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ical potentials with machine-
learning-accelerated simulations to accurately
predict thermodynamic properties of molten
salts†‡

Luke D. Gibson, *a Rajni Chahal b and Vyacheslav S. Bryantsev *b

The successful design and deployment of next-generation nuclear technologies heavily rely on

thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and

efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here

we propose an efficient free energy framework for computing chemical potentials, which is the central

free energy quantity behind many thermodynamic properties. We accelerate our simulations without

sacrificing accuracy by using machine learning interatomic potentials trained on density functional

theory (DFT) data. Using lithium chloride as our model system, we compute chemical potentials with

DFT-accuracy for solid and liquid phases by transmuting ions into noninteracting particles. Notably, in

the liquid phase, we demonstrate consistency whether we transmute one ion pair or the entire system

into ideal gas particles. By locating the temperature where the chemical potential of solid and liquid

phases cross, we predict a melting point of 880 ± 18 K for lithium chloride, which is remarkably close to

the experimental value of 883 K. With this successful demonstration, we lay the foundation for high-

throughput thermodynamic predictions of many properties that can be derived from the chemical

potentials of the minority and majority components in molten salts.
Introduction

Molten salts play a critical role in next-generation nuclear
technologies. Specically, in many next-generation reactor
designs, molten salts are used for one or more core function-
alities, where it can operate as a coolant, medium for dissolved
fuel, and/or blanketing around solid fuel. At the tail end of the
fuel cycle, strategies for recycling spent fuel, such as pyro-
chemical reprocessing, utilize molten salts as the solvent during
electrochemical renement of unspent ssile materials. The
successful design and deployment of a spectrum of nuclear
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energy technologies rely on the existence of high-quality, vali-
dated property data for relevant molten salts and their mixtures.
Although experimental measurements exist for many of the
important molten salt systems, some properties still exhibit
a high level of uncertainty, which is currently being addressed
by the scientic community. Furthermore, the properties of
important minor components in molten salts are still largely
unknown. However, the acquisition of experimental data is
time-consuming, requires specialized equipment, and is con-
strained by high costs and challenging operating conditions.

Atomistic simulations offer a potential solution to this data
scarcity problem with molecular dynamics (MD) simulations.
Due to its atomic-scale resolution, MD simulations are oen
used to clarify the local structure of molten salts and their
mixtures by comparing theoretical spectroscopic measure-
ments (e.g., X-ray and neutron scattering, Raman spectroscopy,
extended X-ray absorption ne structure (EXAFS) spectroscopy)
against experimental spectra.1–15 These structural details vali-
dated against the experimental observables help explain the
macroscopic behavior of molten salts. This information can
also be incorporated into thermodynamic models to improve
CALPHAD predictions. In addition to local structure, many
theoretical studies also report thermophysical properties (e.g.,
density, diffusivity, viscosity, specic heat capacity) since they
can be easily extracted from a single MD simulation. However,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the number of studies on thermochemical properties (e.g.,
solubilities, redox potentials, and phase boundaries) of molten
salts is far fewer.16–22 These thermochemical properties are
challenging to predict because they require knowledge of how
the system's chemical potentials change for a given thermody-
namic process, which oen necessitates free energy calcula-
tions of both solid and liquid phases using advanced sampling
methods.

For many of the thermodynamic studies of molten salts,
more challenging free energy simulations have been conducted
primarily using inexpensive, classical force elds.18,20–23 Notably,
Anwar, et al. used the rigid ion model (RIM) and the thermo-
dynamic integration (TI) method to predict the melting point of
sodium chloride by computing the chemical potentials in both
solid and liquid phases.20 In their study, they used the Einstein
crystal method24,25 to compute solid phase chemical potentials.
The liquid phase methods involved computing the free energy
of transforming either two ideal gas (IG) particles into a NaCl
pair (i.e., inserting a NaCl pair into liquid NaCl) or an entire
system of Lennard-Jones (LJ) particles into interacting NaCl
ions. The authors found that the most reliable method was to
transform the entire system into NaCl instead of inserting
a single NaCl pair into molten NaCl. Aer addressing issues
associated with differing Na+ and Cl− spring constants in the
Einstein crystal calculations, the RIM-predicted NaCl melting
point was reported to be ∼70 K higher than the experimental
value of 1073 K.23 The poor performance of the single ion pair
insertion method was attributed to difficulties with sampling
the interion distance during TI calculations, resulting in large
error bars and inaccurate chemical potentials. This underscores
the necessity of developing reliable methodologies to compute
the thermodynamic properties of impurities in molten salts
which rely on the single ion pair insertion method.

