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raph neural networks to improve
docking performances

Thanawat Thaingtamtanha,†a Jordane Preto†b and Francesco Gentile *ac

Predicting the geometry and strength governing small molecule-protein interactions remains a paramount

challenge in drug discovery due to their complex and dynamic nature. Several machine learning (ML)

methods have been proposed to complement and improve on physics-based tools such as molecular

docking, usually by mapping three dimensional features of poses to their closeness to experimental

structures and/or to binding affinities. Here, we introduce Dockbox2 (DBX2), a novel approach that

encodes ensembles of computational poses within a graph neural network framework via energy-based

features derived from molecular docking. The model was jointly trained to predict binding pose likelihood

as a node-level task and binding affinity as a graph-level task using the PDBbind dataset and demonstrated

significant performance in comprehensive, retrospective docking and virtual screening experiments,

compared with state-of-the-art physics- and ML-based tools. Our results encourage further exploration of

ML models learning from conformational ensembles to accurately model small molecule-protein

interactions and thermodynamics. The DBX2 code is available at https://github.com/jp43/DockBox2.
Introduction

Drugs exert their therapeutic effects by binding to specic
biomolecular targets, typically proteins or nucleic acids, and
modulating their function, thereby inhibiting or restoring
processes related to various diseases. The initial step in the drug
discovery pipeline involves identifying molecules binding to the
target of interest with high affinity and specicity,1 hencemaking
the accurate prediction of both a crucial aspect for therapeutic
development.2 Binding affinity, which reects the strength of the
interaction between a drug and its protein target, is commonly
expressed in terms of dissociation constant (Kd), measurable via
a plethora of experimental techniques.3 However, these tech-
niques are usually time-consuming and resource intensive,4,5

especially at high throughput rates required to explore vast
chemical spaces.6 Consequently, in silico screeningmethods have
gained signicant momentum, especially in the recent years.7

Although the estimation of ligand–protein affinities and
interactions is essential, signicant challenges arise due to the
dynamic nature of these complexes. Molecular dynamics (MD)
simulations can provide valuable insights into the nature of
these interactions, e.g., by considering an ensemble of bound
conformations to compute thermodynamically accurate ener-
gies.8 This is usually done by simulating the complexes in their
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thermodynamic equilibrium and considering the time spent in
the various microstates. Therefore, MD has the potential to
connect the chemical world to physical observables, aiding in
the determination of state variables (free energy, enthalpy,
entropy, .), kinetics, and the exploration of biomolecular
mechanisms driven by rare events.9 For instance, the ligand
Gaussian accelerated MD (LGMD) method, an enhanced
sampling technique pioneered by Miao et al.,10 was employed to
forecast the binding affinity of nirmatrelvir with the coronavirus
3C-like protease, yielding predictions consistent with experi-
mental observations.11,12 Likewise, Wolf et al.13 harnessed the
power of Langevin simulations an extended MD approach that
delves into the intricate low-frequency motions governing large
conformational shis,14 to estimate the binding affinity of the
benzamidine–trypsin complex. However, both standard and
biased MD methods require signicant computational power
that makes these techniques unsuited for high-throughput
screening purposes. Consequently, faster and less accurate
methods such as molecular docking andmachine learning (ML)
approaches have been proposed as alternatives.

Molecular docking methods generate bound conformations
of a ligand within a rigid binding pocket and then rank the
poses using a scoring function, both to identify the most
probable pose and to estimate the binding affinity.15 Despite its
simplicity, docking has shown great potential for the identi-
cation active molecules from vast backgrounds of inactive
compounds,16,17 with its impact extending across numerous
therapeutic areas. Manglik et al., for example, docked over 3
million molecules against the m-opioid receptor (mOR), leading
to the discovery of PZM21, a G protein-biased mOR agonist.18
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Zernov et al. discovered a compound targeting the transient
receptor potential cation channel 6 as a potential starting point
to develop anti-Alzheimer's therapies, with in vitro studies
conrming its efficacy, stability, and target specicity without
adverse effects.19 Stein et al. employed docking to screen over
150 million molecules targeting melatonin receptor 1 (MT1) in
the search for therapeutics addressing sleep disorders and
depression, reporting a novel chemotype with experimentally
validated, selective MT1 agonist activity.20 Fink et al. utilized
large-scale docking to identify novela2A-adrenergic receptor
(a2AAR) agonists with fewer adverse effects compared to earlier
treatments, as new starting points to develop nonopioid anal-
gesics.21 These and many other studies underscore the impor-
tant role of docking in advancing drug discovery.

