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eration 2 – accurate, fast and
generalised neural network model for predicting
NMR parameters in place of DFT.†

Calvin Yiu, a Ben Honoré,a Will Gerrard,a Jose Napolitano-Farina, b Dave Russell,b

Iuni Margaret Laura Trist, c Ruth Dooleyc and Craig P. Butts *a

Predicting 3D-aware Nuclear Magnetic Resonance (NMR) properties is critical for determining the 3D

structure and dynamics, both stereochemical and conformational, of molecules in solution. Existing tools

for such predictions are limited, being either relatively slow quantum chemical methods such as Density

Functional Theory (DFT), or niche parameterised empirical or machine learning methods that only

predict a single parameter type, often across only a limited chemical space. We present here

IMPRESSION-Generation 2 (G2), a transformer-based neural network which can be used as a much

faster alternative to high level DFT calculations in computational workflows of multiple classes of NMR

parameter simultaneously, with time-savings of several orders of magnitude. IMPRESSION-G2 is the first

system that simultaneously predicts all NMR chemical shifts, as well as scalar couplings for 1H, 13C, 15N

and 19F nuclei up to 4 bonds apart, in a single prediction event starting from a 3D molecular structure.

Rapid NMR predictions take <50 ms to predict on average ∼5000 chemical shifts and scalar couplings

per molecule, which is approximately 106-times faster than DFT-based NMR predictions starting from

a 3D structure. When combined with fast GFN2-xTB geometry optimisations to generate the 3D input

structures themselves in just a few seconds, a complete workflow for NMR predictions on a new

molecule is 103–104 times faster than a wholly DFT-based workflow for this. The accuracy of this multi-

parameter predictor in reproducing DFT-quality results for a wide chemical space of organic molecules

up to ∼1000 g mol−1 containing C, H, N, O, F, Si, P, S, Cl, Br exceeds that of existing state-of-the-art

empirical or machine learning systems (∼0.07 ppm for 1H chemical shifts, ∼0.8 ppm for 13C chemical

shifts, <0.15 Hz for 3JHH scalar coupling constants) and, critically, it also demonstrates generalisability

when tested against molecules from sources that are completely independent of its own training data.

When compared to experimental NMR data for ∼5000 compounds, IMPRESSION-G2 gives results in

minutes on a standard laptop which are almost indistinguishable from DFT results that took days on

a large scale High Performance Computing system. This accuracy and speed of IMPRESSION-G2

coupled to GFN-xTB shows that it can be used to simply replace DFT for predicting 3D-aware NMR

parameters inside the wide chemical space of its training data.
Introduction

When establishing the structure or dynamics of a molecule in
solution, NMR spectroscopy is arguably the most powerful tool
in a chemist's arsenal. It provides atomic level detail on both
connectivity of atoms and their local 3D structure. Modern 3-
dimensional molecular structure elucidation by NMR generally
uses quantitative tting between experimental values and
predicted/computed values for one or more proposed chemical
K. E-mail: Craig.Butts@Bristol.ac.uk

mail: UK

tion (ESI) available. See DOI:

the Royal Society of Chemistry
structures.1,2 This approach has been enhanced by development
of statistical tools, such as DP4/DP5,3,4 to better discriminate
correct from incorrect proposed structures in such compari-
sons. In order to make any comparison efficiently however, the
NMR prediction methods must be both fast and accurate,
especially where multiple potential candidate structures are to
be tested, and cover all of the NMR parameters to be compared.