Thermodynamic properties of more complex, multicompo-
nent molten salt systems have also been successfully studied
using RIM and the more advanced polarizable ion model
(PIM).18,21,22 Zhou and Zhang22 leveraged RIM simulations to
compute concentration dependent activity coefficients of UCl3
in LiCl–KCl mixtures through TI calculations. Using PIM, Sal-
anne and coworkers18 demonstrated great agreement between
experimental and predicted standard redox potentials of MCl3
salts (M3+: U3+, La3+, Y3+, Tb3+, and Sc3+) in LiCl–KCl mixtures
with alchemical free energy methods. In another PIM study,
DeFever and Maginn21 predicted the liquidus and eutectic point
of KCl–LiCl and KCl–MgCl2 mixtures using both alchemical free
energy methods and direct, two-phase simulations. Despite
their success in constructing solid–liquid phase diagrams, their
predictions differed from experiment because PIM failed to
accurately predict the pure component melting points of both
LiCl and MgCl2. Although classical force elds like RIM and
PIM have enabled various thermodynamic studies, their ability
to accurately predict thermodynamic properties is limited,
emphasizing the importance of using accurate methods for
thermodynamic predictions.

More expensive methods, such as ab initio molecular
dynamics (AIMD), have been used predominantly to study
structural motifs and, to a lesser extent, select thermophysical
© 2025 The Author(s). Published by the Royal Society of Chemistry
properties of molten salts that are difficult to converge given
small system sizes and short simulation times.3–6,9,26–29 AIMD
has also been reported to predict the Na solubility and redox
potential in molten NaCl, but the simulations were again con-
strained by high statistical uncertainty.16 To circumvent the
prohibitive computational cost of AIMD, recent studies have
leveraged machine learning interatomic potentials (MLIPs)
trained on density functional theory (DFT) data to probe ther-
modynamic properties of molten salts, such as solubilities,30

redox potentials,30 and phase boundaries.19 The prediction of
chemical potentials of a molten salt system with a MLIP was
rst demonstrated by Shi, et al., where they trained a deep
neural network interatomic potential (NNIP) for a molten NaCl
system and used the quasi-chemical theory (QCT) method to
predict the excess chemical potentials of Na+ and Cl− ions.17

However, to achieve close agreement with the experimental
value, the QCT method necessitated several, separately-trained
NNIPs and the NNIP-predicted excess chemical potentials ulti-
mately required quantum chemical corrections to account for
the deciencies of the reference DFT method used to train their
NNIP.17 In another study on Na/NaCl solubilities and redox
potentials, Sun, et al.30 trained amoment tensor potential (MTP)
and employed the Widom particle insertion method31 to
compute excess chemical potentials of Na and Cl in molten
NaCl and Na in liquid Na. However, the MTP-based free energy
predictions differed from their DFT-based predictions by
∼10 kcal mol−1 with unacceptably large error bars
(±10 kcal mol−1).30 Interestingly, their MTP and DFT predic-
tions are also inconsistent with the ndings of an earlier AIMD
study16 (by 7 and 17 kcal mol−1, respectively), which employed
the same DFT and free energy methods. Overall, while MLIPs
offer signicant improvements in efficiency over AIMD, ther-
modynamic predictions with DFT-trained MLIPs remain unre-
liable for molten salt systems.

In this work, we present a predictive framework for accurately
computing chemical potentials in both solid- and liquid-phases
by leveraging the efficiency of DFT-trained MLIPs. Through this
ML-accelerated, predictive framework, we demonstrate the ability
to accurately predict the melting point of lithium chloride at
ambient pressure using the computed chemical potentials. We
validate our chemical potential predictions in both liquid and
solid phases by benchmarking against DFT calculations for
smaller systems. We also highlight the unique challenges that
arise when using MLIPs with these predictive methods and
demonstrate effective and practical solutions that overcome the
challenges faced by the existing approaches.17,20,30 Importantly,
thisML-accelerated, predictive framework lays the foundation for
large-scale predictions of molten salt thermodynamic properties
with low statistical uncertainty, which can be used to guide
experimental measurements and thus support the next genera-
tion of nuclear technologies.

