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omplexity of stereoselective
synthesis to the evolution of predictive tools

Jiajing Li and Jolene P. Reid *

Synthetic methods have seemingly progressed to an extent where there is an apparent and increasing need

for predictive models to navigate the vast chemical space. Methods for anticipating and optimizing reaction

outcomes have evolved from simple qualitative pictures generated from chemical intuition to complex

models constructed from quantitative methods like quantum chemistry and machine learning. These

toolsets are rooted in physical organic chemistry where fundamental principles of chemical reactivity

and molecular interactions guide their development and application. Here, we detail how the evolution

of these methods is a successful outcome and a powerful response to the diverse synthetic challenges

confronted and the innovative selectivity concepts introduced. In this review, we perform a periodization

of organic chemistry focusing on strategies that have been applied to guide the synthesis of chiral

organic molecules.
Introduction

Organic chemistry has been and continues to be categorized by
unique eras of discovery, each marked by transformative tech-
nologies enabling the preparation of new molecular structures.
Indeed, as reactions evolved from foundational to complexity
generating synthetic strategies, new methods for their design
and study emerged. Perhaps, it can be stated that organic
synthesis has persistently shaped the broad landscape of
physical organic chemistry, an area that has traditionally been
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51
focused on understanding reaction outcomes. Typically,
mechanistic tools are deployed aer the empirical identica-
tion of an effective transformation or catalyst structure rather
than in predictive fashion. However, this strategic decision is
beginning to change as a consequence of exceptional advances
in computational power and methods that now allow modelling
of complex interactions accurately. Moreover, machine learning
(ML) and articial intelligence (AI) have emerged as powerful
tools for predicting and understanding the role of catalysts/
substrates and act as a useful complement to the traditional
techniques. Given the signicant uptake of data science in
organic synthesis we thought in the context of this review, that it
would be pragmatic to demonstrate in parallel the evolution of
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the techniques used to generate organic molecules in addition
to ways for rationalizing stereochemical outcomes and making
predictions. Through this historical survey, we aim to explore
whether the integration of data science is considered an
advantageous choice—enhancing research capabilities—or if it
has become an essential element for addressing the complex-
ities and challenges inherent in modern organic chemistry.

This review focuses on the area of stereoselective synthesis,
a eld that has witnessed signicant advancements in physical
organic tool sets, from meticulously designed experiments to
computational modelling. Progress in this area has been
propelled by several factors that serve to exemplify the
complexities and challenges of modern organic chemistry. One
key factor is the role of transition states (TS) in imparting
enantioselectivity, which relies heavily on core non-covalent
interactions (NCIs) that dene their geometries and energies.
These NCIs are energetically weak and highly sensitive to the
molecular characteristics of every reaction component,
including the catalyst, substrates, reagents, and solvent.
Consequently, stereoselective synthesis exemplies an area
where even minor structural variations in any component can
signicantly and oen unpredictably impact the observed
enantioselectivity. By examining the contributions of physical
organic chemistry to this eld, we aim to elucidate its role in
rening mechanistic hypotheses and improving reaction
outcomes. As this review demonstrates, there is a clear gradual
progression from simple molecular projections to the applica-
tion of quantum chemistry, and ultimately to the use of large-
data ML approaches.

As our interest is in connecting the physical organic tools to
reaction complexity, this article will primarily detail the
stereochemical models that have been commonly used and/or
rigorously studied. Given space limitations, we cannot cover
all subelds of stereoselective synthesis. Instead, we will focus
on selected reagent types, including catalysts and their corre-
sponding reactions. To reect the evolving toolsets of physical
organic chemistry and the growing complexity of reactions, we
will, where possible, highlight examples from the same reaction
type within a given eld to maintain continuity and coherence
in the discussion. We decided to organize this review by types of
techniques, providing a structured examination of the various
methods used in the study of stereoselective synthesis and the
progression of strategies for synthesizing chiral molecules.
Periodization of selective organic
synthesis

There are several ways to generate new stereogenic centers in
asymmetric synthesis. Fundamentally, creating new stereogenic
centers with a specic absolute conguration relies on the
transfer of chirality from one or more of the reaction compo-
nents. In this context, naturally occurring chiral compounds,
known as the “chiral pool”, have been valuable resources of the
initial chirality. These compounds can be used directly, in
derivative forms, or in chiral resolutions to produce other
enantioenriched compounds, which can engage in downstream
© 2025 The Author(s). Published by the Royal Society of Chemistry
chiral transfer events. The strategy for constructing new ster-
eogenic centers with control over absolute conguration is
divided into three major approaches: substrate control, chiral
stoichiometric reagent control, and catalyst control (asym-
metric catalysis). Substrate control utilizes the inherent
chirality of the starting material, with chiral auxiliaries being
the stereotype, to achieve asymmetric induction. This strategy is
particularly effective when at least one stereogenic center is
already present, and additional stereogenic centers are needed.
In these cases, a chiral moiety is pre-installed on the substrate,
with the option of removal at a later stage. Substrate control has
proved to be widely applicable in asymmetric synthesis, espe-
cially for cyclic scaffolds that benet from their more rigid
conformations. Chiral stoichiometric reagent control involves
deploying a stoichiometric amount of a chiral reagent to direct
stereoselectivity, thereby rendering inherent chirality on the
substrate unnecessary. Classical examples include asymmetric
allylations of achiral aldehydes mediated by chiral allylmetal
reagents, such as those involving boron, tin, or silicon, as well
as sparteine-mediated asymmetric deprotonation. In addition,
asymmetric catalysis has emerged as another elegant and
powerful tool for stereoselective organic synthesis. In contrast
to stoichiometric chiral reagent control, a smaller amount,
usually 20% or less, is required. Asymmetric catalysts oen
operate by providing kinetic discrimination between enantio-
mers through the formation of diastereomeric TS structures.

Indeed, a question this organizational scheme provokes is,
why are reaction outcomes involving chiral auxiliaries or stoi-
chiometric reagents more straightforward to rationalize and
predict? Are there specic types of reactions or substrate classes
where certain physical organic tools, such as qualitative models
and quantum calculations, are particularly advantageous or
limited? Additionally, how do these tools compare in effective-
ness and predictability? Herein, we begin to probe these ques-
tions by systematically comparing the performance of various
physical organic tools and linking them to the predictability of
different chiral transfer strategies. Our goal is to identify the
strengths and limitations of each approach and provide
a clearer understanding of how these tools can be leveraged to
improve reaction outcomes and mechanistic insights.

Simple molecular projections

The mechanisms and stereochemical models of fundamental
reactions have been developed based on experimental evidence,
especially through meticulously designed control experiments.
While bonding and molecular interactions ultimately arise
from the quantum mechanical behavior of electrons, in an
overly simplistic sense, all stereoselectivity can be attributed to
steric and electronic effects, serving as a practical framework for
understanding structural inuences on reaction outcomes.
With the help of chemists' intuition and expertise in steric and
electronic effects, these stereochemical models were initially
represented as simple qualitative pictures with molecular
projections. While many of these models have proven robust
across various reactions, adaptations to established rules have
oen been necessary when applying these models to include
Chem. Sci., 2025, 16, 3832–3851 | 3833
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Fig. 1 Illustrative model of (A) Cram's rule; (B) Felkin–Anh model; (C)
Cram's chelating model (RL = large substituent, RM = medium
substituent, RS = small substituent, depending on steric size; Nu =

nucleophile, M = external Lewis acid).
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new classes of substrates or reaction conditions. Here, we aim
to highlight representative qualitative pictures and experi-
mental studies that have served to enhance our understanding
of reaction mechanisms across the three major strategies for
controlling enantioselectivity. A list of representative stereo-
chemical models in the area of stereoselective transformations
of carbonyl compounds are summarized in Table 1.

