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Accurate estimation of protein–ligand (PL) binding free energies is a crucial task in medicinal chemistry and

a critical measure of PL interaction modeling effectiveness. However, traditional computational methods

are often computationally expensive and prone to errors. Recently, deep learning (DL)-based approaches

for predicting PL interactions have gained enormous attention, but their accuracy and generalizability are

hindered by data scarcity. In this study, we propose LumiNet, a versatile PL interaction modeling

framework that bridges the gap between physics-based models and black-box algorithms. LumiNet

utilizes a subgraph transformer to extract multiscale information from molecular graphs and employs

geometric neural networks to integrate PL information, mapping atomic pair structures into key physical

parameters of non-bonded interactions in classical force fields, thereby enhancing accurate absolute

binding free energy (ABFE) calculations. LumiNet is designed to be highly interpretable, offering detailed

insights into atomic interactions within protein–ligand complexes, pinpointing relatively important atom

pairs or groups. Our semi-supervised learning strategy enables LumiNet to adapt to new targets with

fewer data points than other data-driven methods, making it more relevant for real-world drug

discovery. Benchmarks show that LumiNet outperforms the current state-of-the-art model by 18.5% on

the PDE10A dataset, and rivals the FEP+ method in some tests with a speed improvement of several

orders of magnitude. We applied LumiNet in the scaffold hopping process, which accurately guided the

discovery of the optimal ligands. Furthermore, we provide a web service for the research community to

test LumiNet. The visualization of predicted inter-molecular energy contributions is expected to provide

practical value in drug discovery projects.
Introduction

Absolute binding free energy (ABFE) is a pivotal concept in
computational biology and medicinal chemistry, providing
a rigorous and transparent framework to quantify the PL inter-
actions. The modeling of binding affinity through molecular
simulation has been an active research area, aiming to achieve
a holy grail in computer chemistry. With recent strides in
computational hardware and advanced algorithms, we have
witnessed how ABFE calculations are inuencing molecular
design and screening in drug discovery and beyond.1,2 For
instance, in 2022, Wu et al. utilized ABFE calculations to guide
University, Hangzhou 310058, Zhejiang,
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tion (ESI) available. See DOI:

the Royal Society of Chemistry
scaffold hopping in the design of PDE5 inhibitors,3 ultimately
leading to the discovery of the potent lead L12 with an IC50 of 8.3
nmol L−1 and a distinct scaffold compared to the initial
compounds. In 2023, Biggin et al. proposed a novel method that
integrates ABFE calculations to enhance fragment-based molec-
ular optimization, further highlighting the vast potential of
ABFE.2 The prevailing methods for computing ABFE mainly rely
on free energy perturbation (FEP) and thermodynamic integra-
tion (TI), both of which require extensive sampling in the
congurational space.4–6 This, in turn, demands substantial
computational resources and time. Alternatively, endpoint
methods, such asMM/PBSA orMM/GBSA, can approximate ABFE
by calculating the free energy difference between the bound and
unbound states of solvated molecules, which signicantly
reduces computational demands but at the expense of accu-
racy.7,8 Balancing computational resource consumption and
calculation accuracy remains a perennial challenge, signicantly
limiting the practicality of ABFE calculations.9
Chem. Sci., 2025, 16, 5043–5057 | 5043
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The recent trend of utilizing deep learning (DL) to predict
molecular properties has sparked innovative data-driven
approaches,10–15 which may be adapted to estimate ABFE effi-
ciently and accurately. Notable examples of such approaches
include IGN,16 OnionNet,17 and GIGN.10 These rst-generation
DL solutions predominantly rely on learning statistical
patterns from training data, oen neglecting well-established
physical principles. However, the experimental data used for
training and testing DL models, compiled from diverse sources,
is not ideal. Undocumented or neglected variations in experi-
mental conditions inevitably result in disparities in binding
affinity reports for the same compound. Additionally, bias is
prevalent inmodern scientic data. Despite a wide range of data
sources for binding affinity, the chemical space covered
remains limited in most cases. These data issues severely
impede DL models from accurately capturing the authentic
patterns of protein–ligand interactions, making them suscep-
tible to dataset-dependent bias.18,19

A promising approach to address the aforementioned chal-
lenge lies in minimizing the dependence of DL models on data
volume and exploring interaction patterns grounded in
physics.20–25 For instance, in 2022, Moon et al. proposed
PIGNET, a physics-inspired DL scoring function,20 which ach-
ieved competitive results on the CASF-2016 (ref. 26) benchmark
but showed limited improvement in scoring performance. In
2024, the same team proposed an enhanced version,
PIGNET2,21 which further incorporated data augmentation for
active compounds. This upgraded model notably outperformed
those trained solely on PDBbind. However, while PIGNET aims
to develop a physics-aware model, its integration of DL and
physical principles still have room for improvement. The
current methods directly map a high dimensional latent vector
(learned by a graph neural network, GNN) to a few physical
parameters for scoring, lacking direct feedback on these
parameters as in supervised learning. This leads to an ineffec-
tive incorporation of domain knowledge, and the model's reli-
ability remains heavily dependent on the quality of training
data. In another line of research, PBCNET22 has been proposed
to predict the relative binding free energy (RBFE) between a pair
of ligands towards the same receptor. By utilizing approximately
0.6 million training samples containing ligand pairs and
proteins, PBCNET achieved comparable results to the FEP+
method on both the FEP1 (ref. 27) and FEP2 (ref. 28) tests
through active learning. This method focuses on structural
variations between ligand pairs, facilitating data-driven
learning of possible RBFE values rather than directly
modeling protein–ligand interaction patterns. Therefore, in the
current scenario with limited labeled data, RBFE methods have
a signicant advantage in predicting accuracy. However, in
practical ABFE prediction, estimating binding free energies
through RBFE calculations limits its applicability. Some studies
emphasize learning structural information to infer ABFE. For
example, DSMbind24 introduced an interesting hypothesis:
assuming that the default crystal structure represents the lowest
protein–ligand energy state, it employs SE(3) denoising score
matching (DSM) to estimate the likelihood of complexes,
thereby inferring binding free energy. GenScore,23 on the other
5044 | Chem. Sci., 2025, 16, 5043–5057
hand, initially utilizes a mixture density network (MDN) to t
the distance distribution of residue-atom pairs in protein–
ligand complexes, learning more structural information. The
model is then ne-tuned with actual binding free energy labels,
delivering remarkable results on the FEP2 dataset developed by
Schindler.28 While both GenScore and DSMbind exhibit notable
statistical correlation between predicted and experimental
energies, their actual errors remain substantial for practical
applications. For instance, when dealing with specic systems,
direct application is challenging and requires a certain number
of known ABFE values for correction. In summary, the reliance
of current DL-based models on data may introduce biases,
thereby limiting their generalizability and practical applica-
tions. Additionally, the inherent opacity of machine learning
(ML) algorithms contributes to a lack of clear and intuitive
physical explanations in existing models. Therefore, there is an
urgent need to develop improved ABFE prediction models with
robust generalization, wide applicability, and a high level of
interpretability.