Results & discussion
Machine learning force eld benchmarks

To demonstrate our predictive framework for free energies and
chemical potentials, we rst trained separate machine learning
Chem. Sci., 2025, 16, 3078–3091 | 3079
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Fig. 1 Comparison of the Li–Cl radial distribution function between
experiment,32 DFT, and MLFF.
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force elds (MLFFs) for the solid and liquid phases of lithium
chloride. Based on the test set errors (shown in the Fig. S1 of the
ESI‡), both potentials displayed good performance in repro-
ducing DFT energies, forces, and stresses. The liquid structure
produced by the molten LiCl MLFF was also conrmed to
remain stable (Fig. S3‡). The radial distribution function, g(r),
for the Li–Cl pair in Fig. 1 shows nearly perfect agreement
between the MLFF and DFT (AIMD with PBE-D3). Additionally,
the MLFF exhibits similar liquid structure to experiment32

based on the good agreement with the experimental g(r) in
Fig. 1. All free energy calculations were performed in the NVT
ensemble at the equilibrium volume determined from NpT
Fig. 2 Comparison of chemical potentials computed via TI for DN =

Highlighted ions denote that their interactions were modified via TI in the
integrand at each l point for both approaches. Error bars represent 95%
Breakdown of the contributions to the chemical potential, which show
respectively colored yellow and green in (a) and (b).

3080 | Chem. Sci., 2025, 16, 3078–3091
simulations at 1 bar. The predicted densities from both solid
and liquid potentials exhibit good agreement with experiment:
the MLFFs yield a liquid phase density of 1.53 g cm−3 at 943 K
(rExp.(l) [943 K] = 1.47 g cm−3, ref. 33) and solid phase density of
1.85 g cm−3 at 850 K (rExp.(s) [850 K] = 1.92 g cm−3, ref. 34).
Computing chemical potentials of molten lithium chloride

To compute the chemical potential of LiCl in the liquid phase,
we used alchemical transformation to convert either one or all
LiCl pairs from ideal gas particles into fully interacting Li+ and
Cl− ions (selected pairs highlighted in Fig. 2a and b, respec-
tively) via thermodynamic integration (TI). Herein, these two
thermodynamic pathways are respectively referred to as DN = 1
and DN = N. As shown in the energy diagram in Fig. 2d, for
a system with 150 LiCl pairs, both pathways yield the same value
at 943 K for the chemical potential of molten LiCl. Since the two
thermodynamic pathways are inherently different, their inte-
grand plots (hdH/dli vs. l, Fig. 2c) have slightly different trends.
Notably, the excess chemical potential computed with DN = 1
has a larger magnitude than DN = N by approximately
3.5 kcal mol−1 (or 1.9kBT); however, this difference is fully
compensated by the difference in ideal chemical potentials.
Although both pathways yield the same chemical potential
value, the DN = N pathway has better statistics with uncertainty
that is lower than the DN= 1 pathway by an order of magnitude.
This reduced uncertainty stems from the fact that all ions
contribute to hdH/dli; whereas, for DN = 1, hdH/dli is only
based on the local environment around the single Li+ and Cl−

ions. Naturally, this also manifests in the time required to
converge calculations using both pathways, where only ∼200 ps
1 and DN = 150 pathways on a system with 150 LiCl pairs at 943 K.
cases of (a) a single pair and (b) the full system. (c) Comparison of the
confidence intervals, which are smaller than the plotted markers. (d)
cases the agreement across both approaches. Li+ and Cl− ions are

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of simulation were required for the DN = N pathway and ∼2 ns
for the DN = 1 pathway.

Although the chemical potentials computed with DN= 1 and
DN = N pathways closely matched, previous studies20,35 have
reported challenges with the DN = 1 pathway. In a study of KF
solubility in water, Ferrario, et al. noted difficulties with suffi-
ciently sampling the interionic distance distribution for the
simultaneously inserted K+ and F− ions, which caused them to
instead insert K+ and F− separately.35 In a study on predicting
the NaCl melting point, Anwar, et al. also experienced similar
challenges when computing chemical potentials of liquid NaCl
via single NaCl ion pair insertion.20 The authors considered two
different pathways for inserting a single NaCl pair: (i) two ideal
gas particles were directly transformed into a NaCl ion pair by
simultaneously scaling both the van der Waals (VDW) and
charge parameters; and (ii) two ideal gas particles were rst
transformed into VDW particles and then into a NaCl ion pair.
Both approaches ultimately yielded similar values that differed
from their calculations using a DN = N pathway by approxi-
mately −2kBT. Although this error closely matches the differ-
ence in ideal chemical potentials for the two pathways, the
correct ideal chemical potentials were already employed. Addi-
tionally, larger uncertainties were reported for the two pathways
for inserting single NaCl ion pair. Ultimately, this deviation was
again attributed to the poor sampling of the Na–Cl distances
during TI calculations.

