the PIBAM-FSeN nanoprobe, based on the 
trifluoromethyl (–CF3, as 19F tags)-grafted selenide (as the redox-
recognition site), for reversible redox status 19F-MRI visualization in 
deep tissue. As depicted in Scheme 1, when exposed to oxidizing 
species, the PIBAM-FSeN was readily oxidized to PIBAM-FSeON, as a 
result, the 19F-NMR signal at -64.2 ppm decreased and a new 19F-
NMR peak emerged at -58.7 ppm. With the increment of oxidation 
degree, the signal at -64.2 ppm (SRed) decreased step by step, and the 
signal at -58.7 ppm (SOx) simultaneously increased. This phenomenon 
would reverse in the presence of reductive species. Therefore, the 
19F-MRI signal ratio SOx/(SOx+SRed) could be utilized to monitor 
reversible redox processes in deep tissue.

Scheme 1 Schematic illustration of the nanoprobes for 19F-MRI 
monitoring of reversible redox processes.

a.State Key Laboratory of Chemical Resource Engineering, College of Chemistry, 
Beijing University of Chemical Technology, Beijing, 100029, China

†Electronic supplementary information (ESI) available. See 
DOI: 10.1039/x0xx00000x
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Results and discussion
Preparation and Characterization of PIBAM-FSeON and PIBAM-
FSeN NPs.

Before the synthesis of reversible 19F-MRI nanoprobes, the 
precursor, 2-(2,2,2-trifluoroethyl)selanylethan-1-amine (FSeN), 
was first synthesized and characterized (Fig. S1-S7). Then, poly 
(isobutylene-maleic anhydride) (PIBAM) was modified with 
FSeN to get PIBAM-FSeN through a ring-opening reaction (Fig. 
S1). The selenide ether group in PIBAM-FSeN was further 
oxidized to the selenoxide group, terms as PIBAM-FSeON (Fig. 
S8-S9). Notably, compared with most reported fluoropolymers 
(fluorine content is generally below 5 wt%), both PIBAM-FSeN 
and PIBAM-FSeON had a high fluorine content of 16 wt% and 15 
wt%, respectively (Fig. S10), which were highly desirable for 19F-
MRI benefiting from their high 19F content and thus strong MRI 
signal. Next, the PIBAM-FSeN NPs and PIBAM-FSeON NPs were 
obtained through self-assembly under ultrasonic emulsification 
(Fig. S11). The good stability of these NPs in aqueous solution 
was confirmed by the hardly changed values in the 19F-NMR 
signal (Fig. S12) and dynamic light scattering (DLS) size (Fig. S13) 
even after 50 days.

In Vitro Detection of Redox Species by 19F-NMR.

Then the redox responsive ability of these NPs was carefully 
checked. As shown in Fig. 1A, in the presence of Na2S, the 19F-
NMR spectrum of PIBAM-FSeON NPs shifted significantly from -
58.7 to -64.2 ppm, stemming from the reduction of selenoxide. 
With the increment of Na2S content, the 19F-NMR signal at -64.2 
ppm was enhanced step by step, and a linear relationship 
between the ratio of AOx/(AOx+ARed) and Na2S content was 
constructed (Fig. 1B). Here, AOx and ARed are integral areas of the 
19F-NMR peak located at -58.7 and -64.2 ppm, respectively, 
which are proportional to the fluorine atom content. 
Meanwhile, the reduction state (PIBAM-FSeN) was easily 
returned to the oxidation state (PIBAM-FSeON) in the presence 
of H2O2 (Fig. 1C), and the linear relationship between 
AOx/(AOx+ARed) and H2O2 content was also established (Fig. 1D). 
The reversibility of the nanoprobes was further verified by 
alternately exposing nanoprobes to H2O2 and Na2S (Fig. 1E and 
F), which makes it possible to use them for real-time monitoring 
of the redox state.

Next, the redox selectivity of these nanoprobes was studied 
via recording the 19F-NMR responses after treatment with 
various analytes (Fig. S14). Redox species caused obvious 
effects on 19F-NMR signal intensity, whereas non-redox analytes 
had negligible influence. Moreover, the 19F longitudinal (T1) and 
transverse (T2) relaxation time of PIBAM-FSeN NPs (T1 = 0.96 s, 
T2 = 0.59 s) and PIBAM-FSeON NPs (T1 = 1.01 s, T2 = 0.45 s) were 
measured (Table S1), which is suitable for 19F-MRI with 
refocused echoes (RARE) sequence.