Traditional rapid empirical methods for predicting NMR
chemical shis are limited mostly to 2-dimensional structures
and cannot readily deal with 3-dimensional conformational or
stereochemical analysis. For example, the additivity rules of
Pretsch5 and HOSE-codes6 are inherently ‘at’, with some
modications to treating for 3-dimensionality by e.g. at-but-
stereochemically-aware HOSE codes7 or conformational
ensemble models for experimental systems.8–10 The most
Chem. Sci., 2025, 16, 8377–8382 | 8377
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accurate tool for fully 3D-aware NMR predictions are quantum
chemical calculations, typically based on Density Functional
Theory (DFT).11–14 The best DFT methods can reproduce exper-
iment to within 1–2% of the appropriate range of parameter
values i.e. 0.2–0.3/2–4 ppm15,16 on ranges of ∼10/∼200 ppm for
1H and 13C chemical shis respectively, across a very wide range
of chemical structure space. However accurate DFT is very slow,
especially when calculating for multiple molecules and/or
conformers – full workows typically take hours to days of
CPU time for NMR predictions for each 3D geometry of
a molecule of moderate size (say 30–40 non-H atoms). Naturally,
if multiple conformers or isomers must be considered then the
computation time can become days to months of computation
for a single study, which rapidly becomes impractical.

Accurate prediction of scalar coupling constants are more
directly linked to 3-dimensional structure than chemical shis,
through their high dependency on the dihedral angles of
intervening bonds between the coupled nuclei. Generic
Karplus-style empirical relationships, such as that from Haas-
noot et al.,17 provide a partial solution for specic coupling
types, e.g. 3-bond 1H–1H and 1H–13C, but they lose accuracy for
even moderately complex structures, for example where
heteroatoms introduce stereoelectronic effects. While bespoke
versions of these can be optimised to deal with specic sub-
structures, such as oen used with carbohydrates,18 they are
conversely not generalisable to molecules outside that specic
chemical space. Finally, many NMR parameters which have
great potential value in molecular structure elucidation, for
example 15N chemical shis and 1-bond 1H–13C scalar coupling
constants, 1JCH, are much more rarely used in quantitative
comparison simply because there are not reliable, fast and
accurate predictive methods for them, but one must ask the
question – what if there were?

Machine learning systems, trained on DFT-computed NMR
parameters for 3Dmolecular structures, offer a solution to all of
these issues. They are much faster to run than DFT NMR
predictions, executing in seconds rather than hours or days.
Machines for 2D-based (no conformation or stereochemistry)
predictions for 1H and 13C chemical shis exist and are typically
trained on many thousands of literature experimental chemical
shi data.19–22 These experimental chemical shi datasets are of
variable quality due to limitations in measurement accuracy
and errors of reporting by researchers. Training such machines
for prediction of scalar couplings, on the other hand, is gener-
ally not even possible because large, accurate and validated
experimental databases simply do not exist with the associated
3D molecular structures that are critical to scalar coupling
constants (e.g. 3JHH/CH values). On the other hand, large datasets
of both DFT-computed chemical shis and scalar couplings can
be generated accurately, fully validated and ensure a direct
match of those parameters to a single 3D structure. Also,
datasets of DFT-generated structures can readily be made more
diverse, as they are not limited only to chemical structures
similar to previously experimentally studied molecules. The
only downsides are then how accurately the machine repro-
duces the DFT result and how accurate the DFT method is in
reproducing experiment. Paruzzo et al. rst reported this
8378 | Chem. Sci., 2025, 16, 8377–8382
approach for machine learning-based prediction of DFT-like
solid-state NMR chemical shis with ShiML based on
a kernel-ridge regression approach.23,24 Soon aer, we demon-
strated a similar architecture for solution-state NMR predic-
tions with the rst generation of our IMPRESSION model25

which could generate predictions comparable to DFT with
mean absolute deviations of 0.23 ppm (d1H) and 2.45 ppm
(d13C) for chemical shis, as well as predicting 1JCH (MAD= 0.87
Hz). IMPRESSION was trained on 882 chemical structures,
covering the same relatively limited chemical space as ShiML
(C,H,N,O,F only) and was limited in training dataset size by the
kernel ridge regression architecture and resulting memory-
demands of its molecular representation. CASCADE from
Guan et al.26 later reported two separate message passing neural
networks that provide 1H or 13C chemical shi predictions
respectively. Both CASCADE machines were trained on ∼8000
DFT-derived molecular structures (DFT8K) and provided accu-
racies approaching 0.10 ppm (d1H) and 1.26 ppm (d13C) against
an internal hold-out of structures from that same training data,
with testing outcomes against external datasets not reported.