To better understand the origins of these challenges with
single ion pair insertion, we computed the excess chemical
potential of LiCl with the Li–Cl distance xed at four separate
distances (r = 2.3, 3.5, 5.5, and 9.5 Å). In Fig. 3, the Li–Cl
potential of mean force (PMF) and the xed-distance excess
chemical potentials are overlaid with matching relative scales,
revealing the direct relationship between the Li–Cl distance and
excess chemical potentials. Given this trend, without sufficient
sampling, one or more TI windows could oversample short
Fig. 3 Dual-axis plot of the potential of mean force between Li+ and
Cl− based on g(r) (left axis, solid green line) and the excess chemical
potential computed at multiple fixed Li–Cl distances (right axis, orange
markers). Insets show representative configurations at the corre-
sponding Li–Cl distance with the targeted ions highlighted. System
conditions for each calculation match those in Fig. 2.

© 2025 The Author(s). Published by the Royal Society of Chemistry
interionic distances and consequently overestimate the excess
chemical potential. Notably, at a xed distance of 9.5 Å, beyond
the second solvation shell, the computed excess chemical
potential closely matched the value in Fig. 2d when the ion
distances were not constrained, which was also conrmed to
have sampled the equilibrium distance distribution (Fig. S4‡).
We interpret this phenomenon to be caused by the vanishingly
small probability of the two ions directly interacting in the
thermodynamic limit, where it naturally follows that the excess
chemical potential will converge to the same value with ions
xed at large distances. For molten salt melts where short-range
ordering is relatively short-lived (e.g., LiCl), excess chemical
potential calculations can be converged more rapidly by xing
the ion pair at a distance where g(r) approaches unity. However,
for more acidic melts that exhibit signicant short- and
intermediate-range ordering,3,6,11,14,29 sufficiently sampling the
important congurations around the chosen cation and
anion(s) will become more challenging as ion-exchange kinetics
become slower.4

Given that the DN = N pathway provides lower uncertainty,
we computed molten LiCl chemical potentials at 943 K for
multiple system sizes (N = 50, 100, 150, and 300 LiCl pairs;
shown in Table 1) to assess the extent of nite size effects. The
ideal, excess, and total chemical potentials were considered
converged by 150 LiCl pairs since there was no appreciable
change when the system size was doubled to 300 LiCl pairs.
Thus, we used the DN = N pathway with a system of 150 LiCl
pairs to compute the chemical potential of liquid phase LiCl at T
= 850, 880, 910, and 943 K, which are also listed in Table 1. In
fact, the results are essentially converged even for 50 LiCl ion
pairs, where the absolute difference with respect to N = 300 is
only 0.11 kcal mol−1.

Importantly, with the use of MLIPs instead of physical
models, electrostatic interactions are combined with van der
Waals interactions and all interactions are truncated to short-
range based on the cutoffs used in the MLIP. Additionally, the
short Debye length in pure molten LiCl limits the impact of
long-range electrostatic interactions in bulk phase calculations.
Fortunately, since the total system charge remains neutral in all
training congurations and thermodynamic pathways consid-
ered, we do not need to account for energetic corrections arising
from interactions with the surface potential or Ewald
electrostatics.36,37

Given that the MLFF architecture has the coupling param-
eter l integrated directly into the Hamiltonian (eqn (18)), MLFFs
are much more well-suited for these free energy calculations
than other MLIP architectures. To demonstrate the ability to
perform these free energy calculations using a different MLIP
architecture, we have trained a NNIP for the liquid LiCl system
using the DeePMD-kit package.38 Since the coupling parameter
is not integrated into the NNIP architecture, thermodynamic
pathways other than DN = N are not possible because the
pairwise interactions for a subset of atoms cannot be inde-
pendently scaled by l. As a result, for the NNIP, the hybrid
Hamiltonian that couples the ideal gas state to a fully inter-
acting LiCl liquid becomes,
Chem. Sci., 2025, 16, 3078–3091 | 3081
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Table 1 Liquid phase chemical potential contributions at varying temperatures and system sizes

