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Facile, general allylation of unactivated alkyl
halides via electrochemically enabled radical-polar

Haifeng Chen® and Magnus Rueping@*

Electrochemically driven carbon—carbon formation is receiving considerable interest in organic synthesis.
In this study, we present an electrochemically driven method for the formation of C(sp*)—C(sp®) bonds
using readily available allylic carbonates, as well as primary, secondary, and tertiary alkyl bromides as
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electrophiles. This approach offers a highly selective route for synthesizing a broad range of allylic

products with excellent functional group tolerance, all without the need for transition metal catalysts.
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Introduction

The development of new methodologies for constructing
C(sp®)-C(sp®) bonds remains a significant challenge in the field
of C-C coupling chemistry.’”® Transition-metal-catalyzed cross-
coupling has emerged as a powerful approach for rapid
construction and increasing molecular complexity.*® However,
traditional cross-coupling reactions often require preformed
organometallic reagents, which limits their application and
substrate scope.® To address this, reductive cross-coupling
using electrophiles as coupling partners has proven to be an

efficient strategy,'*® significantly enhancing molecular
complexity by circumventing the need for activated
substrates.’*” Recently, the metallaphotocatalyzed'®?* and

metallaelectrocatalyzed®*>® reactions have offered alternative
pathways for forming C(sp®)-C(sp®) bonds under mild condi-
tions. Despite these advances,®3* constructing C(sp®)-C(sp)
bonds remains challenging due to intrinsic obstacles (Scheme
1a). For instance, these methods often rely on expensive metal-
ligand catalysts or stoichiometric metal reductants.*»** There-
fore, there is a strong demand for developing new, efficient,
mild, metal-ligand-catalyst-free, and environmentally friendly
strategies for C(sp®)-C(sp®) bond formation.

Electrochemistry has emerged as a versatile and powerful
platform for sustainable synthesis, leveraging finely-tuned
electron-transfer processes and the use of electrons as trace-
less redox reagents.**** In this context, electroreduction has
shown great promise, enabling direct interactions between
substrates and electrode surfaces to generate alkyl radicals
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Remarkably, this method also enables the smooth late-stage functionalization of various natural
product- and drug-derived substrates, yielding the corresponding complex allylalkanes.
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Table 1 Optimization of electrochemically driven alkyl-allylation®
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tBu Bu
% (+)Fe //(-)Ni foam
+ >7 Br
TBAB 0.2M
DMA 4 mL
QEU0E i=4mA, Q= 5.2 F/mol By
1a 2a 3a
Optimization of reaction
Entry Variables Yield® [%] Entry Variables Yield” [%)]
1 Standard 65° 10 DMF as solvent 50
2 RVC(+)//Ni foam(—) w/TMEDA 8 11 MeCN as solvent 17
3 RVC(+)//RVC(—) w/TMEDA 12 12 3:1 51
4 (+)Zn//(—)Ni foam 25 13 2:1 40
5 (+)Fe//(—)RVC 51 14 1:1 36
6 (+)Zn//(=)RVC 27 15 TBACI as electrolyte 23
7 1 mA 44 16 TBAI as electrolyte 45
8 2 mA 63 17 w/o current ND
9 6 mA 42 18 w/o TBAB 32

“ Reactions were performed with 0.2 mmol of 1a, 0.4 mmol of 2a, 0.2 M of TBAB, 4 mL of DMA in an undivided cell at R. T. and i = 4 mA, 5.2 F mol .

b GC-FID yield using dodecane as internal standard. ¢ Isolated yield.

OMe SMe
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OMe
tBu tBu
tBu tBu
3b, 71% 3¢, 63% 3d, 47% 3e, 77%
Ph
_— X
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0, 0 0, ’ ’
3f, 44% 39,51% 3h, 56% X = Cl, 3}, 51%
CF3 COOMe Ac
NT
| b
tBu tBu tBu tBu
3k, 43% 31, 62% 3m, 38% 3n, 35%

Fig. 1 Allylic carbonate scope. Reactions were performed with
0.2 mmol of 1, 0.4 mmol of 2, 0.2 M of TBAB, and 4 mL of DMA in an
undivided cell at R. T. and i = 4 mA, 5.2 F mol™.

through the cathodic reduction of alkyl halides.***” Elegant
studies have explored this concept.**** Alkyl halides play
a crucial role in organic chemistry due to their diverse reactivity
and ease of synthesis.® As a result, significant progress has
been made in the electroreduction of alkyl halides, including
applications such as the Giese reaction, cross-electrophile

6318 | Chem. Sci, 2025, 16, 6317-6324

coupling (e-XEC), deuteration, borylation, and bifunctionaliza-
tion of alkenes, among others.>*>”