However, several limitations remain in docking, mainly due to
the approximative nature of scoring functions and the neglection
of exibility.15,22 Thus, ML methods have been introduced in the
last decade to tackle molecular docking challenges.15 For
example, Graph Neural Networks (GNNs) have been widely
explored to characterize ligand–protein interactions.23 Several
models have been proposed, such as CurvAGN,24 PIGNet,25 Gen-
Score26 and SS-GNN,27 reporting strong correlations between
predicted and experimental affinities.23,28,29 Additionally, GNNs
have been applied in generative settings to replace physics-based
sampling in generate and scoring ligand–protein poses, such as
in DiffDock30 and MedusaGraph.31 Although these architectures
have shown promising results, an increasing number of studies
suggest that GNNs tend to memorize ligand and protein patterns
instead of learning the phycial chemistry of the interactions.23,29

Moreover, these methods generally map single pose graphs to
binding affinities, thus neglecting full thermodynamic prole
and dynamics of ligand–protein interactions that depends on
multiple conformations.23Notably, recent efforts have beenmade
to considermultiple conformations in training GNNs for binding
affinity predictions, such as Dynaformer, a method that encode
each MD-derived binding conformation into a graph within
a framework to provide better affinity estimates.32 Notably,
Dynaformer still relies onmapping each conformation to a single
affinity value, and requires the use of costly simulations, hence
limiting its scalability.

In this work, we introduce DockBox2 (DBX2), a GNNs
framework enabling to encode multiple ligand–protein
conformations derived from docking within individual graph
neural networks in order to leverage ensemble representations
for jointly predicting pose likelihood at the node level and
binding affinities at the graph level. In a series of retrospective
experiments, DBX2 demonstrated signicant improved perfor-
mances both for docking and virtual screening (VS) tasks
compared with physics-based and ML methods, warrantying
further investigation of ensemble-based ML models in
computer-aided drug discovery.

Material and methods
Datasets

The DBX2 model was trained and evaluated using the PDBbind
database.33 The rened set of PDBbind v2016 (4057 complexes)34
© 2025 The Author(s). Published by the Royal Society of Chemistry
was used to train the model. PDBbind is a comprehensive and
widely adopted benchmark for protein–ligand binding, and
several widely used benchmark datasets, such as CASF-2016,35

are derived from this rened set. The PDBbind v2019-based
hold-out test set built by Volkov et al.29 and the Runs N' Pose
database from Škrinjar et al.,36 consisting of 3393 and 2600
complexes respectively, were used as external test sets. Volkov's
dataset is curated to mitigate latent biases, such as structural
patterns in ligands or proteins, which can favor GNN memori-
zation rather than protein–ligand interaction learning. As
highlighted in previous studies,23,29 this memorization oen
arises from signicant redundancies between training and test
sets, resulting in data leakage. The Runs N' Poses dataset is
a recently developed dataset containing high-resolution
protein–ligand systems released aer the publication of
PDBbind v2020 and the training date cutoff of several protein–
ligand co-folding models (e.g., AlphaFold3,37 Chai-1,38 Prote-
nix,39 and Boltz-1 (ref. 40)). A subset of the LIT-PCBA database41

was used to perform retrospective VS experiments.

Protein and ligand preparation

Complexes from PDBbind were prepared following the same
procedure of our previous work.42 For retrospective VS, domi-
nant protonation and tautomerization states of small molecules
were computed from the SMILES using Openeye's QUACPAC43

and converted into low-energy 3D conformations (mol2 format)
using Openeye's OMEGA tool.43 The target proteins were
prepared by removing redundant protein chains, along with
non-essential ions, waters, and heteroatoms. The resulting
protein structures were prepared using the Molecular Operating
Environment (MOE) QuickPrep tool,44 to automatically add
missing loops and assign reasonable conformations to the
residues with alternate orientation. Subsequently, protonation
states were generated using the Protonate 3D tool fromMOE (at
pH 7.4). Finally, the structures were energy-minimized using the
AMBER10:EHT forceeld implemented in MOE, and saved in
pdb format.

Molecular docking and rescoring

The rst Dockbox package (DBX)42 was utilized to generate
binding poses with AutoDock,45 Vina46 and DOCK 6 (DOCK),47

and rescore with their scoring function in addition to Gnina48

and DSX.49 The DBX conguration le used for this purpose on
PDBbind v2016 and the test sets is illustrated in Fig. S1;
a maximum of 140 binding poses were generated for each
system, 60 from AutoDock, 20 from Vina, and 60 from DOCK.
For AutoDock, grid spacing was set to 0.3 Å, and the Lamarckian
genetic algorithm50 was employed to generate poses. For Vina,
the energy range for nal poses was set to 3 kcal mol−1. In
DOCK, a grid-based scoring method was applied with a spacing
of 0.3 Å. All other parameters were le as default. Docking with
any of the above programs was followed by energy minimiza-
tion, starting with 500 steps of the steepest descent method
followed by 1000 steps combining steepest descent and conju-
gate gradient methods. Energy minimization was performed
using AmberTools 17 (ref. 51) to prevent structural clashes and
Chem. Sci., 2025, 16, 19876–19887 | 19877
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ensure appropriate rescoring with different programs. Rescor-
ing was then conducted with AutoDock, Vina, DOCK, Gnina's
CNNScore, and DSX scoring functions.
Dockbox2 architecture

DBX2 architecture is based on the GraphSAGE model52 as shown
in Fig. 1. The ensemble of poses generated by docking a given
ligand–protein pair is used to construct a graph (Fig. 1A), with
each node encoding an individual binding pose represented by
categorical and energetic features, listed in Table 1.