Fig. 1 (A) 19F-NMR spectra of PIBAM-FSeON NPs (10 mg/mL, in 
H2O) after adding Na2S. (B) Linear correlation between the 
AOx/(AOx+ARed) ratio and Na2S content (n=3, error bars represent 
standard deviation). The band in the graph is the 95% 
confidence interval band. (C) 19F-NMR spectra of PIBAM-FSeN 
NPs (10 mg/mL, in H2O) after adding H2O2. (D) Linear 
relationship between the AOx/(AOx+ARed) ratio and H2O2 content 
(n=3, error bars represent standard deviation). The band in the 
graph is the 95% confidence interval band. (E) 19F-NMR spectra 
of PIBAM-FSeN NPs in 20 mM PBS buffer (pH 7.4) with repeated 
oxidation and reduction using H2O2 (1.1 eq.) and Na2S (1.1 eq.). 
(F) Reversibility tests of 10 redox cycles. AOx and ARed represent 
the integral area of peaks at -58.7 and -64.2 ppm, respectively.

In Vitro Detection of Redox Species by 19F-MRI.

Phantom studies were conducted to evaluate the 19F-MRI 
potential of these nanoprobes (Fig. 2). The center frequency in 
19F-NMR of PIBAM-FSeON (δ = -58.7 ppm, red channel) and 
PIBAM-FSeN (δ = -64.2 ppm, blue channel) was chosen for radio 
frequency (RF) output. As shown in Fig. 2A, with the increment 
of Na2S content, the 19F-MRI signal of PIBAM-FSeON NPs in the 
red channel decreased step by step, meanwhile that in the blue 
channel gradually increased. A good linear relationship 
between the 19F-MRI signal ratio of SOx/(SOx+SRed) and Na2S 
content was observed (Fig. 2B). Compared with the signal ratio 
in the absence of Na2S, it showed a 12.5-fold decrease after 
exposure to 0.8 eq. of Na2S. Following the treatment with H2O2, 
the signal ratio of PIBAM-FSeN NPs linearly increased (Fig. 2C-
D), and the signal ratio showed a 10.5-fold increase after 
exposure to 0.8 eq. of H2O2, compared with that without H2O2. 
The reversibility of PIBAM-FSeN NPs for redox response was 
also validated by 19F-MRI results shown in Fig. 2E-F.
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Fig. 2 (A) 19F-MRI of PIBAM-FSeON NPs after adding Na2S. (B) 
Linear correlation between the SOx/(SOx+SRed) ratio and Na2S 
content. The band in the graph is the 95% confidence interval 
band. (C) 19F-MRI of PIBAM-FSeN NPs after adding H2O2. (D) 
Linear correlation between the SOx/(SOx+SRed) ratio and H2O2 
content. The band in the graph is the 95% confidence interval 
band. (E) 19F-MRI of PIBAM-FSeN NPs in the presence of 
alternate adding H2O2 (1.1 eq) and Na2S (1.1 eq), respectively. 
(F) The corresponding SOx/(SOx+SRed) ratio. SOx and SRed represent 
the imaging signal intensity in red (-58.7 ppm) and blue (-64.2 
ppm) channels, respectively. The nanoprobes were dispersed in 
PBS (20 mM, pH 7.4) for tests.

Preparation and Characterization of the Semioxidized PIBAM-
FSeN NPs.

To ensure that the signal of the probes in both channels (-58.7 
ppm and -64.2 ppm) is higher than the detection limit of the 
instrument, achieving the observation of slight changes from 
the ratio images, we prepared the semioxidized PIBAM-FSeN 
NPs for further use. Thus, by controlling the oxidation 
conditions, the semioxidized PIBAM-FSeN polymer (Fig. 3A) was 
synthesized, where the content ratio of the selenide ether to 
the selenoxide group was 1:1 (Fig. 3B). Thereafter, the 
semioxidized PIBAM-FSeN NPs with an average size of 82 ± 25 
nm were obtained by the same ultrasonic emulsification 
method for PIBAM-FSeN NPs (Fig. 3C-D). The semioxidized 
PIBAM-FSeN NPs also exhibited excellent relaxation 
performance, as evidenced by the longitudinal relaxation time 
(T1) and transverse relaxation time (T2) values (Table S1). It was 
found that no significant variations of T1 and T2 were observed 
over a concentration range from 20 to 140 mg/mL, implying that 