In the early stages of asymmetric synthesis, nucleophilic
addition to carbonyl compounds was one of the most repre-
sentative reaction classes. The prochiral face of a carbonyl
group can be distinguished by steric hindrance or benecial
non-covalent interactions, which enable effective stereocontrol.
In 1952, Cram et al. proposed one of the earliest stereochemical
models for asymmetric synthesis, which could be easily
sketched by hand, to describe the asymmetric induction at
carbonyl compounds based on studies of diastereoselective
nucleophilic addition to aldehydes and ketones with a-stereo-
genic centers (Fig. 1A).1 Logically, this model prioritizes the
minimization of steric contacts in the TS that would lead to the
major product. The steric hindrance of the carbonyl increases
when the oxygen coordinates with a metal ion in the reaction,
thereby dictating the conformation of the a-stereogenic center.
The bulkiest substituent RL is placed at the anti-position to the
carbonyl group and adopts an eclipsed conformation with the
substituent R at the other side of the carbonyl group. The less
bulky substituents RM and RS is positioned adjacent to the
carbonyl group. To minimize the steric repulsion, the nucleo-
phile preferentially approaches from the less hindered side,
giving the favored product. Cram's rule was well supplemented
by the Felkin–Anh model,2,3 which suggested a staggered
conformation with RL perpendicular to the carbonyl group.
Similarly, the nucleophile approaches from the less hindered
side (Fig. 1B). Together, Cram's rule and the Felkin–Anh model
provide a robust framework for understanding the stereo-
chemical outcomes of such reactions. Modications to these
models are required when additional interactions, such as
hydrogen bonding or chelation with external Lewis acids,4,11

alter the predicted stereochemistry from the aforementioned
traditional expectations (Fig. 1C).
Table 1 List of representative stereochemical models in stereoselective

Name of models/reactions Substrate type

Cram's rule1 a-Chiral carbonyls
Felkin–Anh model2,3 a-Chiral carbonyls
Cram's chelation rule4 a-Chiral carbonyls

Zimmerman–Traxler model5 Enolates and carbonyls

Mukaiyama-aldol reaction6 Silyl enol ethers and carbo

Cram–Reetz model7,8 b-Alkoxy aldehyde
Evans model9 b-Alkoxy aldehyde
Reetz chelate model10 b-Alkoxy aldehyde

3834 | Chem. Sci., 2025, 16, 3832–3851
Another well-established stereochemical rationale is the
Zimmerman–Traxler model (Fig. 2A), which is based on
a pseudo-six-membered ring TS designed to resemble the
ground state conformation of a cyclohexane ring. Initially
proposed by Zimmerman and Traxler5 to explain the stereo-
chemistry of diastereoselective Ivanov and Reformatsky reac-
tions, the pseudo-six-membered ring typically involves
coordination with a metal ion and two reactants. The substit-
uents on the enolate and the aldehyde adopt the favored
conformation to minimize steric repulsions in the TS, thus
determining the relative conguration of the major product.
The conguration of the enolate determines the position of the
methyl substituent on the chair conformation and forces the
large R1 substituent on the axial position, while the large
substituent R2 on the aldehyde prefers to occupy the equatorial
position in order to avoid 1,3-diaxial interactions with R1. Such
a highly organized TS results in the syn-diastereoisomer being
the major product.

The Zimmerman–Traxler model not only demonstrated
robustness in the reactions studied in the seminal work, but has
also inuenced future reaction design and mechanistic ratio-
nale. Over time, it has proven particularly useful in explaining
boron-mediated asymmetric reactions, such as Evans'
auxiliaries-mediated asymmetric aldol reactions12–15 (or Evans'
transformations of carbonyl compounds

Use case

Empirical model in predicting nucleophilic
additions to chiral aldehydes/ketones
Empirical model in predicting nucleophilic
additions to chiral aldehydes/ketones with
a chelating metal ion
Empirical model in predicting aldol and aldol-
type reactions of boron and titanium enolates,
etc., which proceed through six-membered-ring
TS

nyls Empirical model in predicting Mukaiyama-aldol
reactions that proceed through acyclic TS
Empirical model in predicting 1,3-stereocontrol
for carbonyls without chelation
Empirical model in predicting 1,3-stereocontrol
for carbonyls with chelation

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A) Zimmerman–Traxler model (determination of relative
configuration); (B) an illustrative example for an Evans aldol reaction
(absolute configuration controlled by the chiral auxiliary).

Fig. 3 (A) 3D structure of (−)-sparteine; (B) sparteine-mediated
asymmetric lithiation and results with other diamines as comparisons.
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aldol) and boron-mediated allylation of aldehydes. Taking the
boron-mediated Evans aldol reaction as an illustrative example,
the boron reagents will coordinate with both the enolates and
the carbonyl group of the approaching electrophile. The dia-
stereoselectivity is rationalized in the same way as shown in
Fig. 2A. Upon examining the TSs leading to two enantiomers,
one TS is favored due to the auxiliary substituent pointing
towards free space to minimize 1,3-diaxial interactions (Fig. 2B).
It should be noted that the carbonyl group on the auxiliary has
to rotate away and adopt the conformation where the dipoles of
the enolate oxygen and the carbonyl group are opposed, instead
of rotating freely to further avoid 1,3-diaxial interactions.

In the process of proposing stereochemical models, chem-
ists oen rely on designing control experiments when the key
factors for steric control are less straightforward. In the area of
chiral stoichiometric reagent control, (−)-sparteine, a naturally
occurring chiral diamine, has proven to be one of the most
useful chiral ligands for lithium, especially in asymmetric a-
deprotonation reactions.16 An illustrative example is the asym-
metric lithiation of N-Boc pyrrolidine (Fig. 3A). The rigid mul-
ticyclic scaffold of sparteine, which consists of four rings,
provides a chiral environment that is highly effective for ster-
eocontrol by restricting the conformational freedom of reactant
structures. Recent studies, however, indicate that the selectivity
outcomes are not solely due to this effect. Specically, certain
portions of the ligand profoundly contribute to the energy
differences between the TSs leading to the competing products.
Part of these mechanistic efforts has been motivated by the
need to identify simpler structures or substitutes for use in
these reactions, including seeking a surrogate for the
commercially unavailable (+)-sparteine. Simply put, under-
standing the role of each ring would enable the identication of
© 2025 The Author(s). Published by the Royal Society of Chemistry
portions that could be replaced or simplied. Indeed, control
experiments have revealed the A-wing as the crucial element for
achieving high enantioselectivity. In 2002, O'Brien et al.
demonstrated that the D-ring had a minimal impact on enan-
tioselectivity in asymmetric lithiation through their efforts
towards a (+)-sparteine surrogate.17 This conclusion was further
supported one year later by Kozlowski et al., who synthesized
a simplied version of sparteine containing only the B- and C-
rings (Fig. 3B).18 Their comparative studies revealed that the
absence of the A-ring led to signicantly reduced enantiose-
lectivity, thus emphasizing the crucial role of this structural
feature in controlling the stereoselectivity. Indeed, such
a strategy has become a standard experimental test when
investigation of a specic moiety in the ligand is desired.

In the early development of asymmetric catalysis, consider-
able achievements were made using metal catalysts with chiral
ligands to impart stereocontrol. These metal catalysts either
simply coordinate with substrates as chiral Lewis acids, or
engage in organometallic reactions. The most common strategy
in ligand design is to incorporate large groups at particular
positions to exert inuence at the TS for the enantio-
determining step, typically through steric repulsion. C2-
symmetric chiral ligands, particularly chiral diphosphine
ligands in transitionmetal catalysis, emerged as early structures
capable of achieving high enantioselectivities.19 To illustrate
these interactions in a clear and qualitative manner, a commu-
nicative visualization of the spatial arrangement of the ligand
around the metal ion is essential. Quadrant diagrams were
developed for this purpose, where the environment around the
metal center is divided into four portions.20 Shaded quadrants
represent areas blocked by substituents, while the less hindered
quadrants are le unlled. In the picture that leads to the major
product, larger substituents on the substrate tend to ll the
open areas and smaller substituents occupy the blocked areas.
Overall, by imagining how portions of the ligand structure
occupy specic pockets of space within the molecular environ-
ment, the quadrant model offers a rational framework for
Chem. Sci., 2025, 16, 3832–3851 | 3835
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understanding the experimental outcomes and predicting the
stereoselectivity.

An illustrative example of asymmetric hydrogenation with
Ru/DIPAMP is shown in Fig. 4. In this case, the phenyl groups
on the phosphine ligand block the top le and the bottom right
quadrants, while the top right and bottom le quadrants
remain relatively unhindered. For alkene substrates approach-
ing the metal center, two possible modes of activation leading
to the opposite congurations of the product are drawn out.
One of them is obviously disfavored because it forces larger
substituents into the blocked quadrants, resulting in steric
repulsion between the substrate and the catalyst. Through such
simple diagrams, the steric environment is shown in
a straightforward way, and the stereochemistry of the reaction
can be well explained.