All available scoring terms provided by Vina46 were included
as node features, with the exception of the entropy term which
is determined solely by the ligand structure and therefore
remains constant across different poses of the same ligand. In
the constructed graph, pairwise root mean square deviation
(RMSD) values are calculated between all poses. Two nodes are
connected by an edge if the RMSD between the two poses is
below a predened threshold while the RMSD value is kept as
edge feature. Graphs were generated using the create_graphs
script available in the DBX2 package. In the shared layers, the
DBX2 model uses the message passing (MP) framework,53 i.e.,
for each node i, information from its neighbors j˛N ðiÞ is
gathered and aggregated using the symmetric mean (symmean)
aggregation:

m
ðk�1Þ
N ðiÞ ¼ SYMMEAN

n
s
ðk�1Þ
j 4RMSDij ; cj˛N ðiÞ

o
(1)

where mðk�1Þ
N ðiÞ is the aggregated message for node i from its

neighbors, s(k−1)
j is the feature vector of neighbor node j, RMSDij

is the RMSD between node i and j. The feature vector is
concatenated with the RMSD between nodes i and j. The
Fig. 1 Architecture of DBX2. (A) Binding poses are represented as nodes
square deviation (RMSD) between them. Docking-derived energies and ca
used as node features. (B) Schematic of the DBX2 architecture; pose co
respectively.

19878 | Chem. Sci., 2025, 16, 19876–19887
aggregation function then combines these concatenated vectors
to produce a single aggregation message vector. The node
feature vector is then updated:

s
ðkÞ
i ¼ s

�
W

ðkÞ
selfs

ðk�1Þ
i 4W

ðkÞ
neighm

ðk�1Þ
N ðiÞ

�
(2)

where si(
k−1) is the feature vector of node i at layer k. s(k−1)

i is the
feature vector of node i from the previous layer k − 1. W(k)

self and
W(k)

neigh are learnable weight matrices that apply to the feature
vector of the current node and to the aggregated message vector
from neighbor nodes, respectively. mðk�1Þ

N ðiÞ is the aggregated
message from the neighbors N ðiÞ of node i. The MP layers are
followed by multilayer perceptron (MLP) layers to predict pose
correctness (node-level task) and the pKd/pKi (graph-level task)
as illustrated in Fig. 1B. For node-level predictions, aggregated
information from the MP layers is passed to an MLP with
Rectied Linear Unit (ReLU) and sigmoid activation function
for hidden layers and nal layer of MLP, respectively. For graph-
level predictions, aggregated information is passed to a readout
layer corresponding to a MeanMax pooling and then passed to
a two-layers MLP, with ReLu activation function for the hidden
layer and linear activation function for the output layer.

Model training and evaluation

The total loss function of DBX2 consists of three components
Lossn, Lossg, and Lossreg

Total loss = Lossn + w1Lossg + Lossreg (3)

Lossn is the loss function for node-level task, where the binary
focal cross entropy54 is used as loss function applied to each
node in the batch and averaged:
. Two pose nodes are connected by an edge based on the root mean
tegorical features of each binding pose, here referred as s1, s2, s3., are
rrectness and pKd are jointly learned as node- and graph-level tasks,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 DBX2 node features

Features Description

Instance Docking soware utilized to generate the binding pose
Score Docking score from original docking program
Rescoring score (AutoDock, Vina, Dock, DSX, Gnina) Docking score obtained by rescoring the pose with another scoring

function
Gaussian terms (gauss1_inter, gauss2_inter, gauss1_intra,
gauss2_intra)

Gaussian terms of the binding pose, as provided by Vina46

Hydrophobic interactions (hydrophobic_inter, hydrophobic_intra) Hydrophobic terms evaluated by Vina46

Hydrogen bonding (hydrogrenbonding_inter, hydrogenbonding_intra) Hydrogen bond terms evaluated by Vina46

Repulsion (repulsion_inter, repulsion_intra) Repulsive Lennard-Jones energies from Vina46
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Lossn ¼ 1