In this study, we present LumiNet, an innovative approach
designed for robust PL interaction modeling and accurate
calculation of ABFE. We adopt a ‘divide and conquer’ approach,
fully leveraging the powerful structural representation capabil-
ities of deep learning and well-established physical principles.
LumiNet transformed the original ABFE estimation task into
a process that leverages structural data of protein–ligand
complexes to calculate ‘effective’ atomic distances, which are
then incorporated into a physics-driven scoring function for
ABFE computation. Specically, in LumiNet, we developed
a subgraph transformer to extract multiscale information from
molecular graphs to t distances between PL pairs, providing
a comprehensive comprehension of the underlying structural
features. Then by ne-tuning the atom pair distance with
geometric neural networks, we convert them into key parame-
ters d

0
ij for classical force elds, used to calculate various non-

bonded interactions, encompassing van der Waals forces,
hydrogen bond interactions, hydrophobic interactions, and
metal interactions.29 Furthermore, we introduce Trotor to
account for ligand entropy, thereby enhancing the model's
generalization ability. These energy terms are computed for
each atomic pair and can be visualized through an intuitive web
interface. It means we can swily locate atom pairs or groups
with signicant interactions across various interaction types,
directly aiding our analysis in drug discovery. The benchmark
tests on CASF-2016 resulted in a Pearson correlation coefficient
(PCC) of 0.85. When evaluated on the FEP1 and FEP2 holdout
sets, the model achieved PCC values of 0.65 and 0.46, respec-
tively. This performance is competitive with all current DL
approaches for direct ABFE prediction. The notable strengths of
LumiNet in prediction accuracy and computational efficiency
were conrmed by the predictions on the SARS-CoV-2 inhibitor
dataset30 and the PDE10A inhibitor dataset.31 To improve
portability, stability, and performance on target receptors, we
adopted a semi-supervised learning approach that promotes
structural awareness, yielding more reliable results. On the
FEP1 and FEP2 datasets, the average PCC values are 0.696 and
0.534, respectively, demonstrating signicant improvement
© 2025 The Author(s). Published by the Royal Society of Chemistry
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over PIGNET2 on FEP1 (0.64) and GenScore on FEP2 (0.51).
Impressively, ne-tuning with only 6 data points in a single
iteration achieved a PCC of 0.73 on FEP1, with an RMSE of 0.82
kcal mol−1, closer to the actual experimental values than the
FEP+ RMSE of 1.08 kcal mol−1. Moreover, we applied LumiNet
in the scaffold hopping process reported by Wu et al.,3 which
accurately guided the discovery of the optimal ligands. We
provided a web service to compute ABFE and pinpoint key
atomic interactions in PL complexes at https://
www.ai2physic.top.
Results and discussion
Model architecture

This model consists of two main components: a structure
information extraction module (structure module) built on
Mixture Density Networks (MDN) and a physics-based scoring
module (physics module), as shown in Fig. 1. Distance plays
a pivotal role in this integration. When predicting protein–
ligand interaction patterns, it is typical to input distances
between residue atoms or atom pairs of protein–ligand
complexes into the model for learning.12,32 Models that leverage
this information tend to show more robust predictive capabil-
ities, as absolute free energy is closely linked to geometric
conformations, similar to how bond energy is sensitive to bond
length. However, the study of Mastropietro et al.19 suggests that
bond information contributes relatively little to the model's
Fig. 1 The overall workflow of LumiNet. (A) The architecture diagram o
encodes proteins and ligands. Prior to encoding, the ligand undergoes
model utilizes the MDNmodule to fit distances and learn structural inform
for modeling interaction, fitting d

0
ij ; and subsequently calculating four en

then the binding free energy is obtained via decoding. (B) The concept of
through the structure module. Then, it optimizes the inference of d

0
ij thro

a Subgraph Transformer on the left and the physical scoring and MDN s

© 2025 The Author(s). Published by the Royal Society of Chemistry
prediction process, partly due to challenges in distinguishing
between bonds within protein–ligand complexes and internal
bonds. Models trained without explicit distance information
may rely more on inherent information within protein–ligand
complexes. By omitting distance information from the model
input and focusing solely on the structural data of proteins and
ligands as prediction targets, the model is more prone to learn
information relevant to the interaction. This involves inferring
the distance distribution of each atom pair between the protein
and ligand based on given atomic 2D and 3D information, thus
enabling the model to learn the underlying patterns of protein–
ligand interactions. In this process, the 3D information is used
only to calculate the distance features within the protein and
ligand separately and does not directly participate in the
inference process. For ABFE prediction, the structure module is
employed to infer the distance when the potential energy of
interaction between two bodies is the lowest ðd0

ijÞ; with the
bidirectional EGCL modules ne-tuning this information. d

0
ij is

essential for calculating van der Waals forces, hydrogen bond
interactions, etc. The model's design is motivated by the
correlation between dij and d

0
ij: By applying d

0
ij in the computa-

tion of physical energy terms through the physical scoring
module, it facilitates the mapping from distance to energy. This
strategy enables the model to prioritize learning structural
information rather than resorting to various methods to t
a more distant target, ABFE.
f LumiNet. The model includes a pre-training module that separately
subgraph extraction, followed by information fusion. The pre-training
ation. The physical scoringmodulemainly consists of the BiEGCL layer
ergy terms. The energy between each pair of atoms is computed, and
LumiNet. First, themodel fits distances and learns structural knowledge
ugh the interaction block. (C) The model's detailed structure includes
coring modules on the right.

Chem. Sci., 2025, 16, 5043–5057 | 5045
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The rst module in LumiNet incorporates encoding
methods for proteins and ligands, accompanied by an MDN
designed to t the distance (dij). This MDN functions as a pre-
training model, learning the structural-to-distance mapping.
Extracting protein pockets at 5 Å yielded less comprehensive
global information than those at 10 Å, but atomic-level features
provided more rened insights. We explored using larger fully
atomic pockets, but the computational complexity escalates
quickly. With a 10 Å pocket, the training time increased by
roughly 11-fold. While there was an improvement in prediction
accuracy, it didn't justify the steep rise in computational cost.
Conversely, using smaller pockets resulted in a signicant drop
in prediction performance. Ultimately, we found a 5 Å pocket to
offer the best trade-off between computational efficiency and
predictive accuracy. For protein encoding, a Graph Transformer
is employed, whereas ligand encoding utilizes a Subgraph
Transformer (SubGT). Their respective coordinates are sepa-
rately fed into the network. In the SubGT block, ligands are
decomposed into substructures and subgraphs, encoded indi-
vidually, and then aggregated via centroid, subgraph, and
context blocks aer 6 iterations to derive the feature represen-
tation of each atom. These representations are then concate-
nated with protein–ligand features to fully capture structural
information, which the MDN module then uses to t the
distance. The second module incorporates an interaction block
and four energy terms for physical scoring, serving to ne-tune
the pre-trained model. The information extracted by the pre-
trained model, combined with real distance data, is inputted
into the bidirectional EGCL module, functioning as an inter-
action block for additional structural renement to improve the
t of d

0
ij : This block determines interaction edges based on

protein–ligand atom distances, enabling authentic information
exchange. Unlike the pre-training phase that inferred atom
pairs information in a result-driven manner, this method
directly aggregates information across atom pairs. By inte-
grating these two approaches, the objective of capturing struc-
tural information smoothly shis from dij to d