In addition to describing the stereocontrol and predicting
products, quadrant diagrams also serve as a template for ligand
modication. For example, Hoge et al. designed a diphosphine
ligand with three hindered quadrants by replacing a methyl
group with a bulkier tert-butyl group, thereby blocking the third
quadrant and leaving only one quadrant open (Fig. 4).21 The
non-symmetric ligand was proven also successful in Rh-
catalyzed asymmetric hydrogenation of dehydroamino acids,
giving similar levels of enantioselectivity to the C2-symmetric
ligand.22,23 Such rational design was among the earliest
attempts at the design and synthesis of non-symmetric
diphosphine ligands.

When asymmetric reactions involve similar molecules with
consistent structural features, such as identical functional
groups or comparable steric environments, predicting
outcomes becomes more straightforward. In such cases, simple
qualitative models obtained from empirical trends and chem-
ical intuition provide reliable guides for understanding and
anticipating the behavior of these transformations.
Quantum chemistry

While applying qualitative models has enabled the use of
simple pictures for rationalizing and predicting reaction
outcomes, a challenge with this approach is the necessary
oversimplication of complex interactions and mechanisms.
This limits the depth of insight obtainable in more complex
scenarios, making it difficult to meet specic synthetic
demands in certain cases, such as the reversal of the sense of
stereoinduction and improving the performance of challenging
Fig. 4 The quadrant diagram for Ru/DIPAMP catalyst in asymmetric
hydrogenation and the design of a non-symmetric ligand based on
quadrant diagram.

3836 | Chem. Sci., 2025, 16, 3832–3851
substrates. As mentioned above, simple models are effective
when one or a few interactions determine stereoselective
outcomes. However, chemical reactions can be highly complex,
especially with large catalyst structures, and are dependent on
numerous factors including subtle attractive non-covalent
contacts. Simple qualitative models oen fall short of
revealing critical interactions between components, especially
when multiple activation modes are involved in asymmetric
catalysis. Therefore, it is essential to move beyond basic quali-
tative models and incorporate quantitative assessments of
stereoselectivity.

The challenge of modelling reactions inuenced by complex
noncovalent interactions has been investigated throughout the
history of asymmetric reaction development. With the
increasing reliance on quantum calculations in many elds, ab
initio methods have signicantly expanded the types of struc-
tures that can be modeled accurately. From molecular
mechanics to quantum chemical methods, the ability of
computational chemistry tools to study organic reactions has
progressively improved. Computational chemistry techniques
now offer capabilities ranging from predicting molecular
structures and energies for comparison with experimental data
to modelling and visualizing molecular orbitals, charge distri-
butions and molecular interactions.24–35

For a kinetically controlled reaction, which is the most
common scenario under mild conditions, the most straight-
forward approach towards understanding the selectivity
outcome is to calculate the TS structures leading to the
competing products, based on a mechanism supported by
experimental evidence. Within this framework, at a given
temperature, the selectivity is determined by the ratio of the
competing reaction rates (Fig. 5). By correlating the difference
in activation free energy barriers (DDG‡) with selectivity
outcomes—such as diastereomeric ratio (d.r.), enantiomeric
ratio (e.r.), or enantiomeric excess (ee)—the computationally
predicted mechanism can be validated by comparing the pre-
dicted stereoselectivity, both in direction and magnitude, with
experimental observations. While the commonly used ee
formula shown in Fig. 5 provides a convenient approximation
Fig. 5 Illustration of the relationship between DDG‡ and enantiose-
lectivity (e.r. and ee). [R] and [S] represent the concentration of R- and
S-product after the reaction, respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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for relating DDG‡ to the observed selectivity, it is important to
note that this formula is empirically derived and simplies the
relationship between DDG‡ and the equilibrium constant (K).36

If multiple activation modes are possible or several stereo-
genic centers are formed in a single chemical step, it becomes
necessary to locate TS structures for many possibilities.
Furthermore, examining the TS structures can reveal key
features such as benecial non-covalent interactions, energeti-
cally repulsive contacts and notable distortion of some reaction
components.

Pioneering work from Houk et al. demonstrated the quality
of this approach and enabled the recapitulation of mechanistic
insights into well-studied reactions. An illustrative example re-
ported in the late 1980s demonstrated the use of ab initio
calculations and molecular mechanics for TS modelling.
Results from calculations and supplementary experiments
quantitatively support previous mechanistic proposals based on
the Felkin–Anh model (Fig. 6).37 The authors investigated the
additions of hydride and Grignards to ketones. By calculating
the TS structures leading to different diastereomers and
comparing the calculated e.r. with the experimental values, the
authors found excellent agreements for the Felkin–Anh models.
Although the qualitative model only predicts the major product,
transition state calculations provided quantitative support on
stereoselectivities.

An important consideration in the progression of computa-
tional models is the availability of accurate methods. Compared
tomolecular mechanics, the development of quantum chemical
methods has signicantly improved the reliability of the
investigations of organic systems. By far the most successful
approach has been the utilization of density functional theory
(DFT), as the relatively good accuracy at low computational cost
has facilitated the use of this method in studying a wide range
of chemical processes. The use of DFT optimizations with
modest double-zeta valence polarized basis sets, such as B3LYP/
6-31G*,38–43 has historically been a cost-effective approach for
studying organic transformations. The comparison of chemi-
cally related structures, as in stereoselective reactions, oen
Fig. 6 Selected results of calculated and experimental results on
hydride addition to (A) acyclic ketones and (B) cyclic ketones. Results
generated by the MM2 force field.

© 2025 The Author(s). Published by the Royal Society of Chemistry
benets from the cancellation of systematic errors, leading to
quantitative agreements with experiments in some cases.
However, it is crucial to recognize the inherent limitations of
these early methods, particularly in the absence of dispersion
corrections or sufficient polarization functions. Although the
cost-effective methods such as B3LYP/6-31G*were very useful in
the 2000's, they are not routinely used today as they have been
replaced by more accurate methods which will be discussed
below.

In the area of asymmetric organocatalysis, secondary amine-
catalyzed aldol and aldol-type reactions are important examples
that demonstrate how quantum chemical calculations can
enhance our understanding of reaction mechanisms, give
a quantitative account of the selectivity, and guide new catalyst
design. Proline-catalyzed intramolecular aldol reactions were
reported in the 1970's,44,45 while the intermolecular version
emerged in 2000.46 Although experimental studies provided
signicant mechanistic insights, they failed to convincingly
explain the origin of enantioselectivity.

In 2003, List and Houk et al. applied quantum chemical
calculations to investigate the mechanism of the intermolecular
proline-catalyzed aldol reaction47 (Fig. 7A). The mechanism for
this intramolecular aldol reaction can be rationalized by
a Zimmerman–Traxler-type TS. Several variants of the reaction
including acyclic and cyclic enamines and a few aldehydes were
investigated. Ultimately, their results corroborated the presence
of hydrogen bonding in the TSs and highlighted that steric
repulsion between reactants governed the relative energies of
different transition states. By calculating and comparing tran-
sition states leading to four different diastereomeric products,
they proposed a set of nine-membered ring TSs organized by
Fig. 7 (A) Proline-catalyzed intermolecular aldol reactions. (B)
Possible TSs leading to four diastereoisomers for a proline-catalyzed
reaction of cyclohexanone and isobutyraldehyde. Calculated at
B3LYP/6-31G* level and under 298 K.47

Chem. Sci., 2025, 16, 3832–3851 | 3837
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hydrogen bonding (Fig. 7B), and the activation energy barrier
aligned well with experimental results. This mechanistic model,
now known as the Houk–List model, serves as a state-of-the-art
example of how quantum chemical calculations can probe
asymmetric catalytic reactions.

Quantum chemical calculations provide quantitative expla-
nations of the stereochemical outcomes for many reactions.
However, it is oen useful to summarize these complex insights
into simple qualitative models, which can complement and
enhance the understanding gained from calculations. When
supported by quantum chemical data, these stereochemical
models become more robust, and can be generalized to other
reactions, enabling predictions about the major product
stereoisomer formed without the need for additional
calculations.