N

XN
i¼1

�aðiÞ
t $

�
1� p

ðiÞ
t

�g
$log

�
p
ðiÞ
t

�
(4)

where N is the number of nodes in the batch, g is the focusing
parameter (set to 1.0 in this study), and a(i)t is the weighting
factor for each i-th sample:

a
ðiÞ
t ¼

(
a if yðiÞ ¼ 1

1� a if yðiÞ ¼ 0
(5)

where a is computed as:

a ¼ 1

1þ 1

Gt

XGt

i¼1

Ci

Ii

(6)

where Gt is the number of graphs in the training set, and Ci and
Ii are the number of correct poses and incorrect poses in the i-th
graph, respectively. A pose was considered as correct if it was 2 Å
or less of RMSD from the experimental one. p(i)t is the predicted
probability output by the model for the correct class label of
each i-th node:

p
ðiÞ
t ¼

(
pðiÞ if yðiÞ ¼ 1

1� pðiÞ if yðiÞ ¼ 0
(7)

where p(i) is the model output for each pose.
Lossg and w1 are the loss function for the graph-level task

and its weight, respectively. The optimal value of w1 was
determined through hyperparameter optimization (Table S1).
Lossg corresponds to the root mean square error (RMSE):55

Lossg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G

XG
i¼1

ðyi � ŷiÞ2
vuut (8)

here G denotes the number of ligand–protein complexes in the
batch, yi is the actual value of binding affinity for each complex
and ŷi is the predicted binding affinity for each ligand–protein
complex. Minimizing Lossg contributes to correctly predicting
the ligand–protein affinity, in which all poses within a graph are
processed through message passing and readout, then used to
predict the binding affinity. Lossreg is the regularization loss,
while L2 regularization loss56 was here used to prevent over-
tting of model:

Lossreg ¼ 1

2

Xn

i¼1

qi
2 (9)
© 2025 The Author(s). Published by the Royal Society of Chemistry
where qi represent the model parameter, n is the number of
model parameter. The model was trained using the traindbx2
routine (example of a conguration le for traindbx2 in the INI
format is provided in Fig. S2). Training was performed with
a maximum of 200 epochs and early stopping was used by
monitoring the total loss on the validation sets for 3 consecutive
epochs. The model was trained with mini-batch gradient
descent (batch size of 100) and the adaptive moment estimation
(ADAM) optimizer with a learning rate of 5 × 10−4 and a decay
rate of 0.99.

Hyperparameter optimization was performed using a grid
search, considering the following hyperparameters: RMSD
cutoff value to dene an edge (RMSD cutoff), number of adja-
cent nodes to randomly sample for aggregation (nrof-neigh),
and graph loss weight (w1), for a total of 30 combinations
(Table S1). Training and validation sets were prepared using the
split_train_val_dbx2 routine of the DBX2 package. The gener-
ated graphs were split for stratied 5-fold cross-validation,
keeping a consistent distribution of protein families across all
folds. Node and edge features for each graph were standardized
using scikit-learn's StandardScaler.57 For node-level predictions,
success rate, accuracy, and area under the curve (AUC) were
used as evaluation metrics. For graph-level predictions, RMSE
was used.
Model testing

Models were compared for docking and scoring tasks with other
methods on the hold-out and Runs N' Poses test sets. To eval-
uate docking power, the success rate was computed as the ratio
of top-ranked poses with an RMSD equal or lower than a pre-
dened threshold with respect to the experimental pose. Five
different thresholds were tested, 1, 1.5, 2, 2.5 and 3 Å. For DBX2,
the success rate was evaluated by considering the top-ranked
poses from node-level predictions.

Next, the scoring power was assessed to evaluate the model's
ability to predict experimental binding affinities using linear
and multiple linear regression. The correlation between exper-
imental binding affinities and scores of the best poses from
different scoring functions was analyzed through linear
regression, and the R2 values were calculated. For DBX2,
graph-level predictions were utilized to evaluate the correlation
with experimental binding affinities. Additionally, multiple
linear regression was conducted to correlate experimental
binding affinities with predicted values derived from various
Chem. Sci., 2025, 16, 19876–19887 | 19879
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combinations of scoring functions, as described in our previous
study.42

Scoring power was also evaluated using Pearson correlation
coefficient and the predictive index (PI) as before.42 Proposed by
Pearlman et al.,58 PI measures the reliability of a scoring func-
tion in identifying the most potent binder between two
compounds. It is calculated as follows:

PI ¼
X
j. i

X
i

wijCij (10)

with

wij = jEj − Eij (11)

Cij ¼

8>>>>>><
>>>>>>:

1 if
Ej � Ei

Sj � Si

\0

�1 if
Ej � Ei

Sj � Si

. 0

0 if Sj � Si ¼ 0

(12)

where Ei is the experimental binding affinity of compound i,
and Si is the score of compound i. Predictive index gives values
in range from −1 (wrong prediction) to 1 (perfect prediction),
with 0 being random prediction. wij is the weighting term which
underscores the accurate ranking of compounds exhibiting
substantial disparities in experimental binding affinities.
Retrospective virtual screening