0
ij : The resultant

information is then evaluated by four energy terms and further
integrated with the mdn score to compute the nal score. A
more detailed description of the model's architecture is
provided in the Methods section.
Pre-train structure module and motivation of physical scoring

We pre-trained the structure module using PDBbind2020,33

excluding 285 data points from CASF-2016. For testing, we
utilized the FEP1 set from Merck and FEP2 set from Schrö-
dinger. PDBbind2020 contains 19 443 curated co-crystal struc-
tures from diverse protein families. However, due to the
diversity of sources and assay types, the data inherently
contains notable noise. For instance, PDB entry 2w9h reports
a dissociation constant (Kd) of 430 nM in PDBbind, whereas
BindingDB lists 7 inhibition constant (Ki) values ranging from
1.2 nM to 5.5 mM.31 In cases with abundant data, noise may
enhance the model's generalization ability. In 2021, Takashi
et al.34 investigated the impact of noise and batch size on
prediction accuracy through noise augmentation on real
5046 | Chem. Sci., 2025, 16, 5043–5057
datasets. They found that, within acceptable noise levels,
augmentation can effectively bolster a model's generalization.
Nevertheless, insufficient data for comprehensive training may
introduce unavoidable biases, posing challenges to the model's
performance even in similar systems. Therefore, depending
solely on the PDBbind dataset to achieve robust generalization
in predicting ABFE poses substantial challenges.

First, we tested our pre-trained model on CASF-2016 to
validate its screening power. We found that, through the effi-
cient information extraction of the Subgraph Transformer and
the sufficient tting of the MDN, the enrichment factor for the
top 1% of ligands reached a noteworthy value of 26.5, suggest-
ing that the structure module has prociently learned the
structural information of protein–ligand interactions. Next, we
ne-tuned our pre-trained model using two distinct loss func-
tions and individually assessed their efficacy in predicting
ABFE. Unfortunately, both approaches exhibited signicant
limitations, rendering them insufficient for achieving high-
precision predictions of ABFE.

In the encoding module for small molecules, we used the
Subgraph Transformer to enable the model to understand
ligand information more deeply. This is logical given that small
molecules collectively possess extensive structural diversity, and
the model tends to use them to distinguish overall structural
states. However, this approach may introduce bias as the model
heavily depends on ligands for ABFE prediction. To mitigate
this, we effectively convert the structural information of
protein–ligand interactions into complex distance distribu-
tions, encapsulating the overall structural context despite
differing labels. The Subgraph Extractor explores each central
atom and its adjacent atoms to construct new subgraphs, which
are then aggregated via the GT module. This process surpasses
the limitations of the rst-order Weisfeiler–Leman (1-WL)
isomorphism test,20 which can capture higher-order informa-
tion and integrate structural information at different levels,
resulting in superior expressive ability.

Our investigation revealed that direct ne-tuning substan-
tially improves the scoring performance of the structure
module, albeit with limitations. As illustrated in Table S1,† we
examined two ne-tuning techniques: one using Mean Squared
Error (MSE) as the loss function and the other utilizing the
Pearson correlation coefficient. The results indicate that the
latter outperforms the former in terms of the Pearson correla-
tion coefficient on the nal test set. However, while the Pearson-
based method predominantly yields results in the 100–140
range (Fig. 2), the MSE-based method aligns closely with the
actual value distribution. This difference mainly stems from the
direct mapping of the tted distance values to ABFE through
a simple logarithmic transformation. Notably, using the Pear-
son correlation coefficient as the loss minimizes trade-offs
between tting distance and scoring tasks due to their
inherent correlation. Conversely, with MSE as the loss,
balancing both objectives becomes more challenging, resulting
in slightly inferior performance. For ranking tasks, the Pearson-
basedmethod is preferable for training, whereas the MSE-based
method is more suitable for precise ABFE calculations. To meet
both requirements, we employ transfer learning on the pre-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) The virtual screening power of the structure module on the CASF-2016 dataset, compared with other baseline models, with EF_1% as
the metric. (B) The distribution of prediction results was generated using the structure module with Pearson correlation as the loss function,
exhibiting a histogram of prediction results on the FEP1 dataset. The horizontal axis represents the predicted values, while the vertical axis
denotes the frequency of complexes.
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trained model to ne-tune the parameters of physical energy
terms, thereby achieving ABFE prediction results with excep-
tional generalization and accuracy.
Performance on the FEP dataset

To enhance the model's generalization capability and scoring
accuracy, we integrated DL with physical scoring and parame-
terized structural information derived from the pre-trained
model. To assess the integration's effectiveness and its ability
to fulll previous tests, we trained the model using 19 158 data
points from PDBbind2020. During this process, we kept the
weights of the pre-trained model xed and ne-tuned only the
physical scoring component. This step culminated in the
successful mapping of structural and distance features to ABFE.
We tested our model on the FEP1 and FEP2 datasets against
Schrödinger's FEP+, Schrödinger's Glide SP,35 MM/GBSA,7 and
two DL-based models, PIGNet2,21 and PBCNET,22 which predict
ABFE either directly or indirectly. For PIGNet2, we used the
author's original prediction data and calculated the corre-
sponding metrics, while for the other baselines, we referred to
their original publications for performance metrics. As detailed
in Tables S2 and S3,† the LumiNet method exhibited signicant
advantages over all baselines, achieving RMSEs of 1.13 kcal
mol−1 and 1.32 kcal mol−1 on the respective datasets, compared
to 1.08 kcal mol−1 and 1.67 kcal mol−1 for the FEP+ method,
with a slight advantage on the FEP2 dataset. Moreover, the
correlation coefficients for all targets in FEP1 exceeded 0.4,
indicating stable performance. Fig. 3 displays scatter plots of
predicted values for PIGNet2, FEP+, LumiNet, and LumiNet-opt.
Notably, most LumiNet predictions fell within the ±2 kcal
mol−1 range, with only one outlier exceeding ±3 kcal mol−1,
similar to the FEP+ method. Additionally, we tested our model
on the extended FEP1 dataset provided by Himanshu Goel
et al.,36 where the number of ligands was expanded to 407. The
average RMSE of LumiNet reached 1.54 kcal mol−1, as shown in
© 2025 The Author(s). Published by the Royal Society of Chemistry
Fig. S1.† Furthermore, on the traditional CASF-2016 dataset, the
Pearson correlation coefficient reached 0.848, conrming the
model's good generalization ability.

Despite the lack of intricate data preprocessing or extensive
augmentation, the model still effectively learned the patterns
and information governing protein–ligand interactions. This
success can be attributed to the fusion of physical scoring and
mixed density scoring. We acknowledge that energy-based
scoring methods inherently rely on multidimensional approxi-
mations, especially for non-bonded interactions where energy
terms overlap without clear boundaries. Consequently, we
incorporated linear tting when combining energy terms,
enabling the model to independently learn their weight rela-
tionships. Furthermore, to bridge the gap between the four
energy terms and ABFE, we transformed the mdn score scoring
into a bias energy term, thereby enhancing the rationality of
each term (as detailed in the Methods section). For feedback
propagation, we carefully designed multiple loss functions to
ensure the model's interpretability. Although the actual values
of individual energy terms were unknown during training, the
predicted values proved to be signicant. Naturally, if these
energy values were derived through high-throughput calcula-
tions and integrated into our training model, its performance
would undoubtedly be further improved.