In this context, the nine-membered-ring TS developed to
explain the stereochemistry of the proline-catalyzed aldol reac-
tion was successfully extended to the Mannich reaction enabled
by the same catalyst structure.48–50 While the Mannich reaction
yields the syn-product as the major diastereomer, and the
Houk–List model predicts the anti-product for the aldol reac-
tion, the recognition of prochiral faces was rationalized in the
same way (Fig. 8A).51 By considering the difference in steric
proles between the imine electrophile in the Mannich reaction
and the carbonyl electrophile in the aldol reaction, the model
could be adjusted accordingly. Specically, because the
nitrogen in the imine contains a larger substituent, the
substrate undergoes a 180-degree rotation to position this
bulkier group away from the catalyst (Fig. 8A). Recognizing the
importance of accessing anti-Mannich products, coupled with
insights from TS analysis, motivates the modication of the
catalyst structure to alter the stereochemistry of this particular
reaction. This proved possible in 2006, when Houk and Barbas
developed a modied proline catalyst to realize a preference for
Fig. 8 Proline-catalyzed syn-Mannich reaction and the computa-
tional design of a new catalyst for anti-Mannich reaction. (A) Proline-
catalyzed syn-Mannich reaction, TS for major product (calculated at
B3LYP/6-31G* level) and designed catalyst TS for anti-Mannich reac-
tion (calculated at HF/6-31G* level); (B) experimental validation. PMP=

p-methoxyphenyl.

3838 | Chem. Sci., 2025, 16, 3832–3851
the s-cis-enamine predicted by TS modelling (Fig. 8B).52 The
calculations suggested that the modied proline would lead to
a highly selective outcome for the anti-Mannich, 95 : 5 dr and
∼98% ee. Subsequent validation experiments demonstrated
that the product was obtained in 94 : 6 dr and >99% ee showing
excellent agreement with the calculations.

As demonstrated, small modications to the catalyst or
substrate structure can lead to signicant and oen unexpected
changes in selectivity, making the generalization of asymmetric
catalytic reactions challenging. At the core of these changes are
subtle NCIs that drive selectivity. However, such sensitivities,
oen viewed as limitations in reaction development, can be
harnessed to explore opportunities for stereodivergent strate-
gies. Given the unique NCIs established between organo-
catalysts and various reactants, it is not surprising that
employing these systems has emerged as a promising approach
for accessing different products. Examples illustrating this
concept can be found in the eld of chiral phosphoric acid
(CPA) catalysis, where many effective catalysts feature a chiral
pocket dened by the 1,10-binaphthol (BINOL) backbone and
constrained by large 3,30 groups.53 Since the seminal work by
Akiyama54 and Terada55 in 2004, CPA catalysis has experienced
signicant growth in methodology development and mecha-
nistic studies. While several research groups have contributed
to understanding how these catalysts function, Goodman56 and
Himo57 were among the rst. Indeed, Goodman et al. conducted
in-depth computational studies on a CPA-catalyzed transfer
hydrogenation of imines using Hantzsch esters.56 Their work
identied possible activation modes, initially through a trun-
cated CPA catalyst system, revealing that the bifunctional
mechanism, characterized by hydrogen bonding between the
catalyst and the two substrates, was the most plausible, as it
exhibited the lowest activation free energy barrier (Fig. 9).
Further investigations with full catalyst systems and work by
Himo et al.57 also supported this conclusion.

Based on these mechanisms, simple qualitative models can
be employed to quickly predict the stereochemistry of CPA-
catalyzed reactions. Two commonly-used projections for this
purpose are the quadrant projection, developed by Himo and
Terada,57,58 and the Goodman projection (Fig. 10A).56 In the
quadrant projection, the catalyst is aligned so that the POOH
Fig. 9 Investigation of different activation modes on a CPA-catalyzed
transfer hydrogenation with a truncated phosphoric acid catalyst.
Results calculated at PCM(toluene)-B3LYP/6-311++G**//B3LYP/6-
31+G* level.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc07461k


Fig. 10 (A) Two alternative views of the BINOL–CPA catalysts. (B)
Goodman's model on mechanisms of CPA-catalyzed imine additions.

Review Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 1
1/

14
/2

02
5 

5:
11

:2
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
moiety is vertical, while the naphthol oxygens lie along the
horizontal axis. Here, the BINOL backbone and 3,30-groups
occupy two of the four quadrants. The substrate's lowest energy
orientation typically minimizes steric clashes by placing larger
groups in the unoccupied quadrants. Alternatively, the
Goodman projection views the catalyst with the POOH moiety
extending above and below the plane, and the 3,30-groups
positioned on either side. The steric demands of various parts
of the reactants inuence how they t into the chiral cavity,
determining which pathway is favored. The preferred pathway is
identied by considering the size of the substituents on the
nitrogen and carbon atoms of the imine electrophile and the
positioning of the nucleophilic site relative to the hydrogen
bond that secures it within the catalyst's active site (Fig. 10B).
Goodman's model has been shown to be highly general,
successfully explaining the outcomes of a wide range of reac-
tions,59 including the transfer hydrogenation of enamides,60

Friedel–Cras reactions of indoles,61 and Mannich reactions
with enamines.62 Mechanisms for many of these reactions were
supported through TS calculations on full CPA catalysts, with
detailed comparisons of different types of mechanisms and
conguration of imines. More recently, these models have been
updated to incorporate structural descriptions of catalysts,
© 2025 The Author(s). Published by the Royal Society of Chemistry
allowing for the explanation of new experimental observations.
Notably, they account for phenomena such as the enantior-
eversal in stereoselectivity observed with 2,4,6-(iPr)3C6H2 (TRIP)
and SiPh3 (TIPSY).63,64

An important consideration in the use of DFTmethods is the
reliability of the density functional and basis set for modelling
complex interactions accurately. Since its introduction in 1993,
B3LYP has become one of the mainstream functionals in DFT
calculations due to its versatility in organic systems.38–40

However, the shortcomings of B3LYP in effectively describing
dispersion effects have been well-documented.65 As a result,
critical binding energies are oen underestimated in many
reactions. To address this, new functionals have been contin-
uously developed. For example, meta-GGA functionals devel-
oped by Truhlar66–69 have been parameterized to improve the
accuracy of medium-range correlation, including some disper-
sion effects. Another approach is implementing dispersion
correction on available density functionals—a method popu-
larized by Grimme.70–73 The existing functionals can be
augmented with an additional energy term to account for
dispersion. Such dispersion corrections not only revitalized old
functionals like B3LYP (in the form of B3LYP-D3(BJ)71), but also
enabled higher accuracy on top of the functionals containing
medium-range dispersion effects by introducing long-range
dispersion corrections, leading to the applications of func-
tionals like M06-2X-D3 in studying dispersion-dominated
systems. Indeed, while ab initio methods such as CCSD(T)74,75

with large basis sets have long been able to accurately model
attractive noncovalent interactions, recent developments in
DFT-based methods have made it more feasible to model NCIs
in larger systems.

Since some selectivity models were derived from calculations
performed before the introduction of dispersion-inclusive
functionals, re-evaluating these reactions has rened our
mechanistic understanding of selectivity, giving the same
results with higher accuracy or providing new insights into the
mechanisms. For example, the Houk–List model was revisited
with the introduction of new computational techniques,
revealing greater accuracy and deeper insights into the non-
covalent interactions governing transition states.76 Another
example is the re-visit of iminium intermediates derived from
MacMillan imidazolidinones.77 Previous calculations without
considering dispersion interactions by Houk et al. suggested the
conformation of the benzyl group placed on top of the p-
system,78 while the study combining X-ray structures and
calculations including dispersion corrections suggested that
the conformer where the benzyl group is on top of the hetero-
cycles has only ∼2 kcal mol−1 energy differences from the
previous one across various calculation methods. These results
indicated the necessity of accounting for dispersion corrections
when studying such systems (Fig. 11A). More recent examples
include investigations into the stereochemical models of the
Corey–Bakshi–Shibata (CBS) reduction by Schreiner et al. In re-
examining the TS of CBS reduction, they purposely aimed to
interrogate attractive non-covalent interactions by employing
dispersion corrections in their computational method.79 These
efforts led to the proposal of a chair-type hydride transfer TS,
Chem. Sci., 2025, 16, 3832–3851 | 3839
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Fig. 11 Incorporation of dispersion correction provides new mecha-
nistic insights on organocatalyzed reactions: (A) possible conformers
of iminium intermediates of MacMillan imidazolidinone catalysis
(energy calculated at various theoretical methods); (B) attractive
dispersion interactions instead of steric repulsion determine the
enantioselectivity of CBS reductions (previously-studied TS calculated
at B3LYP/6-31+G(d,p) in ref. 83; proposed alternative TS calculated at
B3LYP-D3(BJ)/6-311+G(d,p)-SMD(THF)//B3LYP-D3(BJ)/6-311G(d,p)
in ref. 79).