VS experiments were conducted on the three target proteins
from the LIT-PCBA database41 that were not present in the DBX2
training set: Flap structure-specic Endonuclease 1 (FEN1, PDB
id: 5FV7),59 Glucocerebrosidase (GBA, PDB id: 2XWE),60 and
Mammalian Target of Rapamycin Complex 1 (MTORC1, PDB id:
5GPG).61 Initially, Vina was used to screen active-inactive sets
derived from LIT-PCBA against each corresponding structure.
The top 20 000 compounds based on the Vina ranking were then
docked also with AutoDock to their respective targets.
80 binding poses (60 from AutoDock and 20 from Vina)
were generated for each ligand–protein complex (Fig. S3).
Rescoring was performed with AutoDock, Vina, DOCK,
and Gnina (considering the CNNAffinity of the pose with the
highest CNNScore).48 VS performances were evaluated by
computing the logarithmic area under the curve (logAUC),62

enrichment factors (EF) and Boltzmann-enhanced
discrimination of receiver operating characteristic (BEDROC)
with adjust parameter (a) values of 20 and 80.5 using the CROC
Python package.63–65

The logAUC quanties the performance of a VS method by
assessing its ability to distinguish active compounds from
decoys across the ranked list. By applying a logarithmic scale to
the false positive rate axis, it places greater emphasis on the
early retrieval of active compounds, which is critical in VS.

EF measures how effectively a VS method identies active
compounds within a specic fraction of the ranked list.66 EF at
a given cutoff (x) is calculated from the ratio of true active
compounds in the top x ranked compounds in relation to the
ratio of true active compounds in the entire dataset:
19880 | Chem. Sci., 2025, 16, 19876–19887
EFðxÞ ¼ TP=ðTPþ FPÞ
½ðTPþ FNÞ=ðTPþ TNþ FPþ FNÞ� ¼

N � ns

n�Ns

(13)

where TP and TN are true positives and true negatives, FP and
FN are false positives and false negatives. N is a total number of
compounds in the entire dataset, Ns is a total number of pre-
dicted active compounds in the selection set (x), n is a total
number of true active compounds in the entire dataset, ns is the
number of true active compounds in the selection set (x). EF was
computed by considering the top 2% of the ranked compounds
for each scoring functions and for both graph-level and node-
level predictions in DBX2 (EF2).

Normalized enrichment factor (NEF) rescales EF values into
a range from 0 (bad prediction) to 1 (perfect prediction),67 with
the goal of standardizing comparison across different datasets.
NEF is calculated as follow:

NEFðxÞ ¼ EFðxÞ
EFðxÞmax

(14)

with

EFðxÞmax ¼
minfns; N � xg

n� x
(15)

where EF(x)max denotes the maximum enrichment factor
achievable within a selection set (x). ns is the number of true
active compounds in the selection set (x), N is the number of
compounds in the entire dataset.

BEDROC metric emphasizes the concentration of active
compounds at several range of ranked data sets64,67 through
a scaling function (a). This metric is dened as:

BEDROC ¼ RIE�RIEmin

RIEmin �RIEmax

(16)

with

RIEmin ¼ 1� eaRa

Rað1� eaÞ (17)

RIEmax ¼ 1� e�aRa

Rað1� e�aÞ (18)

RIE ¼

1

n

Xn

i¼1

eaxi

1

n

0
BB@ 1� ea

ea
.
N�1

1
CCA

(19)

the robust initial enhancement proposed by Sheridan et al.,68 xi
is a relative ranking of active compound i. Ra is the fraction of

active compound
�
Ra ¼ n

N

�
, a is the scaling function.

We also investigated the potential of DBX2 to improve VS
performance of individual docking programs (rather than on
pose pools deriving from different soware) and by using
different docking setups to generate poses. The top 20 000 LIT-
PCBA compounds docked and scored with Vina against FEN1
were redocked with AutoDock and Vina using several combi-
nations of docking parameters for each program (Table S2). The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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resulting poses were subsequently subjected to DBX2, using the
same settings used in the retrospective VS experiments. The
same metrics were calculated to assess the effectiveness of
DBX2 in this specic scenario.

Baseline models

We compared DBX2 model with other methods, including
docking and rescoring tools either physics- or ML-based, using
the following protocol:

� AutoDock, Vina, DOCK, Gnina, KarmaDock,69 RTMscore70

and DBX2 were compared both in terms of docking and scoring
power, as well as for retrospective VS (CarsiDock was excluded
from the VS experiments due to the computational cost).

� CarsiDock,71 DSX and DBX2 were compared for docking
and scoring power.