fluorine atoms on the nanoparticles retain excellent relaxation 
properties (Fig. S15). The critical aggregation concentration 
(CAC) of semioxidized PIBAM-FSeN NPs is 4.2 mg/L (Fig. S16), 
which falls between the CAC of PIBAM-FSeN NPs (1.6 mg/L) and 
PIBAM-FSeON NPs (750 mg/L). Subsequently, their good 
stability was confirmed by the results of 19F-NMR signal, DLS size 
distribution tests, and actual photo (Fig. S17-S19 and Table S4). 
It is important to note that semioxidized PIBAM-FSeN 
nanoparticles (NPs) demonstrate enhanced stability under 
acidic conditions (pH 6.0-6.5) compared to PIBAM-FSeN NPs. 
This improved stability may be attributed to their lower pKa 
value of 5.52, in contrast to the pKa of PIBAM-FSeN NPs, which 
is 6.31 (Fig. S20).

Fig. 3 (A) Chemical structure, (B) 19F-NMR spectrum, (C) TEM 
image, and (D) DLS size distribution of semioxidized PIBAM-
FSeN NPs (10 mg/mL, in H2O). (E) The selectivity of semioxidized 
PIBAM-FSeN NPs to different analytes. (n=3, error bars 
represent standard deviation).

The influence of some coexisting substances on the 19F-NMR 
signal ratio of AOx/(AOx+ARed) was further investigated. As shown 
in Fig. 3E, no change in the signal ratio was observed in the 
presence of non-redox analytes including BSA, Na+, K+, Ca2+, 
Mg2+ and serum. However, oxidants such as H2O2, ClO¯, 1O2, 
ONOO- and ·OH would greatly enhance the signal ratio, and 
conversely reductants including Vc, L-Cys, GSH, Na2S and DTT 
depressed the signal ratio. The moderate oxidation (0.41 V) and 
reduction (0.31 V) potentials make it easy to oxidize or reduce 
the semioxidized PIBAM-FSeN NPs in vivo by the endogenous 
redox species (Fig. S21 and Tables S2-S3). The redox process was 
further verified by checking the redox state of Se in the 
nanoprobes through X-ray photoelectron spectroscopy (XPS, Fig. 
S22).
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In Vitro 19F-MRI of Semioxidized PIBAM-FSeN NPs
To investigate the imaging benefits of semioxidized nanoprobes 
for low-concentration analytes, the imaging results of 
semioxidized PIBAM FSeN NPs and PIBAM FSeN NPs were 
compared. Fig. 4A and 4C illustrate an increase in the signal at -
58.7 ppm and a decrease in the signal at -64.2 ppm as the 
oxidation degree of semioxidized PIBAM-FSeN NPs deepens. 
Thus, a significantly elevated signal is obtained in the ratio 
channel, even though the increasing oxidation degree of the 
probe is only 3%. However, Fig. 4B and 4D show that with 
PIBAM-FSeN NPs, only the signal at -64.2 ppm decreases 
gradually with an increased oxidation degree. At low oxidation 
degrees (3% and 7%), the signal at -58.7 ppm is nearly 
undetectable, but as oxidation levels increase (22%), changes in 
the signal can be observed due to it reaching the detection limit 
of the instrument. These results have confirmed the benefits of 
using semioxidized PIBAM-FSeN NPs.
Subsequently, we investigated the 19F-MRI signal response of 
semioxidized PIBAM-FSeN NPs toward H2O2. As shown in Fig. 4E, 
the intensity of its 19F-MRI signal ratio was gradually enhanced 
with the increase of the H2O2 concentration. A linear 
relationship was observed between the ratio and the 
concentration of H2O2. Furthermore, the 19F-MRI signal ratio of 
SOx/(SOx+SRed) showed a good linear relationship with the H2O2 
concentration with the linear equation: y = 0.046 (± 0.001) x 
+ 0.500, R2 = 0.999 (Fig. 4F). The limit of detection (LOD) was 
detected as 0.18 mM (LOD = 3σ/k, n = 3). Taken together, 
semioxidized PIBAM-FSeN NPs could be used to quantify H2O2 
by 19F-MRI in vitro.

Fig. 4 19F-MRI of semioxidized PIBAM-FSeN NPs (A) and PIBAM-
FSeN NPs (B) with different increased oxidation degrees 
(Δ(oxidation degree)). The 19F-MRI signal ratio of semioxidized 
PIBAM-FSeN NPs (C) and PIBAM-FSeN NPs (D) on different 
increased oxidation degrees (Δ(oxidation degree)). *, p < 0.05; 
**, p < 0.01; ***, p < 0.0001, n = 3, error bars represent standard 
deviation (SD). (E) 19F-MRI of semioxidized PIBAM-FSeN NPs 
(7.2mg/mL) after adding H2O2. (F) Linear correlation between 
the SOx/(SOx+SRed) ratio and H2O2 concentration. (n=3, error bars 
represent standard deviation). The band in the graph is the 95% 
confidence interval band. The limit of detection (LOD) was 0.18 
mM, which was calculated by using the method of 3σ/k.