Chemical Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 1
1/

14
/2

02
5 

5:
11

:2
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
offering an alternative to the previously-studied boat-like TS
model,80–84 and providing more reasonable activation free
energy barriers that aligned better with experimental results.
Unlike the previous stereochemical model in which the origin
of enantioselectivity was attributed to steric repulsion in the TS
structures, the attractive London dispersion interactions
between the substrate and the catalyst were found to also
determine the enantioselectivity (Fig. 11B).

Overall, the sharp downtick in reliance on empirical pictures
coincided with a notable increase in the use of DFT, a reection
of the increased accessibility to methods capable of modelling
geometries and energies accurately. Concurrently, as reaction
complexity increased, intricate molecular interactions and
subtle steric effects emerged as pivotal factors in determining
stereochemical outcomes. In such cases, traditional chemical
intuition may have proven insufficient in elucidating the
underlying mechanisms driving stereoselectivity, necessitating
the utilization of complex computational approaches for
comprehensive understanding and prediction.
Correlations

TS calculations are generally not scalable and oen limited to
a few substrate–catalyst combinations, which restricts their
3840 | Chem. Sci., 2025, 16, 3832–3851
effectiveness in analyzing structure–selectivity relationships
and in benchmarking computational methods against
a broader set of experimental results. While computational
approaches are signicant in studying TS features under
optimal reaction conditions, experimentally determined
substituent effects on rate or selectivity are crucial for gaining
insights into critical NCIs in reactions of interest. In this
context, developing models that accurately reect the relation-
ship between reaction outcome and chemical structure is
essential. At the core of these modelling efforts are featurization
– the process of representing complex chemical structures with
simple numerical descriptors – and regression analysis, which
estimates the relationship between a dependent variable (the
response) and independent variables (the features). Linear
regression, and more recently multivariate linear regression
(MLR), is particularly noteworthy for its simplicity, interpret-
ability, and robustness, as well as its resistance to overtting.
Consequently, linear free energy relationships (LFERs) offer
a well-established and powerful method to correlate reactivity
with chemical structure. Traditionally, this approach has been
applied to reactivity, but by recognizing that DDG‡ = −RT
ln(e.r.), this method can be extended to selectivity data.
Depending on the factors inuencing the experimental
outcome, one or multiple descriptors may be employed, cate-
gorizing the regression techniques into univariate or MLR.
Although LFERs were originally developed for mechanistic
insight, once a quantitative structure–selectivity relationship
(QSSR)85 is established, chemists can effectively predict enan-
tioselectivities in underexplored chemical spaces. As discussed
in this section of the review, concepts like LFER, MLR, QSSR,
and statistical modelling exhibit signicant overlap both chro-
nologically and in content. Specically, LFER and MLR oen
facilitate the development of a QSSR, while statistical modelling
serves as a broad term encompassing all these related concepts.
These models have been deployed to correlate the selectivity of
various reactions, including those facilitated by the catalysts
and ligand types discussed above. In many cases, enantiose-
lectivity is the primary target for correlation, as it has histori-
cally been challenging to optimize. However, these tools have
also been applied to predict other selectivity outcomes, such as
diastereoselectivity, site-selectivity, and regioselectivity. In the
rst example of multivariate statistical modelling approach in
predicting selectivity outcomes reported by Norrby et al. in 1997,
chiral ligands and achiral ligands were combined in the same
dataset of Pd-catalyzed allylation reactions. Enantioselectivities
were predicted for datapoints with chiral ligands, and regiose-
lectivities were predicted for datapoints with achiral ligands.86

The earliest examples of LFERs to probe stereoselective
reaction outcomes predominantly relied on the use of experi-
mentally derived parameters, such as Hammett descriptors,
which assess the electronic effects of substituents (Fig. 12A). As
quantum chemical methods have improved, the use of
computationally derived descriptors emerged as an alternative
to experimental parameters to describe important molecular
features. The major benet to this analysis is that reaction
features generally only require computationally inexpensive
ground-state (GS) calculations, thus allowing for the evaluation
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Early examples on building linear correlations between enantioselectivity and reaction parameters.
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of a much larger set of structures compared to traditional
transition state analysis. We acknowledge that a more complete
understanding of reaction rates requires consideration of
transition-state structures and energies,87,88 but we believe that
ground-state descriptors serve as a valuable starting point for
predictive models, especially when computational resources are
limited.

The development and evolution of various descriptors have
signicantly expanded the capabilities and scope of model
development, enabling LFER analysis to be applied to more
complex reactions and encompass broader reaction classes. For
example, Sigman et al. have highlighted the limitations of
traditional experimentally derived descriptors, such as Ham-
mett, Charton, and A-values, in accurately reecting underlying
mechanistic phenomena.89 As a result, more comprehensive
descriptors, like IR vibrations and NMR chemical shis, were
introduced to capture a broader range of mechanistically rele-
vant features.90 Presently, common statistical modelling
approaches typically leverage a wide array of structural and
molecular descriptors, gathered from techniques such as DFT,
Quantitative Structure–Activity Relationships (QSAR),91,92 and
Molecular Mechanics (MM).93,94 The choice of descriptors oen
depends on the specic structures and processes being exam-
ined. Featurization methods typically aim to capture steric
effects (e.g., Sterimol parameters, cone angles) or electronic
properties (e.g., Hammett parameters,95 Natural Bond
Orbital96–100 (NBO) charge) of reaction partners, catalysts, and
solvent. The introduction of these advanced descriptors has
been pivotal in transforming the eld from developing simple
correlations that explain only a subset of reaction outputs to
addressing larger, more complex datasets generated during the
reaction development process. While these techniques are oen
described as mechanism-agnostic – meaning they are not
inherently dependent on mechanistic details – it is still valuable
to have a solid understanding of the underlying mechanisms to
fully harness their potential. Importantly, when leveraging
© 2025 The Author(s). Published by the Royal Society of Chemistry
equations to describe reactions based on one or several
features, these features must inuence the transformations in
a similar manner and to a comparable extent, allowing for their
representation using simple, singular equations with high
goodness of ts (i.e. R2 values). However, to accommodate
a broader range of reactions, which may exhibit different
sensitivities to the molecular features commonly captured in
larger datasets, non-linear machine learning algorithms have
been applied. These algorithms enable the modelling of more
complex relationships and this topic will be explored further in
the next section.

An o-cited example of applying LFERs to the study of
asymmetric catalysis is the Mn(III)/Salen-catalyzed enantiose-
lective epoxidation of alkenes reported by Jacobsen et al. in
1991 101 (Fig. 12A). Notably, electron-donating substituents on
the Salen ligand led to higher enantioselectivities for alkenes
prompting the authors to use LFER to investigate how these
substituents inuenced enantioselectivity. A linear correlation
between enantioselectivity and the Hammett parameter, spara,
was obtained for a few alkene substrates. These observations
also offered insights into the reaction mechanism. Based on
substituent effects and other mechanistic experiments, the
authors attributed the inuence of substituents on enantiose-
lectivity to their effect on the positioning of relevant transition
states along the reaction coordinate. Electron-donating groups
were found to stabilize transition states that are more product-
like, while electron-withdrawing groups stabilize transition
states that are more reactant-like.102 This hypothesis was
conrmed through density functional theory (DFT) calcula-
tions, which demonstrated that substituents affect the strength
of the Mn]O bond in the intermediate, thereby inuencing the
distance between the alkene and oxygen in the transition
states.103 This successful outcome highlights the effectiveness of
Hammett analysis when the chemical space under investigation
is small and the structural perturbation affects a single transi-
tion state feature.
Chem. Sci., 2025, 16, 3832–3851 | 3841
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An outstanding limitation of early-stage experimentally
derived descriptors, such as Hammett, is the narrow scope of
molecules that they can describe. To obtain a descriptor value
for a new substituent, relevant experiments must be performed,
which can be challenging due to material availability and
measurement accuracy. In the early 2000's, when experimental
descriptors were still predominantly employed, a few efforts
focused on addressing this limitation by assembling QSSR
models using computationally-derived parameters.