However, it is evident that the model's predictive perfor-
mance has markedly declined across various targets in the FEP2
dataset. In contrast to datasets like FEP1, molecules in FEP2
undergo more transformations, such as changes in net charge
and charge distribution, ring openings and core hopping.28

These transformations lead to substantial alterations in solvent
interactions. Additionally, the ligand sets display a slightly
broader range of structural diversity compared to previous
benchmarks. For our model, the inuence of solvent interac-
tions is signicant. For instance, in the SYK target, a ligand with
two aromatic rings extending into the solvent results in
a notable discrepancy between predicted and actual values.
Chem. Sci., 2025, 16, 5043–5057 | 5047

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc07405j


Fig. 3 The predictive performance of FEP+ (A), LumiNet (B), PIGNET2 (C) and LumiNet-opt (D) on the FEP1 dataset. LumiNet-opt utilized the
second strategy of a semi-supervised workflow for prediction. The dashed lines represent the range within±2 kcal mol−1 of the true values. Each
target is represented by a different color.
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Similar situations can be observed with small molecules in the
PFKFB3 target. Since solvent molecules were not included in the
modeling process, the model is less sensitive to changes in this
aspect of the energy. Regarding net charge changes, the model
can partially distinguish them. For ligands in the c-Met target,
which involve six perturbations with a change in net charge, the
predictive performance aligns with the average level in the FEP1
dataset. This is attributed to the inclusion of nuclear charge and
covalent bonds in the input features. Although charge interac-
tions are not directly included in the energy terms due to the
computational complexity of accurately calculating atomic
partial charges and discrepancies in semi-empirical charges,
the bias term can be learned from embeddings, indirectly
compensating for this process. Overall, the results on the FEP1
and FEP2 datasets highlight the model's accuracy and gener-
alization ability for ABFE predictions. This represents
5048 | Chem. Sci., 2025, 16, 5043–5057
a relatively successful attempt at AI scoring based on physics
and structure.
Performance on the SARS and PDE10A datasets

The LumiNet model has shown promising performance in the
preliminary ABFE tests, but it still experiences uctuations
across diverse datasets, a common challenge for most data-
driven models. Here, an important question may be raised:
can the model exhibit robust transferability in a new system,
and do the structural weight parameters learned from PDBbind
remain effective? To answer this question, we rst assessed the
model on a dataset compiled by Mohammad et al., which
contains 16 primary SARS-CoV-2 inhibitors.30 These inhibitors
exhibit structural diversity but share similar core scaffolds, with
binding free energies (BFEs) ranging over 5 kcal mol−1. Notably,
some inhibitors differ structurally by just a halogen atom,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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posing a challenge to the model's discriminative capacity. Our
results indicate that the correlation between experimental and
predicted results is on par with the FEP+ method, achieving
a Pearson correlation coefficient of 0.73, and an RMSE of 2.61
kcal mol−1 (comparable to FEP+: Pearson correlation coefficient
of 0.76, and RMSE of 2.87 kcal mol−1).

Moreover, we designed a new test utilizing a dataset curated
by Tosstorff et al.31 in 2022, which contains 1162 PDE10A
inhibitors. PDE10A, a crucial regulator of the striatal signaling
pathway, is a promising target for schizophrenia due to its
capacity to ameliorate abnormal striatal conditions. It should
be noted that the protein structures in this dataset differ
signicantly from those in the training set, rendering testing on
this practically signicant dataset more meaningful and
convincing. To ensure experimental fairness, our testing
protocol follows the approach outlined in Tosstorff's paper.
Furthermore, instead of relying on the models ne-tuned with
ABFE labels from PDBbind models, we directly used the
protein–ligand structures and ABFE data provided in the article
for ne-tuning, exclusively building upon the pre-trained
model. We implemented seven different data partitioning
techniques, including three rolling temporal splits where the
test data is evaluated subsequent to the training data, enabling
an assessment of the model's prospective performance. Addi-
tionally, we used random splits and three structure-based
combination mode splits, wherein the model is trained on the
data from two bindingmode classes to predict a third, assessing
the model's extrapolation capability, akin to a scaffold hop
scenario.

During LumiNet training, we also do not update the pre-
trained model parameters, instead opting to ne-tune solely
the physical scoring component while retaining the original
structural parameters. This strategy ensures rapid adaptation to
new systems. As shown in Table S4,† we selected several of the
best-performing and most classical models reported for this
dataset as baselines, including four DL-based models and four
classical method-based models. Among them, the 2D3D hybrid
model31 combines AttentiveFP37 and RF-PLP,38 while the “extend
data” approach signies the model's utilization of both docked
poses and supplementary training with molecules possessing
only 2D structures. Moreover, we included the models devel-
oped by Isert et al.39 in 2024, who predicted ABFE using electron
density-based geometric DL and tested it on PDE10A, as part of
our baselines.
Table 1 Comparison of the LumiNet model with other baseline models

Model Random Split 2011 Split 2012

BCP-based graph 0.525 0.246 −0.009
NCP-based graph 0.601 0.300 0.331
2D3D hybrid 0.712 0.608 0.559
LumiNet 0.799 0.587 0.736

a The above seven data partitioning methods were used for each model,
sharing a key feature: a hydrogen bonding acceptor atom of the ligand i
sidechain. However, structural variations of ligands lead to different bin
into three categories: aminohetaryl-C1-amide, C1-hetaryl-alkyl-C2-hetary
was used as an indicator, where bold numbers represent the best results.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The comprehensive results for the other models are shown
in Tables 1, S4 and S5,† illustrating that LumiNet achieves
a Spearman correlation coefficient higher than 0.5 across
various data partitioning scenarios, achieving state-of-the-art
results in ve partitioning methods. This suggests the robust
applicability of the models across different systems, with the
structural knowledge gained from pre-training exhibiting
signicant transferability. However, a notable challenge lies in
the models' inconsistency in maintaining stable performance
across diverse data partitioning scenarios. Nevertheless, we
remain optimistic that with the continual expansion of datasets
in this eld, this challenge can be overcome. As the model gains
a deeper understanding of the interactions between PDE10A
and ligands, it is anticipated to perform well even in the pres-
ence of temporal and binding mode variations. We eagerly look
forward to the practical application of these ndings to accel-
erate research advancements on this target.
Application of LumiNet in scaffold hopping

Scaffold hopping, a technique used in drug discovery and devel-
opment, aims to nd new molecules with comparable biological
activity by altering the core scaffold of a given molecule. There-
fore, identifying privileged scaffolds is crucial for drug molecule
design. Currently, themainmethods for scaffold hopping include
heterocycle replacements, ring opening or closure, topology-based
hopping, and computational methods.40–42 Typically, these
methods require validation of scaffold hopping rationality
through binding free energy calculations. However, few compu-
tational methods take this into account largely owing to the high
computational cost and challenges in achieving accuracy. When
performing binding free energy calculations for scaffold hopping,
relying solely on RMSE and correlation coefficients is not suffi-
cient for a thorough evaluation.