Allylic moieties are essential substructures in organic mole-
cules and versatile functional groups due to their convertible
C-C double bonds and allylic single bonds.*® The allylation of
various molecules via the construction of a C-C bond has been
thoroughly investigated.»* To date, transition-metal catalyzed
electrophile allylation of alkyl halides is one of the most
important protocols for delivering allylated-alkane compounds
(Scheme 1b),**** In comparison, the electrochemical allylation
of alkyl halides with allylcarbonates, which benefits from
transition-metal-free and sustainable conditions, has been
relatively underexplored. Thus, direct electrochemical allylation
of unactivated alkyl halides presents a practical and attractive
alternative for the synthesis of allylated alkane compounds.

In this regard, we present a novel and versatile electro-
reduction protocol for the formation of allylated alkanes
(Scheme 1c). This reaction offers a straightforward and efficient
route to allylated products under mild conditions. Moreover,
the successful late-stage functionalization of natural products
highlights the potential of our methodology. This strategy not
only expands the toolkit for C(sp®)-C(sp®) bond formation but
also paves the way for future developments in this area.

Results and discussion

We initiated the exploration with methyl 2-(4-(tert-butyl) phenyl)
allyl ethyl carbonate (1a) and 2-bromo-2-methylpropane (2a) as
the coupling partners. As outlined in Table 1, a combination of
(+) iron//(—) Ni foam as electrodes, TBAB (tetrabutylammonium
bromide) as an electrolyte, and DMA (dimethylacetamide) as
solvent with a 4 mA current in an undivided cell delivered the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Alkyl-Br substrate scope. Reactions were performed with 0.2 mmol of 1, 0.4 mmol of 2, 0.2 M of TBAB, and 4 mL of DMA in an undivided
cell at R. T. and constant current i = 4 mA, 5.2 F mol™2 Detected by *H NMR.

desired product 3a in 65% isolated yield (entry 1). Altering the
anode or cathode significantly decreased the reaction efficiency
(entries 2-6). Adjusting the current also succeeded in this alkyl-
allylation process, albeit with lower efficiency (entries 7-9).
Conducting the reaction in alternative solvents, such as DMF or
MeCN, did not improve the reaction outcomes (entries 10 & 11).
Screening the substrates ratio also led to lower yields (entries
12-14). Applying other electrolytes did not improve the reaction
efficiency (entries 15 & 16).

© 2025 The Author(s). Published by the Royal Society of Chemistry

Control experiments revealed that the current and electrolyte
were essential for obtaining high reaction results (entries 17 &
18). In order if the iron ions formed at the anode affect the
reaction outcome,® we added different amounts of FeBr, and
FeBr; as well as additional FeBr, in combination with different
electrodes. However, no reaction enhancement was observed
(Fig. S1 & S21).

With the optimized condition in hand, we moved attention
to evaluating the scope of this protocol. As shown in Fig. 1, the

Chem. Sci., 2025, 16, 6317-6324 | 6319
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Fig. 3 Modification of structurally complex molecules. Reactions were performed with 0.2 mmol of 1, 0.4 mmol of 2, 0.2 M of TBAB, and 4 mL of
DMA in an undivided cell at R. T. and constant current i = 4 mA, 5.2 F mol™.

installation of electro-donating (3b-f), electron-neutral (3g & h)
and electron-withdrawing (3i-m) groups onto the 2-phenylallyl
carbonate showed high coupling efficiency and excellent func-
tional group compatibility. Hetero-quinoline substituted
substrate also afforded the corresponding product in acceptable
yield (3n).

Next, we investigated the scope of the alkyl halides (Fig. 2).
To our delight, a series of primary, secondary and tertiary alkyl
bromides, in spite of different electronic properties, all could be
engaged in the reaction efficiently. For the primary alkyl

6320 | Chem. Sci, 2025, 16, 6317-6324

bromide, alkyl bromides tethered with phenyl and methoxyl
substituted phenyl, ether, ester, cyano, benzoate, acetal, tri-
fluoromethyl, N-boc-piperidine and phthalimidyl groups could
all be transferred to the cascade products in moderate to
excellent yields (4a-k). The use of secondary alkyl bromides with
acyclic, cyclic and heteroatoms gave good yields (5a-51). Unex-
pectedly, isomerizations (5d & 5i) were detected when bromo-
cyclohexane and 4-bromo-N-boc-piperidine were used. Bicyclic
and spiro compounds reacted efficiently and delivered the
corresponding products (5j-1) in good yields. In addition, the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Mechanistic studies. °GC-FID yield using dodecane as internal standard. “Isolated yield. (a) Radical scavengers; (b) fragmentation
cyclopropyl substrates; (c) radical cyclization experiment; (d) competition reaction; (e) reaction monitor; (f) CV measurement; (g) propososed

mechanism.