Herein we introduce our second generation system with
a transformer-based neural network architecture, IMPRESSION-
G2. This simultaneously predicts all dened types of scalar
coupling constants and chemical shis with DFT-like accuracy
but much higher computational efficiency. Its performance is
assessed against both computed and experimental external test
sets to ensure generalisability, and we demonstrate that it can
effectively replace DFT in such workows, while providing
orders of magnitude in time-savings.

Results and discussion
Datasets and methods

The IMPRESSION-G2 system is based on a graph transformer
network,27 inspired by our community-search project for NMR
prediction,28 that simultaneously predicts a variety of NMR
parameters as accurately, or better, than existing machine
learning systems. The transformer architecture, using attention
mechanisms, enables IMPRESSION-G2 to optimise the transfer
of information between all NMR parameters during training
and inference, e.g. chemical shi information from one nucleus
will inform the scalar coupling constants to, and between, other
nuclei and vice versa. To leverage this capability, the NMR
parameters used cover chemical shis for all spin-active
elements in the training set, as well as all 1H, 13C, 15N and 19F
scalar couplings for nuclei up to 4 bonds apart. Together, these
NMR parameters represent those most commonly used in the
structure elucidation of organic molecules by NMR spectros-
copy in solution. The training data were derived from DFT
calculations (Fig. 1), collating a database of 18 182 molecules
from three sources: the Cambridge Structural Database29 (4799
molecules) which comprises >1 M molecules for which X-ray
diffractometry crystal structures have been reported;
ChEMBL30,31 (4055 molecules) which is a manually curated
database of ∼2.4 M bioactive molecules with drug-like proper-
ties; and the OTAVA chemicals diversity library32 (9328 mole-
cules) which contains ∼10k diversity-selected drug-like
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Workflow for training IMPRESSION-Generation 2 including DFT methodology and training and testing dataset sources. Full details can be
found in the ESI.†
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molecules. These diverse data sources were selected to improve
the generalisability of the trained machine when tested against
externally sourced molecules. Further details of the structures
and methods used to select for, and subsequently rene, the
diversity of chemical space covered by the training dataset can
be found in the ESI.†

NMR parameters for each training molecule were predicted
with DFT from a single 3D structure, using mPW1PW91/6-
311g(d,p) for geometry optimisation, and uB97XD/6-311g(d,p)
for NMR predictions,33–37 providing 739 913 chemical shi
environments (330 411 d1H; 306 458 d13C) and 5 696 784 scalar
coupling constants (including 307 270 1JCH; 486 884

2JCH; 672
433 3JCH; 705 737

4JCH; 134 051
2JHH; 217 940

3JHH; 333 010
4JHH)

with the latter divided into their labelled sets, nJXY, depending
on the number of bonds (n) between the coupled pairs of nuclei
(X and Y). Details of the DFT workows and neural network
architecture are available in the ESI.†
Performance vs. DFT

Using the training set, totalling 16 304 molecules aer a 10%
hold-out of molecules for testing were removed, IMPRESSION-
G2 achieved excellent performance in reproducing DFT-quality
predictions for both 1H and 13C chemical shis (Mean Absolute
Deviation (MAD) = 0.07 ppm 1H, 0.76 ppm 13C; Table 1, entry 1)
against this 10% internal holdout. The key driver for training
machine learning systems for NMR predictions is time-saving
over DFT alternatives. IMPRESSION-G2 takes only ∼50 milli-
seconds per molecular structure to predict all NMR parameters
with the accuracy described. This is ∼106 times faster than the
hours to days required per molecular structure for the corre-
sponding DFT-based calculation of chemical shi and coupling
constants. The time-saving benets will be especially marked
when making predictions for large numbers of compounds or
exible molecules with multiple 3D structures i.e. conformers,
© 2025 The Author(s). Published by the Royal Society of Chemistry
that would be extremely challenging using DFT-based NMR
prediction. It should also be noted that DFT predictions of
couplings constants take considerably longer than those for
chemical shis alone, which is a signicant barrier to using
DFT for that purpose.