Recently, the core hopping FEP method has successfully
conducted RBFE calculations for minor and limited scaffold
hopping cases. However, most scaffold hopping procedures
typically involve substantial topology changes of the entire
ligand. To accurately predict the binding free energies of
ligands following scaffold hopping, it is essential to use ABFE
calculations rather than RBFE calculations. In 2022, Wu et al.3

utilized ABFE calculations to guide scaffold hopping in the
design of PDE5 inhibitors. Following their reported procedure,
we used Glide to dock L1 to the crystal structure of PDE5-
on the PDE10A dataseta

Split 2013 Mode 1 Mode 2 Mode 3 Average

0.480 0.207 0.064 0.139 0.236
0.559 0.299 0.355 0.328 0.390
0.637 0.453 0.333 0.494 0.541
0.687 0.564 0.640 0.490 0.643

modes 1, 2, and 3 dene different protein–ligand binding modes, all
s in a hydrogen bonding distance with the amino group of the Gln726
ding congurations. Based on these differences, ligands are classied
l, and aryl-C1-amide-C2-hetaryl.31 The Pearson correlation coefficient
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Fig. 4 LumiNet's ABFE predictions for compounds undergoing scaffold hopping, along with their corresponding molecular structures. The
yellow lines indicate the model-predicted ABFE trends, while the blue lines represent the experimental ABFE trends of the compounds.
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tadalal (PDB ID: 1XOZ) and to dock L2 to L12 to the crystal
structure of PDE5-L1 (PDB ID: 7FAQ). The LumiNet model was
then used to perform ABFE predictions in a zero-shot setting.
Notably, compounds L1 to L12 were designed based on tadalal
and LW1607, with signicant structural differences from their
initial structures.

L1 to L4 served as the initial structures. The design of L7
primarily aimed to study the structure–activity relationships
(SAR) at the 2-position. As shown in Fig. 4, our prediction results
were consistent with the bioassay results, indicating that
replacing the 2-position with an oxygen-containing alkane chain
led to a signicant enhancement in inhibitory activity compared
to L1 through L4. Based on the design of L7, L5, L6, L8, L9, L10,
and L12 the aim was to explore how the length and charge
characteristics of the substituents at the 2-position inuence
activity. Our prediction results remained consistent with the
bioassay results, exhibiting comparable trends. Notably, L12,
with a moderately long hydrocarbon chain at the 2-position and
a diuoromethoxy substituent at the 5-position, was theoretically
supported by both prediction results and SAR analysis.

The original article used the FEP-ABFEP calculation method
and achieved a Pearson correlation coefficient of 0.72 between the
computational results and experimental activity values. Our
LumiNet model, evaluated in a zero-shot setting, exhibited
a correlation coefficient of 0.67 with the experimental values.
Obviously, both the LumiNet method and the original FEP-ABFEP
method demonstrated consistency in prediction accuracy and
trends related to lead compound optimization. Therefore, our
model offers valuable insights for lead compound optimization
and remains applicable even in cases where signicant structural
differences exist between optimized and initial structures.

Application of semi-supervised policies in real-world
scenarios

It can be observed that despite the remarkable progress of DL-
based ABFE prediction, most models have hit a performance
5050 | Chem. Sci., 2025, 16, 5043–5057
ceiling. This is likely caused by the constraints posed by the
currently accessible training data, which may determine the
peak performance attainable. Additionally, even with robust
models, obtaining reliable predictions for a novel target
complex continues to be a formidable challenge.

To ensure practicality in real-world scenarios, we designed
a semi-supervised workow that accounts for the scarcity of
labels for novel targets and the complexity of ligand molecules.
We have tried two strategies. The rst strategy involves opti-
mizing the entire test set by leveraging predictions from the
previous round as pseudo-labels and incorporating them into
the model's training process. This method, which shares the
results across all targets using a common checkpoint, yielded
promising outcomes, as evidenced by a Pearson correlation
coefficient of 0.7 aer two iterations as shown in Table S6.†
However, it is also evident that the deviation from the true
values (RMSE) is gradually increasing, attributed to the uncer-
tainty of pseudo-labels. Although hyperparameter tuning can
alleviate this issue, as evidenced by improved LumiNet indica-
tors on the FEP2 dataset in Table S7† the model remains
susceptible to uctuations due to insufficient monitoring. To
enhance the workow's robustness, we implemented the
second strategy: randomly selecting data with two or more
known true value labels and integrating them into the training
set for real-time monitoring. Furthermore, we incorporated the
pseudo-labels of these data points during training to further
strengthen the model. Training was terminated when the RMSE
of the true data points reached a minimum.

To ensure the reproducibility and stability of the second
strategy experiment, we assigned ve random seeds (0–4) for
data extraction. However, this approach poses a challenge of
potentially being trapped into a local optimum. As the model
tends to prioritize the best checkpoint for a limited dataset,
complicating generalization to other candidate molecules for
the target. Therefore, it is prone to overtting, when the
monitoring data is scarce, as repeated semi-supervised iterative
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc07405j


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

9:
28

:0
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
training can exacerbate this issue. To address these limitations,
we incorporated more real value data into training and super-
vision. As the volume of real-value data increases, the predictive
performance of the model across various targets gradually
improves. When the number of real values reached six, the
performance on the FEP1 dataset matched that of the FEP+
method named LumiNet-opt, as shown in Fig. 3D and Table
S8.† The RMSE further conrms that our method yields
predictions closer to true values. We did not continue to the
next iteration, considering this performance a realistic bench-
mark for our current modeling approach. Although continued
iterations may enhance performance on the current test set,
they could introduce signicant bias when applied to larger
datasets, restricting us to a local optimum within the vast
search space. Hence, we view this method as a valuable refer-
ence, particularly suitable for specic systems.
Model interpretability

The LumiNet model was developed based on physical energy
terms, inherently providing interpretability. The transparency
of individual energy terms, their weights, and the core param-
eter d

0
ij allows for direct quantitative verication of the effec-

tiveness of a system. Adhering to the interpretability principle,
each module in the model is designed accordingly. Although
the pre-trained model adeptly captures structural information,
the BiEGCL layer, a crucial interaction block component of the
model, remains indispensable. We aim to rene d

0
ij using this
Fig. 5 Visualization of van derWaals (A), hydrogen bond (B), metal (C), and
and its ligand. Favorable atomic pairs are highlighted with color-coded
interactions include both identified coordination bonds and predicted in

© 2025 The Author(s). Published by the Royal Society of Chemistry
method because the pre-training focuses on learning atom pair
distance in the current protein–ligand conguration. However,
d

0
ij refers to theminimum atom-to-atom distance when energy is

minimized. We intend to use prior structural information to
make adjustments via the interaction block, achieving a better
tting of d

0
ij : The ablation experiments prove that eliminating

the interaction block leads to a performance decline on the
FEP1 and FEP2 datasets, particularly on FEP1, where the Pear-
son correlation coefficient dropped from 0.646 to 0.547. This
result also conrms that our pre-trained model has indeed
learned current-state distance distributions, evident in the
tendency of the d

0
ij=dij ratios for certain atoms to approach 1,

a trend that gradually diminishes as the model iterates. The
subsequent energy term calculations demonstrate that the van
der Waals interaction and hydrophobic interactions constitute
the largest proportion, primarily due to the integration of van
der Waals force constraints into the loss function. While this
method has its merits and limitations, it adequately satises
the evaluation requirements for most interactions, albeit with
potential deciencies in specic cases.