Default settings were used for all programs. To evaluate the
docking, scoring and VS capabilities of RTMscore and Gnina on
the hold-out and Runs N' Poses sets, the binding poses used in
DBX2 were also utilized for rescoring with these tools. For
Gnina, the success rate was evaluated using CNNScore, and the
scoring power was evaluated using the CNNAffinity and Mini-
mized Affinity scores of the pose with the best CNNscore for
each system. KarmaDock and CarsiDock, both generative
models, automatically generated their own protein–ligand
poses and associated scores.

Results and discussion
Hyperparameter optimization

The results of hyperparameter optimization for the DBX2model
are summarized in Table S3. The best performing set of
hyperparameters included a RMSD cutoff of 10 Å to dene
edges, a nrof-neigh of 30, and a graph-level loss weight (w1) of
0.02, yielding an average success rate of 60% on 5-fold cross
validation. The model with the highest performance was then
retained and used in subsequent testing.

Docking and scoring power

We compared the success rate of DBX2 and other physics-based
methods for the docking and rescoring tasks on the hold-out
test set, as described in the Material and methods section
(Fig. 2A). As expected, rescoring ensembles of docking poses
with different scoring functions led to signicantly improved
performance due to enhanced pose sampling, as observed in
previous studies.42 Noticeably, the node-level pose classication
method implemented in DBX2 signicantly outperformed all
docking and rescoring schemes at all the tested RMSD thresh-
olds. These ndings suggest that by leveraging neighbor infor-
mation via the GNN framework, DBX2 offers a signicant
advantage in accurately identifying native near-to-native ligand
binding poses compared with docking methods that score each
pose indipendently. Fig. 2B illustrates an example of successful
application of DBX2 for identifying the native pose of the potent
TER-117 inhibitor bound to its target, the human glutathione S-
transferase P1-1 (PDB id: 10gs).72 Additionally, we compared
© 2025 The Author(s). Published by the Royal Society of Chemistry
DBX2 against four ML-based docking methods, Gnina, Karma-
Dock, CarsiDock, and RTMscore, using a 2 Å cutoff on the hold-
out dataset (Fig. S4A) and Runs N's Poses dataset (Fig. 2C).
Unsurprisingly, KarmaDock, CarsiDock, and RTMscore out-
performed both DBX2 and Gnina on the PDBbind v2019-based
hold-out test set, which was part of the PDBbind v2020 general
set used to train these models.69–71 Nevertheless, DBX2 di-
splayed encouraging performance despite the limited size of the
training set (4057 complexes) compared with the other
methods. Next, we performed the same comparison on the
Runs N's Poses dataset, which was completely unseen by all ve
investigated methods during training. Moreover, we investi-
gated the performance of docking before and aer removing the
Runs N's Poses protein families that overlapped with v2016 and
v2020. Notably, DBX2 demonstrated superior performance
compared to all other models on the Runs N's Poses dataset,
followed by Gnina, both before and aer the removal of over-
lapping protein families (Fig. 2C). Interestingly, upon overlap
removal, the success rates for RTMscore, DBX2, and Gnina
experienced a slight increase. In contrast, the success rates for
KarmaDock and CarsiDock slightly declined. Moreover, the
impact of node count per graph on DBX2 prediction perfor-
mance was further examined by generating additional graphs
from the PDBbind v2016 and the hold-out set with reduced
node counts: 70 nodes (30 poses from AutoDock and DOCK, 10
from Vina) and 35 nodes (15 poses from AutoDock and DOCK, 5
from Vina). For each setting, the model was retrained and
revaluated on the hold-out test set. The success rate was then
compared to the default 140-node conguration. While DBX2
achieved its highest performance with the default setting, the
prediction accuracy did not decline dramatically with fewer
nodes (Fig. S4B). These results suggest that when generating or
training with a large number of poses is challenging, DBX2 can
still achieve reasonable performance using ensembles of
limited size.

Next, we evaluated the ability of the scoring functions to
reproduce experimentally determined binding affinities in the
hold-out test set (Table 2). Notably, DBX2 directly computes the
binding affinity from an ensemble of poses, so it does not
require selecting a specic docking pose as input, unlike other
scoring functions. Thus, since DOCK showed the best success
rate among classical docking programs, we focused only on
poses with the best DOCK scores (aer rescoring) in order to
compute binding affinities, similarly to our previous work.42

Thus, linear regression was performed to compare binding
affinities from the hold-out dataset with the scores of the best
DOCK poses using different scoring functions and their linear
combinations.42 For DBX2, the affinity values for each protein–
ligand complex in the hold-out dataset were predicted as graph-
level tasks, hence as readouts of pose ensembles via docking
rather than relying on a single pose.