Beyond simple time-saving, the 1H and 13C chemical shi
performance of IMPRESSION-G2 against DFT on an internal
holdout improves on the current gold standard CASCADE
predictor performance (Table 1, entry 7; MAD = 0.10 ppm 1H,
1.26 ppm 13C). We note that this improvement in performance
exceeds what is expected solely on the basis of the slightly (∼2×)
larger training dataset used for IMPRESSION-G2, as a 10-fold
increase in training size is generally required to deliver a 2-fold
improvement in accuracy. This suggests that the transformer
architecture of IMPRESSION-G2, with attention passed between
NMR parameters, also offers some benets to accuracy during
training.

The key test of any machine learning system is how it
performs in generalisation tasks i.e. predictions on external sets
of molecules that are entirely independent of those from which
it was trained. Here we rst compared against the relatively
forgiving CSD-500 testing set used for the original IMPRESSION
report (410 chemical structures comprising C,H,N,O reported
by Paruzzo et al. for ShiML,23 comprising 8475 d1H; 7523 d13C
environments). IMPRESSION-G2 again provided excellent
performance (MAD = 0.09 ppm 1H, 0.97 ppm 13C; Table 1, entry
2) that is ∼2.5-times better than the original IMPRESSION25

using the same test (Table 1, entry 6). We also tested
IMPRESSION-G2 against CASCADE's more challenging DFT8K
dataset of molecules,26 which contains a greater diversity of
elements than CSD-500 and is sourced from a database
(NMRShiDB) that is entirely independent of those used to
curate our training set. Excellent performance was again
observed (MAD = 0.09 ppm 1H, 1.27 ppm 13C; Table 1, entry 3)
suggesting the IMPRESSION-G2 model is indeed generalisable
Chem. Sci., 2025, 16, 8377–8382 | 8379
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Table 1 NMR prediction accuracy against DFT (uB97XD/6-311g(d,p)) for key 1H and 13C chemical shifts and scalar coupling constants, high-
lighting performance based on machine learning system and training/testing dataset

Entry Predictor Training dataset Testing dataset 3D geometry d1H/ppm d13C/ppm 3JHH/Hz 2JHH/Hz 3JCH/Hz 2JCH/Hz 1JCH/Hz

1 IMPRESSION-G2 IG2 Internal DFT 0.07 0.76 0.12 0.13 0.15 0.15 0.36
2 IMPRESSION-G2 IG2 CSD-500 DFT 0.09 0.97 0.14 0.14 0.19 0.18 0.44
3 IMPRESSION-G2 IG2 DFT8Ka DFT 0.09 1.27 0.14 0.17 0.20 0.20 0.54
4 IMPRESSION-G2 IG2 CSD-500 GFN2-xTB 0.13 1.18 0.31 0.36 0.29 0.25 0.68
5 IMPRESSION-G2 IG2 DFT8Ka GFN2-xTB 0.13 1.46 0.31 0.33 0.32 0.27 0.74
6 IMPRESSION25 IG1 CSD-500 DFT 0.23 2.45 — — — — 0.87
7 CASCADE26 DFT8Kb Internal DFT 0.10 1.26 — — — — —

a Test result against all molecules in DFT8K, recalculated using the same DFT method (uB97xd/6-311g(d,p)) used for IMPRESSION-G2. b Testing
result reported by Guan et al.,26 with both training and testing sets calculated using the mPW1PW91/6-311+G(d,p) DFT method.

Fig. 2 Table of mean absolute deviations and overlay of error distri-
butions for DFT uB97XD/6-311g(d,p) and IMPRESSION-Generation 2
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across a wide chemical space for 1H and 13C chemical shi
prediction in molecules containing C, H, N, O, F, Si, P, S, Cl, Br,
including independent data sources.