A representative example is the QSSR model for Zn/b-amino
alcohol-catalyzed alkylation of benzaldehyde, reported by
Kozlowski et al. (Fig. 12B).87 In this study, grid-based descriptors
known as comparative molecular eld analysis (CoMFA) –

commonly used in biochemistry and medicinal chemistry to
probe interactions between small molecules and large biolog-
ical molecules104,105 – were applied to describe the steric and
electronic effect of the catalysts. The TS structure for each
catalyst was located and then aligned within a uniform 3D grid
space, where a probe (a carbon 2s electron in this study) was
assigned to each grid point. The interaction energy between the
probe and the molecule, calculated at each grid point, effec-
tively captured the molecular shape and charge distribution in
the 3D space. These interaction energies were then utilized as
descriptors to construct a model that showed a good correlation
and predictive capability for a dataset of 22 amino alcohol
ligands. In a contemporary study by Lipkowitz et al., a similar
approach based on CoMFA was used to analyze the Cu-catalyzed
asymmetric Diels–Alder reaction. In addition to establishing
a predictive model, insights into key features of catalysts for
higher enantioselectivities were also provided.106

Because the TS structure oen resembles the reaction
components, it is also possible to collect parameters from the
ground states. This insight, combined with advances in
quantum chemical calculations, has provided an accurate and
reproducible method for obtaining molecular structures and
deriving features from calculated geometries. However, the
adoption of computational techniques was initially slow, likely
due to their perception as specialized knowledge, and their
widespread use did not gain traction until a decade later. Today,
with the support of specialized soware and automated scripts,
the process of extracting these parameters has become more
streamlined.

Many stereoselective reactions are highly sensitive to steric
effects, making it essential to establish a robust base of steric
descriptors in order to effectively apply LFER for probing these
reactions. The challenge of modelling reactions affected by
steric factors has been a longstanding focus in the development
and application of LFERs. Several steric descriptors, including
Ta descriptors,107 Charton values,108–111 A-values,112,113 and
interference values,114 have been created or repurposed to
quantify these effects. Successful application of these descrip-
tors includes early studies by Sigman and co-workers, which
demonstrated that the enantioselectivity of various reactions,
such as the Nozaki–Hiyama–Kishi (NHK) asymmetric allylation
reaction115 and the desymmetrization of a diarylmethane-
bisphenol,116 can be correlated with the Charton values of
a single substituent on the catalyst or substrate (Fig. 12C and D).
3842 | Chem. Sci., 2025, 16, 3832–3851
In the latter study,116 it was discovered that correlating three
distinct parameters – Charton values, A-values, and interference
values – revealed that Charon values were effective for
substrates with steric bulk near the chiral center, while their
effectiveness diminished with more distal steric bulk. In these
contexts, A-values and interference values provided better
correlations, despite the limited availability of data. This high-
lights a modern approach to feature extraction, where all
possible parameters are collected to relate ee and differentiate
between structures. The model then performs feature selection,
leading to optimal mathematical relationships.

In some cases, the descriptors may not accurately capture the
changes in structure and enantioselectivity, indicating that
additional descriptors might be necessary to achieve strong
correlations. This can result in complex correlations that are
difficult to interpret. Alternatively, incorporating a parameter
that more comprehensively describes these changes can help.
To do this effectively, it is crucial to recognize the limitations of
the current descriptor set, which will inform the selection of
alternative descriptors or the design of entirely new ones.

For example, A-values were dened as the free energy
differences between the axial and equatorial conformers of
a mono-substituted cyclohexane. The assumption was that the
conformational preferences were solely dependent on steric
repulsion, and London dispersion interactions were not
considered. However, in the case of large substituents, disper-
sion interactions should be carefully considered, as they will
undoubtedly contribute to the observed free energy difference.
This resulted in diminished predictive power when they were
used to build correlations for larger datasets and more
complicated substituents. Therefore, A-values cannot be treated
as purely steric descriptors and need to be further rened.117

Moreover, Charton values assume that substituents can be
treated as spheres, which simplies their behavior by
accounting for rapid rotation around their axes. However, in
kinetically-controlled reactions, which are common in asym-
metric catalysis, only one or a few conformers of a substituent
are relevant. In such cases, the descriptors derived under the
assumption of spherical, rapidly rotating substituents become
less realistic, especially for anisotropic, non-symmetrical
substituents in specic conrmations. As part of their study
on the NHK allylation, Sigman et al. observed breaks in linearity
when several non-symmetrical substituents were introduced.
They extrapolated from a linear model developed with substit-
uents of smaller Charton values, proposing that larger Charton
values might yield higher enantioselectivity. However, new
catalysts with larger substituents resulted in lower enantiose-
lectivities than the optimal t-Bu substituted catalyst. Interest-
ingly, this new set of data points formed a separate linear
correlation among themselves, effectively splitting the linear
relationship into two groups. The break in linearity was initially
explained as a change of the activation mode, though several
years later, imperfections in the descriptors were also consid-
ered as a possible cause.

To address this issue, Sterimol parameters, rst developed
by Verloop et al. in the 1970's for describing the steric effects of
substituents, were introduced.118,119 Deriving Sterimol
© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameters for substituents requires establishing a reference
point by dening an axis that passes through the atoms linking
the substituent and the substrate. Three subsets of Sterimol
parameters can be derived: the length (L), which represents the
maximum extension of the substituent parallel to the axis; and
the minimum (B1) and maximum (B5) widths, which indicate
the expansion of the substituent perpendicular to the axis.
Some early efforts were made using Sterimol parameters to
establish linear correlations. In 2004, Andersson et al. corre-
lated the enantioselectivities with the Sterimol parameters B1 of
the alkyl substituents on the substrates when studying Ru-
catalyzed asymmetric transfer hydrogenation of ketones,
thereby revealing the impact of steric hindrance of substituents
on the enantioselectivities.120 In Sigman's study on NHK ally-
lation, a good linear correlation can be established incorpo-
rating all substituents when Sterimol parameters were used
instead of Charton values.89 These data analysis tools were also
found to be well-suited to study the interdependence between
substrate and catalyst structure. One of the rst investigations
in this context focused on the prediction of both substrate and
catalyst performance in the enantioselective propargylation of
dialkyl ketones using Sterimol parameters (Fig. 13).121

In principle, given the molecular structure and the dened
axis for the substituents, the Sterimol parameters can be readily
Fig. 13 Exploring the interdependence of substrate and catalyst
effects in NHK-type propargylation reactions through Sterimol
parameters B1 and B5. The graphical representation shows Sterimol
values using an isopropyl group as an example, oriented along the
primary bond axis. The two width measurements, B1 (minimum width)
and B5 (maximum width), are taken perpendicular to this axis. Adapted
with permission from ref. 121. Copyright 2013, American Chemical
Society.