Interestingly, DBX2 exhibited the highest correlation with
experimental binding affinities on the hold-out dataset, out-
performing other tested scoring functions. In contrast, DOCK,
despite showing the best prediction of binding poses, had the
Chem. Sci., 2025, 16, 19876–19887 | 19881
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Fig. 2 (A) Comparison of success rates of identification of the correct pose on hold-out test set between AutoDock, DOCK, Vina, DSX, and DBX2,
comparing docking and rescoring strategies. Rescoring improved the performance of each docking program compared to standard docking,
emphasizing the advantage of refining initial pose predictions by evaluating them with additional scoring functions. DBX2 node-level classifi-
cation outperformed all the other tested methods. (B) Crystal structure of human glutathione S-transferase (PDB id: 10gs) with bound TER117
inhibitor (cyan). The binding pose predicted by DBX2 (orange) aligns closely with the crystallographic structure, in contrast to the poses predicted
as native by other docking software (grey). (C) Success rate of identification of the pose correctness on Runs N's Poses dataset before (light) and
after (dark) removing overlapping protein families with PDBbind v2020 for DBX2, Gnina, KarmaDock, CarsiDock, and RTMscore.
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lowest correlation (R2 = 0.16). DBX2 scoring function also di-
splayed a signicantly higher predictive index (0.79) than other
methods, indicating its potential suitability in ranking active
molecules based on their binding affinities to a target of
interest. Likewise, the Pearson coefficient of DBX2 (0.61) indi-
cated a good predictive power based on pharmaceutical
industry standards.73 Nevertheless, the R2 value, while indi-
cating positive correlation as well as an improvement compared
with other methods, remained low (0.38), underscoring
remaining challenges in accurate thermodynamics predictions
via docking-based sampling. Indeed, while our results suggest
that docking poses ensembles appear to be more suitable than
single poses for binding affinity predictions, they likely fail to
19882 | Chem. Sci., 2025, 16, 19876–19887
provide a comprehensive thermodynamic picture of binding
processes, due to the approximations necessary to ensure the
high throughput required in docking. Additionally, DBX2 also
outperforms other ML models (KarmaDock, CarsiDock, and
RTMscore) in this task, despite being trained on fewer protein–
ligand complexes, highlighting the challenges that these
methods may face in VS due to the neglection of experimental
affinities in their training.69,71 Correlation plots between exper-
imental and computational affinities are shown in Fig. S5.

Moreover, the DBX2 scoring power on the hold-out set was
compared with established methods that were trained and
tested on the same splits or supersets of them. Thus, DBX2 was
compared with GNN-MP neural network (MPNN) models from
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 R2, Pearson correlation coefficients and predictive index values between experimental binding affinities and the scores provided by
tested scoring functions. Best values are indicated in bold

Number of functions
Scoring function/
combination R2 Pearson coefficient

Predictive
index

1 DBX2 0.38 0.61 0.79
1 AutoDock 0.20 0.45 0.45
1 DOCK 0.16 0.41 0.42
1 Vina 0.25 0.52 0.48
1 DSX 0.22 0.47 0.46
1 KarmaDock 0.03 0.18 −0.79
1 CarsiDock 0.03 0.17 −0.68
1 RTMscore 0.22 0.46 −0.36
1 Gnina CNNAffinity 0.36 0.61 0.55
1 Gnina MinimizedAffinity 0.25 0.44 0.18
2 AutoDock, Vina 0.25 0.50 0.49
3 AutoDock, Vina, DOCK 0.18 0.44 0.43
3 AutoDock, Vina, DSX 0.23 0.49 0.48
4 AutoDock, Vina, DSX, DOCK 0.22 0.47 0.47
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Volkov et al.29 and Pafnucy model from Stepniewska-Dziubinska
et al.74 The rst class of models are GNNs mapping protein- (P),
ligand- (L) and protein–ligand interactions (I) graph represen-
tations to ligand–protein affinities. The Pafnucy model is
a convolutional neural network utilizing 3D convolution to
produce a feature map for protein and ligand atoms to predict
ligand–protein affinity. Notably, these models were already
trained and tested on the same datasets used in DBX2 (PDBbind
v2016 dataset and the hold-out test set, respectively) as previ-
ously reported.29 The comparison of Pearson coefficient and
RMSE is summarized in Table S4. Even in this case, DBX2
exhibited signicantly improved performances in predicting
binding affinity against hold-out set with respect to GNN-MPNN
pure interaction (I) models from Volkov et al.29 and Pafnucy
model,74 as evident from the Pearson coefficient and RMSE
values, and comparable performances with GNN models that
included protein and ligand structural information explicitly,
while being based entirely on energetic representations without
taking into account any structural information. This observa-
tion suggests that DBX2 could (at least partially) overcome the
hidden biases causing memorization of 2D molecular patterns
that these models display, as described in the study by Volkov
et al.,29 while signicantly outperforming the success rate of
pure interaction models.
Retrospective virtual screening