Accurate chemical shi predictions for 15N and 19F are also
made simultaneously by IMPRESSION-G2 and predicted well
(MAD = 2.26 ppm 15N, 2.60 ppm 19F). These accuracies of
<3 ppm are comparable to the best reported DFT methods for
19F,38,39 and a substantial improvement for 15N over the original
kernel ridge-based IMPRESSION model (MAD = 6.20 ppm).40

It is important to note that while predicting dozens of
chemical shis per molecule, IMPRESSION is simultaneously
predicting hundreds to thousands of coupling constants for
each molecule, providing extremely efficient computation. The
accuracy of these scalar coupling constants predictions is also
very high (Table 1). Multiple-bond 1H–1H and 1H–13C coupling
constants were predicted with high accuracy against the
internal hold-out (MAD # 0.15 Hz; Table 1, entry 1) and both
CSD500 and DFT8K external testing sets (MAD < 0.2 Hz, Table 1,
entries 2 and 3). Similarly, one-bond 1H–13C scalar coupling
accuracy (MAD ∼ 0.5 Hz; Table 1, entries 2 and 3) were nearly
twice as accurate as those from the original IMPRESSION
system (Table 1, entry 6).40 IMPRESSION-G2 thus represents
a step-change in NMR parameter prediction as currently DFT is
the only generalisable tool to predict scalar coupling constants
across 1–4 bonds and IMPRESSION-G2 is the rst system
capable of reproducing such DFT calculations but much more
rapidly than DFT can achieve.

It should be noted that the main time-limiting feature for
IMPRESSION-G2 workows is how long it takes to generate the
3D structures prior to NMR prediction. The accuracies
described above were achieved by starting from DFT-based 3D
molecular geometries i.e. the overall workow to achieve this
accuracy still required a slow (minute to hours) DFT geometry
optimisation prior to running IMPRESSION-G2. Gratifyingly,
IMPRESSION-G2 predictions are still accurate when executed
on 3D molecular structures derived from much more rapid
GFN2-xTB optimisations.41 This was tested against both CSD-
500 and DFT8K (Table 1, entries 4 and 5 compared to entries
2 and 3) and these calculations took only a few seconds per
molecule to deliver the combined 3D geometry optimisation
and IMPRESSION-G2 NMR prediction, i.e. ∼104 times faster
than a full DFT workow.
8380 | Chem. Sci., 2025, 16, 8377–8382
Performance vs. experiment

Naturally the ultimate test of an NMR prediction system is
against experiment. The ability of IMPRESSION-G2 to repro-
duce experimental data was rst explored using 13C chemical
shi data from the ‘Exp5K’26 subset of DFT8K. The Exp5K d13C
experimental values, derived from literature data in the
NMRShiDB contain a diverse range of chemical structures
covering both exible and rigid molecules. The EXP5K dataset
was validated by Guan et al.26 against DFT prediction to mini-
mise assignment/interpretation errors in the experimental
dataset. Gratifyingly IMPRESSION-G2 offered excellent accuracy
(MAD = 2.20 ppm; Fig. 2, table, entry 1) which is comparable to
the performance of the uB97XD/6-311g(d,p) DFT method itself
on these same molecules (MAD = 1.88 ppm; Fig. 2 table, entry
2). It should be noted that the absolute accuracy of both DFT
and IMPRESSION comparisons to experimental data is always
limited by how accurately one reproduces the conformational
vs. Exp5K, as well as DFT uB97XD/6-311g(d,p) vs. IMPRESSION.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Statistical measures of IMPRESSION-G2 predictions of chem-
ical shifts and scalar couplings for strychnine diastereomers, compared
to those reported for the natural product. Entries highlighted in green
are those within 50% of the best value for each analysis.
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landscape of exible molecules. Our goal is to show the
comparability of DFT and IMPRESSION here, so we used iden-
tical single geometries as input for each compound for both
DFT and IMPRESSION NMR predictions, full details can be
found in Section 4.2 of the ESI.†