linear (6a-h) and cyclic tertiary alkyl bromides (6i-j) also reacted
efficiently in this system. Significantly, the pentafluoro-
substituted substrate could furnish the desired product (6d)
in 40% yield. Next, our focus shifted to further demonstrating
the practicability and synthetic utility of this protocol, we

© 2025 The Author(s). Published by the Royal Society of Chemistry

explored modifications on structurally complex molecules. As
displayed in Fig. 3, various primary, secondary, and tertiary
natural or pharmaceutical alkyl bromides derived from t-
menthol (7a), naproxen (7b), adapalene (7c), indometacin (7d),
gemfibrozil (7e), flubiprofen (7f), dehydroabietic acid (7g),

Chem. Sci., 2025, 16, 6317-6324 | 6321
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acetobromo-a-n-glucose (7h), epiandrosterone (7i), lithocholic
acid (7j), tetrahydrolinalool (7k), probenecid (71),y-terpineol
(7m) and sclareolide (7n) were effectively converted into the
corresponding alkyl radical via this protocol, and subsequently
delivered a variety of structually complex allylated-alkane
derivatives in moderate to good yields.

To further elucidate the possible mechanism of this electro-
chemically driven formation of allylated-alkanes, a range of
control experiments were performed. Firstly, the use of stoichio-
metric amounts of radical scavengers (1, 1- diphenyethylene and
TEMPO) under the standard conditions was applied. Both desired
products and alkyl radical captured products could be observed
(Fig. 4a). In principle, the allylic carbonate might also be reduced
by the cathode to release the allyl radical. However, we did not
observe the formation. Alkyl radical clock experiments were per-
formed by using the cyclopropyl tethered (bromomethyl) cyclo-
propane (2d) and ethyl 2-bromo-2-cyclopropylacetate (2€). Here,
we obtained the ring-opening product 14 in 55%, although the
secondary alkyl substrate only furnished the desired product 15
in trace yield and by-product 15a was formed in 45%, which
indicates that the secondary alkyl radical is involved in the reac-
tion (Fig. 4b). Thus, radical cyclization experiments were also
performed. The cyclization products 16 and 17 were obtained in
67% and 31%, respectively (Fig. 4c). These observations suggest
the involvement of alkyl radicals in this protocol. To further
investigate, a competition reaction was performed (Fig. 4d),
yielding products 3a, 4a, and 5a with yields of 59%, 8%, and 17%,
respectively. These results demonstrated that the alkyl reactivity
followed the sequence: tertiary > secondary > primary. Addition-
ally, reaction monitoring indicated that the allylation reaction
was completed within 7 hours (Fig. 4e). To explore the electro-
chemical behavior of the reactants, cyclic voltammetry (CV)
measurements were conducted. As shown in Fig. 4f, the reduction
peaks for 3-phenylpropyl bromide, 2-bromopropane, and tert-
butyl bromide were observed at —2.70 V, —2.66 V, and —2.52 V
versus the saturated calomel electrode (SCE), and the onset values
were —2.4'V, —2.3 V and —2.2 V, respectively. For 2-(4-(tert-butyl)
phenyl) allyl ethyl carbonate, two onset reduction peaks were
recorded at —2.74 V and —2.40 V versus SCE. These findings
indicate that alkyl halides can be reduced to generate the corre-
sponding alkyl radicals under the conditions of this protocol.

Mechanism

Based on the above analysis results and literature report,”>** we
propose a plausible mechanism for the new electrochemical
C(sp®)-C(sp®) bond formation (Fig. 4g). Initially, the allylic
carbonate reacts with the cathode-activated alkyl radicals,
forming a stable tertiary benzyl radical. This radical is subse-
quently reduced at the cathode to generate a carbanion. The
carbanion intermediate can then undergo f-elimination,
leading to the formation of the desired products.

Conclusions

In conclusion, we have successfully developed an efficient
electrochemically-driven radical polar crossover method for the

6322 | Chem. Sci,, 2025, 16, 6317-6324

View Article Online

Edge Article

formation of allylated alkanes using allylic carbonate and
unactivated alkyl bromides. This protocol operates under mild
conditions, enabling the synthesis of a diverse range of
synthetically valuable allylated alkanes. Given the commercial
availability of the reactants and the properties of allyl and alkyl
compounds, we believe that this electroreduction protocol will
have broad applicability, expand the library of allylated alkanes,
and inspire further exploration in the field of C(sp*)-C(sp?)
coupling reactions.
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