To test the VS power of DBX2 in realistic scenarios, we focused
on the three LIT-PCBA targets that were not present in our
training set: FEN1, GBA, and MTORC1. LIT-PCBA is a small
molecule bioactivity dataset to mitigate biases and avoid over-
estimating VS performances. Derived from bioassays, it mimics
experimental active and potency distributions within screening
libraries, spans diverse protein targets, and has been validated
across multiple screening methods, making it suitable for both
structure- and ligand-based VS retrospective experiments.41 The
numbers of active and inactive compounds for each LIT-PCBA
© 2025 The Author(s). Published by the Royal Society of Chemistry
protein target at the beginning of the retrospective VS experi-
ment and aer the rst round of Vina docking (with the top 20
000 molecules brought forward) are reported in Table S5.

Aer generating additional poses with AutoDock for mole-
cules endowed by the Vina docking step, rescoring with
different scoring functions (including DBX2) was performed
and the result evaluated by computing top-100 hit rate, EF2, and
NEF (Fig. 3A–C). DBX2 demonstrated superior performance
across all metrics when compared to other scoring functions, on
the three target proteins. Surprisingly, DBX2's node-level
predictions, which assess the likelihood of each binding pose
to be the correct one within a specic graph, consistently
matched the screening power of graph-level predictions of
binding affinities. Gnina, a ML-based tool that recently
demonstrated state-of-the-art performance in prospective drug
discovery challenges,75,76 and the other ML-based tools (Kar-
maDock and RTMscore) also performed well, further validating
the potential of data-driven models in VS tasks. Additionally,
logAUC (Fig. 3D–F) and BEDROC (Table S6) were calculated to
further assess each scoring functions' ability to distinguish
between active and inactive compounds. DBX2 demonstrates
superior performance across both these metrics as well, sug-
gesting a robust efficacy in prioritizing active compounds
throughout top and broad ranks of compounds. Node-level
predictions showed the highest performance, followed by
graph-level predictions, KarmaDock, CarsiDock, and Gnina's
CNNAffinity scoring function.

Lastly, since the use of multiple programs may result
computationally expensive in large-scale screens, we investi-
gated the effect of DBX2 in enhancing the VS performance of
single docking programs, focusing on FEN1 as the target, we
used DBX2 to rescore the top 20 000 Vina-scored molecules
from LIT-PCBA, computing top-100 hit rate, EF2 and NEF
metrics as well as logAUC before and aer the application of
DBX2 (Fig. S6 and S7). The results clearly indicated that also in
this case, DBX2 signicantly improved upon both AutoDock
and Vina outcomes across different sets of docking parameters.
Chem. Sci., 2025, 16, 19876–19887 | 19883
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Fig. 3 Retrospective VS results of different scoring functions on three proteins from the LIT-PCBA database, (A) top-100 hit rate (B) EF2 (C) NEF,
illustrating the significant performances of DBX2 node- and graph-level scores across different targets. LogAUC plots computed for (D) Flap
structure-specific Endonuclease 1 (FEN1), (E) Glucocerebrosidase (GBA), and (F) Mechanistic Target of Rapamycin (MTORC1) confirmed the
promising performance of the two DBX2 scores.
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Conclusions

We introduced DBX2, a novel GNN framework that enables to
represent computational ensembles of small molecule-protein
conformations as single graphs to jointly predict binding
modes and affinities. The model relies solely on simple ener-
getic features derived directly from docking, thus without
requiring additional costly sampling steps. We comprehen-
sively evaluated DBX2 across various metrics for docking and VS
tasks, underscoring its effectiveness as a robust tool with
superior performances compared to conventional scoring
functions and ML models relying on single pose. At the same
19884 | Chem. Sci., 2025, 16, 19876–19887
time, some caveats associated with the newly proposed
ensemble-based method emerged, especially reected in the
relatively poor correlation between graph-level prediction and
experimental binding affinities. We reasoned that these
constraints can be ascribed to the limitations of the data
generating process, i.e., docking, both in sampling the free
energy landscape of binding and estimating the binding energy
contributions that are used as features. Nevertheless, the
performances observed for DBX2 not only advocate for its
adoption in prospective VS campaigns relying on high
throughput VS but encourages also further exploration of ML
models learning from computationally generated ensembles
© 2025 The Author(s). Published by the Royal Society of Chemistry
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that can represent the thermodynamics of binding better than
single poses. In this context, an exciting venue for further
investigation could be the adaptation of the DBX2 architecture
to MD-derived conformational ensembles of small molecule-
protein complexes, to take into consideration protein exi-
bility, induced t effect, solvation, and overall equilibrium
ensembles.
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