© 2025 The Author(s). Published by the Royal Society of Chemistry
calculated. For common and simple substituents, these
parameters can oen be extracted from the literature. Modern
approaches to obtaining Sterimol parameters rely on computed
structures to maintain consistency within a statistical model. In
many cases, the molecular structure used is the ground state;
however, the ground state may undergo conformational
changes to adopt the transition state geometry. Calculating
from the ground state provides a standardized reference point,
facilitating comparisons between molecules. While analyzing
a single conformer can streamline the acquisition of parameters
for analysis and prediction, exible molecules may require
consideration of averaged, maximum, or minimum parameter
values, as previously highlighted by various groups.122 Paton
et al. merged the Sterimol parameters with the Boltzmann
weighting of different conformers to develop the weighted
Sterimol (wSterimol) parameters.123 Today, Sterimol parameters
are widely employed as tools in physical organic chemistry,
particularly in the eld of asymmetric catalysis. However, Ster-
imol parameters should not be considered universal. In the case
where Sterimol parameters fail to accurately describe the steric
effects within the targeted reaction systems, chemists can still
dene new sets of steric descriptors to improve the performance
of the correlation.124

Likewise, descriptors focused on electronic effects have
advanced rapidly due to both an increased fundamental
understanding of reaction mechanisms and greater access to
routine quantum chemistry calculations. In more recent MLR
studies, steric parameters are oen required alongside one or
more electronic descriptors, which are typically represented by
NBO charges, the IR stretching frequency of covalent bonds,
orbital energies, or NMR chemical shis.90

These tools have demonstrated the ability to streamline
reaction optimization by narrowing the parameter space that
needs physical testing to the regions with predicted high
performance. While several impressive studies highlight the
potential of this approach,125–135 practical limitations arise due to
built-in constraints that restrict its applicability to specic reac-
tion types and starting materials. Generally, these models only
predict outcomes that closely resemble the training set. Accord-
ingly, this approach requires developing a new correlation for
each rection type, which can be both inefficient and resource-
intensive. Such limitations can be a highly valuable direction
for future work. By explicitly dening the limits of parameteri-
zation, chemists can unveil the factors leading to deviation or
failure of a predictive model. This would offer critical insights
into the reliability and applicability of the model.136,137

Recalling from the previous section that qualitative predic-
tions about stereoselectivity for genuinely new reactions can be
made, it is also possible to extend this capability to quantitative
predictions using these tools. This was rst demonstrated by
Reid and Sigman, who showed that statistical models can be
generated for entire reaction classes in which multiple reaction
components (substrates, catalyst, solvent, temperature, and so
on) are varied.138 This approach contrasts with the traditional
MLR analysis described above, which typically limits studies to
systematically modifying a catalyst or substrate structure
(Fig. 14).
Chem. Sci., 2025, 16, 3832–3851 | 3843
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Fig. 14 Comprehensive MLR models for CPA-catalyzed nucleophilic addition to imines.
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The models developed by Reid and Sigman revealed the
general interactions that inuence asymmetric induction and
enabled the quantitative transfer of this information to new
reaction components. More specically, by curating a dataset of
367 reactions from the literature, with a wide range of enan-
tioselectivity data (spanning a free energy range of about
6 kcal mol−1), they were able to explore both enantiomeric
amine products, a result of active E and Z congurations in the
reactions. Using this comprehensive dataset, correlations were
developed between the experimentally determined enantiose-
lectivity and molecular descriptors collected from DFT-opti-
mized geometries. These descriptors captured the structural
features of each imine, nucleophile, catalyst, and solvent. A
comparison of the terms in the correlations derived from E and
Z data revealed that most interactions are similar and driven by
repulsive catalyst–substrate contacts. However, a clear differ-
ence in the models is the result of nucleophile steric effects
which become the dominant selectivity discriminant in Z
pathways. As a nal step in the workow, the ability of these
models to transfer mechanistic principles to entirely different
structural motifs not included in the training set was evaluated.
Excitingly, the models predicted each result accurately, even in
situations where multiple components are varied.

The Reid group has demonstrated that this methodology,
which focuses on leveraging small, well-understood portions of
chemical space to predict the behavior of much larger, unex-
plored regions, is broadly applicable.139 By combining
3844 | Chem. Sci., 2025, 16, 3832–3851
a fundamental understanding of reaction mechanisms and
structure–function relationships, insights can be generalized to
predict the behavior of other molecules, even if those specic
structures have never been characterized.140,141 The effectiveness
of this approach has been demonstrated across increasingly
complicated reactions, including multi-catalysis142 and reaction
application to substrates that lead to complex molecule
formation.143

Clearly, the complexity and functions of correlation models
have evolved alongside the development and application of new
molecular descriptors. Initially derived from experimental data,
these descriptors have now expanded to include calculated
values, particularly for designer systems (i.e., those applicable to
one or a few systems). Advances in descriptor sets have enabled
the prediction of increasingly complex and diverse reactions,
allowing multiple phenomena (e.g., steric and electronic
features) to be captured within a single descriptor or through
several descriptors to accurately describe structural effects. This
progress has demonstrated tremendous potential and has been
well-received in addressing various practical research demands
including the optimization of reaction conditions and catalyst
structures.85,125,133,144–146
Non-linear machine learning

While MLR is a valuable tool for identifying linear relationships
between features and outcomes, it is inherently limited in its
© 2025 The Author(s). Published by the Royal Society of Chemistry
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ability to capture the complex, non-linear relationships oen
characteristic of asymmetric catalysis. Additionally, substrate–
catalyst matching—where a specic catalyst performs well with
certain starting materials but poorly with others, even struc-
turally similar ones—further complicates the use of MLR, as it
requires interaction terms that increase model complexity and
can obscure interpretability (Fig. 13).147,148

Non-linear ML methods offer promising alternatives to
address these challenges.149–151 These algorithms are capable of
modelling intricate, non-linear relationships, allowing for more
nuanced predictions by capturing complex interactions
between catalysts and substrates. However, to fully leverage
non-linear algorithms, large, high-quality datasets (i.e., datasets
that include sufficient chemical diversity and distribution of
points) are typically required, as smaller datasets increase the
risk of overtting. Additionally, ML models may lack trans-
parency, making it challenging to interpret the specic features
or interactions driving predictions. Despite these limitations,
non-linear ML methods represent a signicant advancement
toward building predictive models that can accommodate the
complexities of asymmetric catalysis.

Some early efforts were made in 2000's using non-linear ML
to predict enantioselectivity values and absolute congurations
of major products given a certain reaction class.152,153 However,
the resurgence of interest in applying non-linear ML in asym-
metric catalysis has been in the past few years. A landmark
contribution in this area was reported by Denmark et al. in
2019, who developed average steric occupancy (ASO) descrip-
tors—an extension of the CoMFA descriptors previously utilized
by Kozlowski and Lipkowitz et al. and described above—and
applied them with ML to predict highly selective CPA catalysts
for thiol additions to imines (Fig. 15A).154 Essentially, this grid-
based descriptor is obtained by modelling the presence or
absence of an atom at various grid points, and averaging these
values for all low-energy conformers of the catalyst. With
a dataset of 2150 CPA-catalyzed thiol additions to N-acylimines,
Fig. 15 (A) Average steric occupation (ASO) for description of CPA c
American Association for the Advancement of Science. (B) Multiple fing
IDPi catalysts and condensed graph of reactions (CGR) for intramolecula

© 2025 The Author(s). Published by the Royal Society of Chemistry
they found support vector regression and deep feed-forward
neural networks to be the most effective algorithms for pre-
dicting enantioselectivity. Notably, the deep feed-forward
neural network model could accurately predict reactions
achieving >80% ee, even when the training set included only
reactions with <80% ee. This demonstrated the extrapolative
capacity of ML algorithms, highlighting their potential to assist
in reaction optimization, even when datasets primarily contain
low to moderate enantioselectivities. Due to its size (over 1000
reactions) and high quality, this dataset has since become
a benchmark for evaluating new descriptors, as discussed
below. The Sunoj and Doyle groups have explored various ML
approaches to predict selectivity and reactivity in complex
catalytic systems, and their efforts represent other important
early contributions to ML-based reaction prediction.155,156

ML models typically offer better ts to training sets than
MLR, as demonstrated by the Reid group's efforts in revisiting
the datasets of CPA-catalyzed nucleophilic addition to imines
using the XGBoost algorithm.157 While the statistics improve in
this context, interpretation can be challenging due to the oen
‘black-box’ nature of ML models. Interestingly, this group
leveraged the interpolative ability of the ML model to construct
virtual datasets, allowing them to derive catalyst generality
values, a new metric for measuring broad catalyst success,
without bias.

As described throughout, MLR typically involves selecting
simple, interpretable descriptors that linearly relate to the
outcome, such as electronic properties, steric effects, and
thermodynamic properties. In contrast, non-linear ML can
accommodate a wider variety of descriptors, including those
that may not have simple, direct relationships with the outcome
and can interact in more complex, non-linear ways. It also
supports richer, more abstract representations like molecular
ngerprints, graph-based features, or embeddings, which do
not necessarily require the 3D structures of molecules. Due to
the various encoding approaches, these descriptors may be
atalyst. Adapted with permission from ref. 154. Copyright 2019, The
erprint features as molecular descriptors. (C) Fragment descriptors for
r reactions.
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Fig. 16 (A) Features and descriptors derived from chemical space
networks (CSN) enable better predictions for IDPi-catalyzed reactions.
(B) “Key intermediate” graph as a new representation of reaction
intermediates for graphical neural networks (GNN).
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presented in formats that are more accessible to computers, but
less interpretable and straightforward for chemists.