As data volume increases, we can eliminate this constraint
while still achieving good results. Our model can quickly predict
the energy values for each atom pair and visually demonstrate
key protein–ligand interaction. As shown in Fig. 5, we predicted
the affinity between the protein 6ht8 and its ligand, using color
differentiation to represent the affinity of each atom pair and
setting a threshold to highlight signicant interactions.
hydrophobic (D) interactions for each atom pair between protein 6ht8
lines, displaying the top 5 pairs based on interaction energy. Metal

teractions.
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Consequently, our model readily unveils the interaction
strength between atom pairs, pinpointing relatively important
atom pairs or groups. However, due to current data constraints,
the detailed energies provided should be considered as refer-
ences rather than exact predictions. Nevertheless, during
training, if accurate labels for each energy component are
provided, the model can learn true interactions, thereby
improving prediction accuracy. In conclusion, LumiNet
undoubtedly offers researchers a straightforward assessment of
protein–ligand interactions.

Conclusions

With the advancement of AI technology, a number of models for
predicting ABFE have been developed. Nevertheless, there is
still room for improvement in terms of both generalization
capability and precision. LumiNet stands out by innovatively
merging the structure and physics modules, utilizing distance
distribution to achieve exceptional performance. Using only 19
000 data points from PDBbind, it outperformed baseline
models on the FEP dataset and achieved an 18.5% improvement
over state-of-the-art results on the PDE10A dataset, demon-
strating impressive generalization across multiple key targets.
By adopting a semi-supervised approach, further improvement
was achieved. With a modest amount of target-specic data,
LumiNet can match or even exceed the predictive power of
FEP+, holding considerable potential in optimizing lead
compounds with notable structural differences. However, it
should be noted that such superiority has its limitations.
Moreover, we applied LumiNet in the scaffold hopping process,
which accurately guided the discovery of the optimal ligands.
Although LumiNet demonstrated resilience to data volume
dependency and promoted the integration of AI with funda-
mental physics, it still failed to fully capture the underlying
patterns of protein–ligand interactions based on the current
dataset, thereby not breaking through the existing bottleneck.
LumiNet provides intuitive displays of protein–ligand interac-
tions, allowing us to understand the contribution of different
atom pairs to the overall energy and the importance of certain
functional groups. Moreover, we aim to expand beyond just
protein–ligand interactions in the future. We will augment the
training dataset to gain a deeper understanding of non-covalent
interactions and target a wider spectrum of dimer types, such as
peptide–peptide, and peptide–ligand. This expansion will
further enhance the versatility of the models, and potentially
result in a qualitative leap in predictive accuracy for various
interactions as the data volume increases.

Methods
Graph representation

In the study of protein–ligand interactions, ligands are oen
abstracted into the form of topological graphs. In our model,
the ligand is represented as an undirected graph, with atoms as
nodes and covalent bonds as edges. It is represented as [Gl =

(Hl, El, Xl)], where Hl represents node features, El represents
edge features, and Xl represents atomic coordinates.
5052 | Chem. Sci., 2025, 16, 5043–5057
For the protein, it is also abstracted into a topological graph.
Unlike many models, we still represent each atom as a node
rather than using residues. This is done to facilitate the calcu-
lation of atomic pair energy terms in the subsequent steps.
Although there are a large number of atoms in proteins, not all
of them actively participate in the binding between the protein
and ligand. Therefore, a protein pocket is extracted to reduce
the computational load. Additionally, in the processing of
edges, due to the complex protein structures, using only cova-
lent bonds as edges to describe the connectivity of the entire
topological graph may cause information loss. Hence, we
consider not only covalent bonds as edges but also atom pairs
within a 6 Å distance as connected edges. To differentiate them,
we assign a feature value of 1 to covalent bond edges and 0 to
non-covalent bond edges. Finally, the protein is represented as
[Gp = (Hp, Ep, Xp)], where Hp denotes node features, Ep denotes
edge features, and Xp denotes atomic coordinates.
Graph transformer (GT)

The Transformer-based model,43 specically designed for pro-
cessing graph data that represent entities and their interactions,
has demonstrated remarkable efficacy in studies such as Gen-
Score,23 RTMScore,44 and Karmadock,45 particularly in analyzing
protein–ligand interaction graphs. These investigations highlight
the exceptional performance of Graph Transformer. By inte-
grating a self-attention mechanism, the model establishes
dynamic correlations between nodes, allowing for exible
adjustment of weights based on their relationships. In the input
molecular graph [Gp = (Hp, Ep, Xp)], the node features hi˛Rd�dh

for the i-th node and edge features eij˛Rd�de for the edge con-
necting node i and node j are initialized to h0i and e0ij, respectively,
in a d-dimensional space using two linear layers.

h0i = W0
hhi + b0h; e

0
ij = W0

eeij + b0e (1)

where W0
h˛R

d�dh ; W0
e ˛Rd�de and b0h, b0e ˛ Rd. Aer passing

through the embedding layer, the features are expanded to the
same dimension. Then, message passing and aggregation are
executed via the convolutional layers. In the Graph Trans-
former, this operation is primarily achieved by the self-attention
mechanism. The model performs six convolutional operations,
with the convolution process for the l-th layer expressed by the
following equations:

qi
k,l = WQ

k,lNorm(hi
l) (2)

kj
k,l = WK

k,lNorm(hj
l) (3)

vj
k,l = WV

k,lNorm(hj
l) (4)

eij
k,l = WE

k,lNorm(eij
l) (5)

wk;l
ij ¼ Softmaxj˛NðiÞ

  
qk;li � kk;l

jffiffiffiffiffi
dk

p
!

� ek;lij

!
(6)

ĥi
l+1 = hi

l + Wh0
lDropout(Concatk˛1,.,H

(Aggregation_Sumj˛ N(i)(wij
k,lvj

k,l))) (7)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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êij
l+1 = eij

l + We0
lDropout(Concatk˛1,.,H(wij

k,l)) (8)

hi
l+1 = ĥi

l+1 + Wh2
lDropout(SiLU(Wh1

lNorm(ĥi
l+1))) (9)

eij
l+1 = êij

l+1 + We2
lDropout(SiLU(We1

lNorm(êij
l+1))) (10)

where WQ
k,l, WK

k,l, WV
k;l˛Rd�dk and WE

k;l˛Rd�2dk ;

Wh0
l˛Rd�d0 and We0

l˛Rd�2dh0 ; Wh1
l˛Rd�dh1 and We1

k;l˛Rd�2dh1 ;

Wh2
l˛Rd�dh2 and We2

l˛Rd�2dh2 represent learnable parameters
derived from linear layers. k ˛ 1, ., H signies the number of
attention heads, while dk represents the dimension of each
head, calculated as d divided by H. j ˛ N(i) denotes the neigh-
boring nodes of node i, with Norm indicating batch normali-
zation. Concatenation is denoted by Concat, and Dropout
denotes the dropout operation. Activation functions are repre-
sented by SiLU. The aggregation of messages on the edges
connecting node i and its neighboring nodes j is depicted by
Aggregation_Sumj˛N(i), while Somaxj˛N(i) symbolizes the So-
Max operation applied to the neighboring nodes j.
SubGraph transformer (SubGT)