The overlay of error distributions in Fig. 2 for the
IMPRESSION-G2 and DFT methods further demonstrates the
comparability of these two approaches across the ∼5k mole-
cules. However the DFT predictions (DFT geometry optimisa-
tions and NMR predictions) took days even on a large
parallelised high-performance computing cluster, while
IMPRESSION-G2 (GFN2-xTB geometry optimisations and NMR
predictions) completed the whole dataset in <10 minutes on
a standard laptop. While each individual IMPRESSION-G2
prediction is different to what DFT would predict, the
ensemble of predictions from IMPRESSION (green) is nearly
indistinguishable from DFT (blue). This strongly supports our
conclusion that IMPRESSION-G2 can be used as a drop-in
replacement for DFT when predicting NMR parameters for
any molecules inside the chemical space (C, H, N, O, F, Si, P, S,
Cl, Br) for which it has been trained.

Finally we explored what improvements IMPRESSION-G2
provides in the critical application of 3D-structure molecular
determination. This is demonstrated here through the
enhanced 3D-structure discrimination offered by predicted
coupling constants with IMPRESSION-G2, as opposed to just
chemical shis, in the diastereomeric determination of
strychnine. Strychnine is a well-studied example, has a nearly
perfectly ‘rigid’ structure,42 and has rigorously validated and
tested NMR assignments of both chemical shis and couplings
across multiple literature reports. Consequently it allows us to
test IMPRESSION-G2 while avoiding complications arising from
errors in conformer population averaging and the misassign-
ments of experimental NMR data that abound in literature
reports.

The MAD between IMPRESSION-G2 predictions and experi-
mental values for 1H- and 13C-based NMR parameters for dia-
stereomers of strychnine, 1–7, that were found here to be stable
by computation are shown in the table in Fig. 3. In every case,
the correct diastereomer, 1, has the best t, however if one only
considers chemical shi then there is a lack of certainty, with
other plausible ts also having low average deviations close to
the performance limits of IMPRESSION-G2 (highlighted in
green where MAD <0.2 ppm for 1H and <3 ppm for 13C). Using
predicted coupling constants provides much more effective
discrimination of diastereomers, with both 1H–1H and 1H–13C
scalar couplings suggesting only diastereomer 1 as a plausible
solution. An alternative analysis using the more discriminating
c2-reduced statistic, reinforces this nding. c2-Reduced should
provide values close to 1 for good ts and ideally values >2 for
incorrect structures (see ESI† for details). Here, the c2-reduced
achieved with the combined 1H–1H and 1H–13C coupling
constants offers a very clear t for 1 (c2-reduced= 1.01) with the
next best option being 7, which can be denitively excluded
based on a six-fold higher c2-reduced of 5.89. By contrast, the
differentiation if only considering chemical shis is much less,
with less than 2-fold discrimination between diastereomers 1
© 2025 The Author(s). Published by the Royal Society of Chemistry
and 6 (1.52 and 2.93). Unsurprisingly, the combination of J and
d together also provides a clear discrimination between the
correct structure, 1, and all other options and this is clearly
illustrated in Fig. 3, top.
Conclusions

In summary, IMPRESSION-G2 predicts multiple NMR parame-
ters simultaneously and accurately with a single model. When
combined with the computational efficiency of GFN2-xTB
geometry optimisation this system offers comparable accu-
racy, but with orders of magnitude improvement in computa-
tional efficiency and time-savings, compared to DFT.

In common with other machine learning systems for NMR
prediction, it achieves the highest accuracy when tested against
internal hold-outs from its own training dataset of molecules,
but crucially IMPRESSION-G2 also provides excellent accuracy
for molecules within its chemical space (C, H, N, O, F, Si, P, S,
Cl, Br; MR < 1000 g mol−1) that are sourced entirely indepen-
dently of its training data. IMPRESSION-G2 reproduces experi-
mental data with error distributions that are comparable to
those achievable by DFT, and can provide similarly excellent
diastereomeric discrimination to DFT, but in seconds rather
than hours. Consequently we believe IMPRESSION-G2 is the
rst plausible machine learning replacement for DFT for the
prediction of 3D-sensitive NMR parameters, with time-savings
that make it possible to predict millions of parameters for
thousands of structures in minutes.
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