In 2020, Glorius et al. developed a type of molecular repre-
sentation based on multiple ngerprint features (MFF).158 This
platform is based on the assumption that a molecule's reactivity
can be directly derived from its structure and relies solely on
SMILES, a string notation for molecules, as input. For each
molecule, an array of 24 diversely congured ngerprints,
which describe structure-based molecular properties in binary
strings, was generated using the open-source Python package
RDKit. Subsequently, these MFF representations of molecules
were used to solve various problems relevant to small organic
molecules. Notably, the authors revisited the dataset of CPA-
catalyzed thiol additions to N-acylimines reported by Den-
mark et al.,154 and the models trained with molecular nger-
prints demonstrated training set ts comparable to those of the
original study, where the model was trained with more
complicated descriptors. From a predictive perspective, the
approach using molecular ngerprints signicantly simplied
the process of obtaining molecular descriptors, as these MFF
descriptors can be generated error-free within seconds
(Fig. 15B).

In addition to generating molecular ngerprints for whole
molecules, especially in the case of smaller organic compounds,
there are also examples of applying fragment descriptors for
substrates and catalysts. In 2023, List et al. introduced fragment
descriptors for BINOL-derived imidodiphosphorimidate (IDPi)
catalysts (Fig. 15C). Since all IDPi catalysts share the same
backbone and phosphorimidate moiety, but have different 3,30-
substituents and peruoro-substituents on the nitrogen, only
these substituents were used to represent the distinct features
of the IDPi catalysts.159 The Circular Substructure (CircuS)
descriptors, derived from the ISIDA (In Silico Design and Data
Analysis) platform,160 were employed for the catalysts. This
approach was applied to study an IDPi-catalyzed intramolecular
cyclization reaction that forms substituted cyclic ethers. Frag-
ment descriptors for the substrates were obtained through
Condensed Graphs of Reaction (CGR),161,162 a function of the
ISIDA platform that allows the combination of reactants and
products into a single pseudo-molecule with dynamic bonds.
While the CGR approach has been utilized in modelling prac-
tices in other elds, its application in asymmetric catalysis had
not been reported prior to this study. The combination of
CircuS descriptors for the catalysts, CGR for the substrates, and
common descriptors for other reaction parameters facilitated
model construction. This integration demonstrated applica-
bility in predicting selective IDPi catalysts and effective
substrates. Furthermore, retraining models for the CPA-
catalyzed thiol addition to N-acylimines using fragment
descriptors for the 3,30-substituents of BINOL–CPAs also
exhibited promising performance.

Most of the parameters examined are designed to differen-
tiate one molecule from another while also identifying relevant
features that link structural changes to enantioselectivity. The
implication of these parameter types is that if similar mole-
cules, as dened by a descriptor, exhibit comparable levels of
enantioselectivity, that descriptor is considered signicant.
3846 | Chem. Sci., 2025, 16, 3832–3851
However, this approach can lead to local chemical neighbor-
hoods—dened by structural similarity—performing similarly
in many instances. To complement these existing parameter
sets, the Reid group implemented a descriptor set that incor-
porates information about the performance and characteristics
of neighboring molecules into their model (Fig. 16A).163 The
focus of this effort was to build a multi-reaction model for
predicting IDPis reaction outcomes across various reactions,
including Mukaiyama aldol,164,165 Michael additions,166 Diels-
Alder,167–171 Nazarov,172 Prins,173 and Hosomi–Sakurai
reactions.174

To construct local neighborhoods of molecules, the authors
employed chemical space networks (CSN), a method that builds
a network of nodes corresponding to molecules, with edges
typically representing some form of similarity index. Networks
naturally illustrate chemical spaces by depicting how molecules
are structured and interrelated without needing to establish
a coordinate system or reduce dimensionality. Similarity
metrics, such as Tanimoto and maximum common substruc-
ture (MCS), are derived from molecular structures (such as
those represented by SMILES strings), thereby circumventing
challenges associated with high-dimensional data. Since
molecules tend to share similarities, a threshold is employed to
prevent a fully connected network, making the network prop-
erties somewhat reliant on this threshold. This approach allows
for the collection of experimental and local structural infor-
mation that reects the average historical performance of all
neighbors of a given molecule, as well as the maximum and
minimum average values among its neighbors. These features
supplement the traditional descriptors and reduce prediction
error.

Another innovative featurization approach was recently
introduced by Schreiner et al., who developed a ‘key-
intermediate graph’ to investigate the enantioselectivity of
CBS reduction using graphical neural networks (GNN)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The main uses of the predictive tools in the area of stereoselective synthesis

Main uses Other uses

Qualitative pictures Rationalizing stereochemical outcomes Estimating selectivity trends
Predicting congurations of major products

Quantum chemistry Modelling TS structures and molecular
interactions

Predicting the selectivity trends

Investigating reaction mechanisms Optimizing reaction outcomes
(i.e., mechanism-guided catalyst modication)

Linear correlations Providing mechanistic insights Predicting selectivity values (DDG‡)
Non-linear ML Predicting selectivity values (DDG‡) Providing mechanistic insights
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(Fig. 16B).175 The use of the “key-intermediate graph” resulted in
slightly higher accuracy, indicated by a lower root-mean-square
error (RMSE), compared to using separate graphs of starting
materials and catalyst structures for model construction and
prediction. By leveraging a dataset of only ∼100 reactions, the
authors were able to increase the enantioselectivity for the CBS
reduction of 2-butanone to 80% ee.

ML models provide new opportunities for employing inno-
vative featurization techniques, enabling more accurate
predictions of enantioselectivity outcomes. These advance-
ments have addressed critical synthetic challenges, such as the
development of a catalyst for the steric differentiation of nearly
equal-sized groups, as demonstrated in a previous case study by
Schreiner.175 One limitation is the requirement for larger data-
sets, which can make these approaches less accessible to bench
chemists and more complex, potentially rendering the models
less intuitive. However, new innovations in explainable AI are
expected to facilitate the transformation of predictions into
straightforward, executable experimental directions.
Conclusions

Reaction outcomes involving chiral auxiliaries or stoichiometric
reagents are generally more straightforward to rationalize and
predict, as these systems oen proceed through well-dened
intermediates and transition states, allowing for clear mecha-
nistic insights. In contrast, catalytic systems introduce dynamic
interactions and competing pathways, adding complexity to
predictions. Certain physical organic tools, such as qualitative
models and quantum calculations, are particularly advanta-
geous for specic reactions and substrate classes. Qualitative
models excel in cases where one or two steric or electronic
effects dominate, providing quick insights, though they may
struggle with complex systems involving multiple competing
factors. Quantum chemical calculations, on the other hand,
offer detailed and precise predictions, particularly for smaller or
rigid molecules with well-dened transition states; however,
they can be computationally expensive and less effective for
larger, exible systems.

Correlation-based methods rely on structurally diverse,
modestly sized datasets and can be challenging to apply if
suitable descriptors that accurately capture the interactions are
not identied. Therefore, much focus has been directed toward
well-known reactions and catalysts with established molecular
© 2025 The Author(s). Published by the Royal Society of Chemistry
representations and extensive, available datasets. By strategi-
cally leveraging qualitative models for rapid insights and
quantum calculations for rening predictions, chemists can
improve reaction outcomes and gain deeper mechanistic
understanding, optimizing reaction conditions and catalyst
designs in a more targeted manner. The main uses for different
tools discussed in this review, as applied to stereoselective
synthesis are summarized in Table 2. However, it is reasonable
to acknowledge that others may have different perspectives on
their applications.

An integrative approach will enhance both the predictability
and scope of chiral transfer strategies. The next steps in this
eld will likely focus on integrating ML with innovative exper-
imental techniques, improving the interpretability of ML
models, applying diverse algorithms, including generative
modelling, and fostering interdisciplinary collaboration.
Together, these initiatives will pave the way for more accurate
predictions, efficient catalyst designs, and transformative
breakthroughs in synthetic chemistry. Ultimately, we believe
that the complexity of physical organic tools for investigating
organic chemistry will advance alongside developments in
synthetic methods.
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