Graph neural networks (GNNs) employ a recursive mechanism to
continuously gather information fromneighboring nodes, drawing
considerable attention due to their efficiency and intuitiveness.46,47

However, traditional Message Passing Neural Networks (MPNNs)
are unable to approximate all permutation–invariant graph func-
tions, and their expressive ability is limited by the 1st-order Weis-
feiler–Leman (1-WL) isomorphism test.48 Importantly, researchers
have demonstrated that these 1-WL-equivalent GNNs lack
Dxi
ðplÞ ¼

Xnp
j¼1

xj
ðplÞ � xi

ðplÞ

kxi
ðplÞ � xj

ðplÞk4x

�
mij

ðplÞ�þXnl
k¼1

xk
ðplÞ � xi

ðplÞ

kxk
ðplÞ � xi

ðplÞk4x

�
mik

ðplÞ� (15)
expressive ability and fail to capture fundamental structural
concepts, such as counting elementary structures like cycles or
triangles,49 which are known to be valuable in bioinformatics and
cheminformatics. Despite the Graph Transformer enhancing the
effectiveness of graph neural networks to some extent, it has not
adequately addressed this issue as it still relies on direct infor-
mation propagation among neighboring nodes. To overcome these
challenges, subgraphs are proposed to enhance receptive elds
with a higher structural information perception.

For an input graph [G= (H, E, X)], the molecular graph is rst
split based on the adjacency matrix:

SubGraphi = {i, j ˛ E jHi, Hj, Hij, Xi, Xj} (11)

For the i-th node, the nodes directly connected to it are
identied, and these nodes and edges collectively form
SubGraphi. The partitioning continues until the generated
subgraphs completely cover the input molecular graph. Each
subgraph is then processed through the Graph Transformer.
© 2025 The Author(s). Published by the Royal Society of Chemistry
For the i-th convolutional layer, the process is dened as
follows:

hv
(l+1) = GT(l)(G(l)[Nk(v)]), l = 0, 1, ., L − 1 (12)

hG = POOL(hv
(L)jv ˛ V) (13)

This iteration repeats six times until reaching the output
layer, where Emb(ijSubGraphi), Emb(jjSubGraphi), and
Emb(ijSubGraphj)are computed. These three computations are
concatenated, and the linear layer is applied to obtain the
feature representation of each node.
BiEGCL

BiEGCL (Bidirectional Equivariant Graph Convolutional Layer)
is a key component of the model that handles interactions
between proteins and ligands. This module computes the
distances between corresponding atoms in proteins and ligands
using the input coordinate information. Subsequently, based
on predetermined thresholds, it determines which atom pairs
are connected by edges, thus forming a directed graph. In the
implementation of BiEGCL, the normalized coordinate differ-
ences are used instead of raw coordinate differences to better
meet the requirements of the model. During the information
propagation process, we also employ an attention mechanism
module to enhance the attention and processing of the inter-
actions among different atoms.

mij
(pl ), mji

(pl ) = 4(Zij, hi
(pl ), hj

(pl ), ‖xi
(pl ) − xj

(pl )‖) (14)
It is noteworthy that the module does not perform any
coordinate updating operations during its execution, as equiv-
ariance is not necessary to achieve in this way. However, even
without coordinate updates, we still need to use distance
information to guide subsequent computations to more accu-
rately capture interactions between proteins and ligands.
Mixture density network

The Mixture density network (MDN) is an architecture
commonly used in deep learning to model complex probability
distributions, which is particularly suitable for handling data
with multi-modal distributions, as it introduces the concept of
mixture models to exibly capture multiple modes in the data.
The purpose of this module is to effectively select ligand poses
and enrich activity by learning the complex probability distri-
bution of protein–ligand interactions. By embedding the
encoding nodes of proteins and ligands and processing them
through a series of linear, normalization, activation, and
dropout layers, the module ultimately utilizes three linear layers
Chem. Sci., 2025, 16, 5043–5057 | 5053
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to output the mean, standard deviation, and mixture
coefficients.

hp,l = Dropout(ELU(BatchNorm(Wp,lConcat(hp, hl) + bp,l))) (16)

mp,l = ELU(Wmhp,l + bm) + 1 (17)

sp,l = ELU(Wshp,l + bs) + 1.1 (18)

pp,l = Softmax(Wphp,l + bp) (19)

LMDN = −log P((dp,cjhp, hc)) (20)

where Wp;l˛Rdp;l�2dh ; Wm, Wm, Wp˛Rn�dp;l ; bp;c˛Rdp;l ; bm, bs and
bp ˛ Rn are learnable parameters of linear layers; hp and hl˛Rdh

denote the features; Concat, Somax, and Dropout denote the
concatenation, somax, and dropout operations, respectively.
Constructing a mixture density model for encoding distance
distributions provides a powerful tool for describing the
diversity and uncertainty among protein–ligand node pairs,
thereby enhancing the model's performance in complex
structures.
Calculation of physical energy terms

In order to enhance the generalization ability of themodel, we aim
to let the model learn which energy terms constitute the binding
free energy and how they are calculated. In the model, the
knowledge learned by the deep learning network is tted into the
parameters of the formula to performmore universal calculations.
This mainly involves van der Waals interactions, hydrogen
bonding interactions, hydrophobic interactions, and metal inter-
actions. They are all calculated by dij and d

0
ij; where dij represents

the absolute distance between protein–ligand atom pairs, and d
0
ij

is the corrected sum of van der Waals radii. It is expressed as:

d
0
ij ¼ linear

�
ri; rj ; bij � C

�
(21)

where ri represents the van der Waals radius of the i-th atom, rj
represents the van der Waals radius of the j-th atom, and bij is
the parameter obtained through fully connected layers of the
model.

(1) van der Waals interaction: the van der Waals interaction
is primarily calculated using the Lennard-Jones potential
formula, as shown in the following equation:

Evdw ¼
X
i;j

cij

2
4 d 0

ij

dij

!12

� 2

 
d

0
ij

dij

!6
3
5 (22)

During the data preprocessing stage, we obtained the indices
of non-metal atoms, pairing each index of protein atoms with
those of ligand atoms to include as many potential pairs of van
der Waals interactions as possible. The van der Waals interaction
energy is then calculated for each pair. The parameter cij is
initialized during preprocessing and updated during model iter-
ations to better approximate the true van derWaals energy values.
Finally, the van der Waals interaction energy between the protein
and ligand is obtained by summing the energies of all atom pairs.
5054 | Chem. Sci., 2025, 16, 5043–5057
(2) Hydrogen bond interaction, hydrophobic interaction, and
metal interaction: these interactions share the same expression
but have different parameters, which need to be learned based
on the energy of each interaction type, such as c1, c2 and u,
where eij represents the energy between each atom pair, as
shown in the following equation:

eij ¼

8>>>>>>><
>>>>>>>:

u

u

�
dij � d

0
ij �

c2

c1 � c2

�
0

if dij � d
0
ij\c1

if c1\dij � d
0
ij\c2

if dij � d
0
ij . c2

(23)

Here, for hydrogen bond and metal interactions, c1 and c2 are
set as −0.7 and 0.0, respectively, while for hydrophobic inter-
actions, the constants are set as 0.5 and 1.5. During data pre-
processing, it is necessary to obtain the indices of atoms
involved in different interactions. The total energy is computed
as the sum of the energy contributions from all atom pairs.