In Vivo 19F-MRI of Semioxidized PIBAM-FSeN NPs.

Encouraged by these promising results, we explored the 
potential of utilizing these semioxidized PIBAM-FSeN NPs for 
19F-MRI visualization of the redox state in vivo. The cytotoxicity 
and hemolysis tests were first carried out, and the results 
suggested their favorable biocompatibility and biosafety, 
making them suitable for in vivo applications (Fig. S23-27). 
Balb/c mouse model with a 4T1 tumor was constructed to serve 
as a proof of concept and showcase the ability of the 
nanoprobes to monitor localized redox state in vivo. As depicted 
in Fig. 5A and 5B, the same amounts of semioxidized PIBAM-
FSeN NPs colloidal solution were injected into the tumor and 
healthy tissue of the same mouse, respectively. After injection, 
19F-MRI at the time points of 0.5 and 4 h post-injection was 
captured under the center frequencies (-58.7 ppm, red channel) 
and (-64.2 ppm, blue channel). 1H-MRI was also provided to 
show the mouse and tumor boundaries in the overlaid 19F-MRI. 
As shown in Fig. 5C, the stronger 19F-MRI signals in the red 
channel and the weaker 19F-MRI signals in the blue channel 
were observed at the tumor site 4 h post-injection compared to 
those in normal tissues. The ratio signal was significantly 
increased (*p < 0.05, n = 3), implying that it is more oxidative in 
tumor at this period (Fig. 5D).

Moreover, we conducted the 19F-MRI tests to monitor the 
redox cycle in the tumor of live mice with N-acetyl cysteine (NAC) 
as the anti-inflammation drug (Fig. 5E). As shown in Fig. 5F and 
5G, the 19F-MRI signal ratio of semioxidized PIBAM-FSeN NPs in 
tumor increased at 3 h after intratumoral injection. When 
pretreated with NAC at 4 h post-injection, the 19F-MRI signal 
ratio was remarkably decreased compared to that without NAC 
treatment (*p < 0.05, n = 3). These results demonstrated that 
the nanoprobes could be used for reversible redox sensing in 
vivo. In addition, the blood biochemical analysis (Fig. S28) and 
histological hematoxylin and eosin (H&E) staining (Fig. S29) 
further confirmed that no apparent toxicity was induced by the 
nanoprobes.
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Fig. 5 (A) Scheme for MRI of the redox environment in tumor and normal tissue. (B) Diagram of the injection location. (C) 
Representative 1H/19F-MR images of 4T1 tumor-bearing mice after intratumoral injection of nanoprobe colloidal solution at 
different times. (D) SOx/(SOx+SRed) ratio at 0.5 and 4 h in normal tissue or tumor. *, p < 0.05; n = 3, error bars represent standard 
deviation (SD). (E) Scheme for MRI of the redox environment in 4T1 tumor with or without NAC treatment. (F) Representative 19F-
MR ratio images of 4T1 tumor-bearing mice with or without NAC treatment at 1, 3 and 6 h. NAC (0.1 M, 100 μL) was paratumorally 
injected at 4 h. (G) The 19F-MR signal ratio in tumor at different time points. *, p < 0.05; n = 3, error bars represent standard 
deviation (SD).

Conclusions
In conclusion, we designed the selenide polymer nanoprobes 
with favorable biocompatibility and stability for in situ 
reversible monitoring the redox process in vivo. Based on the 
reversible shift of 19F-NMR peak between oxidation (FSeON, -
58.7 ppm) and reduction (FSeN, -64.2 ppm) state of the 
nanoprobes exposed to different redox species, the 19F-MRI 
signal ratio of SOx/(SOx+SRed) was successfully applied to visualize 
the redox state in tumor. Importantly, the nanoprobe 
demonstrates excellent water solubility and good 
biocompatibility, making it promising for intravenous injection. 
Considering the wide range of biomolecules, such as proteins, 
saccharide and aptamer, that can be potentially labeled with 
the trifluoromethyl-grafted selenide structure, it might be 
possible to adapt this strategy to redox sensing at other specific 
regions. This work paves a new way to develop powerful tools 
for reversible sensing and imaging of redox state in vivo with 
high penetration depth.
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