(3) MDN score as a bias term: due to incomplete consider-
ation of energy terms such as charge interactions and overlaps
or computational deciencies among various energy terms, we
introduce a bias term for correction. Based on the initial model,
we compute the distance distribution outputted by the MDN
block against the actual distance and modify it using specied
weight values to obtain our energy bias term. It is mainly rep-
resented by the following formula:

mdn score ¼ a �
X
u

X
v

Lmdn (24)

where u and v represent atoms in the protein and ligand
respectively. Eventually, aer adjusting the coefficients, a more
reasonable bias term can be obtained.

(4) Calculation of absolute binding free energy: the rotation
penalty term Trotor aims to consider the entropy loss due to the
free rotation of chemical bonds during protein–ligand binding
within the binding pocket. We assume that the entropy loss is
proportional to the number of rotatable bonds in the ligand
molecule. Trotor can be described as follows:

Trotor = 1 + Crotor + Nrotor (25)

The total binding free energy can be described as a linear
combination of multiple energy terms. The reason for not
directly using summation is that there may exist biases that
cannot be calculated well, and this approach can minimize
errors as much as possible.

Etotal ¼ linear

�
Evdw

Trotor

;
Ehbond

Trotor

;
Emetal

Trotor

;
Ehydrophobic

Trotor

; mdn score

�
(26)

Dataset and preparation

The PDBBind (Protein Data Bank Binding) dataset is a vital
resource in drug research, primarily composed of high-quality
protein–ligand (PL) complexes whose structural information is
sourced from the Protein Data Bank (PDB). Each complex is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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experimentally measured under specic conditions and
provides binding affinity information, widely used for assessing
and training models of drug–target interactions. This dataset
offers scientists experimentally validated structural data, sup-
porting them to better understand and predict molecular
interactions. In this model, we utilize the latest version of the
dataset, PDBBind 2020, as the training set, comprising a total of
19 443 protein–ligand complexes. As CASF-2016 is used as the
test set, 285 data points included in the test set will be excluded
during training.

Given that our work primarily focuses on high-precision
prediction of binding free energies, we mainly use FEP1 and
FEP2 datasets for testing. The two challenging datasets are
widely employed as important benchmarks by models such as
GenScore, PBCNet, and PIGNET2. The FEP1 dataset includes
eight targets: BACE, CDK2, Jnk1, MCL1, p38, PTP1B, thrombin,
and Tyk2, with a total of 199 data points. The FEP2 dataset
comprises eight targets: cdk8, cmet, eg5, hif2a, p3, shp2,
syk, and tnks2, with 264 data points. For all proteins, we select
the portion where the distance to the ligand atoms is not more
than 5 Å as the molecular pocket and compute the distances
between atoms within the protein. Atoms with distances less
than 6 Å and having a covalent bond are considered to be
connected by an edge. Additionally, based on different inter-
action rules, we extract the corresponding atom indices for each
energy term. The atom indices for the ligand atoms are also
extracted accordingly.

Model training

Our model is built using PyTorch50 and the data is processed into
the PYG51 format. The training process mainly consists of three
modules. First is the pre-training module. We utilize the
PDBbind2020 database, excluding 285 data points from the cor-
eset. The remaining data is split into a 9 : 1 ratio for training and
validation sets, respectively. During training, the MDNmodule is
employed to t the distance distribution between PL atom pairs.

L = LMDN + 0.001 × Latom + 0.001 × Lbond (27)

LMDN = −log P((dp,cjhp, hc)) (28)

where m, s, and p represent the mean, standard deviation, and
mixture coefficient of the n-th distance distribution, respec-
tively; dp,c denotes the distance between protein nodes and
ligand nodes. The model uses an Adam optimizer with a batch
size of 32, a learning rate of 1 × 10−3, and a weight decay of 1 ×

10−5 for optimization. The training is stopped when the loss on
the validation set continuously increases for 70 epochs. Aer-
ward, the GT block and SubGT block are considered to have
learned the distance distribution.

Next, ne-tuning the pre-trained model uses the same
database, where ABFE is utilized as the label. All data points are
used for training, with the coreset serving as the test set and
FEP1 and FEP2 as external test sets. The information learned by
the SubGT block and GT block is input into the interactive block
to transform the distance distribution into the d

0
ij to t the

parameters of the LJ potential formula. Multiple energy terms
© 2025 The Author(s). Published by the Royal Society of Chemistry
are linearly regressed to obtain the nal ABFE. Three loss
functions are involved in the training process.

L = Lphysical score + Lmdn score + Lvdw (29)

Lphysical score = MSE(pred, label) (30)

Lmdn score = Pearson(mdn_pred, label) (31)

Lvdw = jMSE(vdwpred, 0.8 × label) − deltaj (32)

The physical score mainly consists of van der Waals energy
terms, hydrogen bond energy terms, hydrophobic interaction
energy terms, metal interaction energy terms, and an MDN
score term. Among them, the vdw score and MDN score are the
most important. To ensure the rationality of each energy term,
separate loss functions are applied to enhance the model's
interpretability. In the end, several energy terms can be printed
out individually for analysis.

Finally, the effectiveness of specic systems is optimized
through semi-supervised training. Taking the FEP1 dataset as an
example, rstly the ne-tuned scoring model in the previous step
is utilized to predict the ABFE of 199 PLs in FEP1 dataset. The
predicted values are then treated as pseudo-labels. In semi-
supervised training, only the physical scoring component is
trained, with gradients retained solely for this part, including
536 772 parameters. Leading to signicantly improved training
efficiency. Subsequently, each epoch trains the 199 data points
from PDBbind and the 199 data points from FEP1 together. The
training is conducted on an RTX Tesla V100 GPU, with a batch
size set to 32. On average, each batch iteration requires 0.67
seconds. Consequently, each epoch typically takes approximately
15 seconds to complete. The overall loss function is as follows:

L = Lreal + a × Lvir (33)

where the calculation method is the same as that of the loss
calculation process in the previous ne-tuning step, and alpha
is the coefficient of the virtual loss, set as 0.5. Training is
stopped when the loss no longer decreases aer 100 epochs.
Then, using the current model repeatedly predict FEP1, and the
predicted values are treated as pseudo-labels for the next round.
According to this process, iterating 3–5 times generally achieves
stable prediction results. Excessive iterations may lead to slight
improvements but increase the risk of overtting, so it is not
recommended. Thus, the entire semi-supervised process typi-
cally takes less than two hours to nish.
Model testing

The testing datasets mainly include CASF-2016, FEP1, FEP2,
and PDE10A. In the pre-training phase, torch geometric is
utilized to process the decoys screening dataset in CASF-2016.
Initially, 57 target pockets were extracted and then scored
based on the binding affinities between small molecules and
pockets. The model's virtual screening performance on the
target pocket is evaluated using enrichment factors (EF_1%),
BEROC, etc. The model's ability to predict ABFE was evaluated
Chem. Sci., 2025, 16, 5043–5057 | 5055
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on the FEP1, FEP2, and PDE10A datasets. The key evaluation
metrics include Pearson correlation coefficient (R), Spearman
correlation coefficient (r), and root mean square error (RMSE).
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