Source T (K) NLiCl Ideal free energy, Fid (kcal mol−1) Excess free energy, Fex (kcal mol−1)
Chemical potential,
m (kcal mol−1)

MLFF 850 150 −35.33 −185.58 � 0.02 −220.91 � 0.02
880 150 −36.79 −185.17 � 0.02 −221.96 � 0.02
910 150 −38.25 −184.67 � 0.02 −222.92 � 0.02
943 50 −39.74 −184.25 � 0.04, −184.37 � 0.01a −223.99 � 0.04, −224.11 � 0.01a

100 −39.84 −184.27 � 0.03 −224.10 � 0.03
150 −39.87, −36.21b −184.20 � 0.02, −187.8 � 0.2b −224.07 � 0.02, −224.0 � 0.2b

300 −39.91 −184.19 � 0.01 −224.10 � 0.01
DFT 943 50 −39.74 −184.2 � 0.2a −224.0 � 0.2a

a Computed using so core potentials as shown in Fig. 4a. b Computed using the DN = 1 thermodynamic pathway.
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HIG/NNIP(l) = (1 − l)HIG + lHNNIP, (1)

and the free energy difference between the two states is
computed with,

DFIG/NNIP ¼
ð1
0

dl

�
dHIG/NNIPðlÞ

dl

�
l¼l

0
¼

ð1
0

dlhUNNIPil¼l
0: (2)

The integrand of the second integral simplies to the
potential energy of the NNIP, UNNIP, since the kinetic energy
terms inHIG andHNNIP are identical. However, unique problems
can arise in simulations with l < 1 since the forces in HIG/NNIP

are scaled by l during MD, thereby increasing the likelihood of
sampling nonphysical or highly unlikely congurations the
NNIP has never seen. Such structures aremuch less problematic
with physics-based models (e.g., classical force elds) and can
still be evaluated; however, MLIPs cannot reliably extrapolate to
novel congurations, which can lead to unrealistic energies and
forces that cause catastrophic failures during MD. In these
untrained regions of conguration space, MLIPs will oen
predict massive energies and forces that either crash the
simulation or stabilize highly non-physical congurations
(shown in inset of Fig. 4b). For simulations that do not crash,
these articially stabilized structures cause discontinuities in
hdH/dli, corrupting the free energy calculation. Indeed, we
observed that the NNIP exhibited such behavior during TI
calculations (Fig. 4b), leading to an incorrect excess chemical
potential prediction (by >5 kcal mol−1). Interestingly, the MLFF
does not experience the same problem when performing TI in
the same manner (i.e., lHMLFF instead of HMLFF(l)).

To address this instability, we utilize the stepwise approach
shown in Fig. 4a, where a so-core potential is used as
a prophylactic tool to prevent non-physical congurations from
occurring (e.g., overlapping atoms). In this way, the excess
chemical potential can be computed in three steps: (1) ideal gas
particles are transformed into so-core particles, ~Fex(1); (2)
without adjusting the so-core potential, the particles are
transformed into fully interacting Li+ and Cl− ions, ~Fex(2); and
lastly (3) the so-core potential is removed, ~Fex(3). In this work, we
employed the Fermi potential implemented in VASP as the so-
core potential on all pairwise interactions, which has the
functional form,
3082 | Chem. Sci., 2025, 16, 3078–3091
VSCðzÞ ¼
XN�1

i¼1

XN
j¼iþ1

z4A

1þ exp

�
D

���~ri �~rj
��

r0

�
� 1

�; (3)

where z˛ [0, 1] is a scaling factor, A= 10 eV, D= 20, and r0= 1.6
Å. For NNIP-based MD simulations in LAMMPS, this potential
was implemented using the Q-type switching function in the
PLUMED library.39,40 The important feature of this so-core
potential is that it is capped at small interatomic distances,
unlike standard classical force elds that have a singularity at rij
= 0.41 Due to technical limitations in implementing this so-
core potential in VASP, our system size was limited to 50 LiCl
pairs for MLFF calculations, which for consistency was also the
system size in NNIP calculations. More efficient implementa-
tions of so-core potentials in LAMMPS do not impose any size
restrictions for NNIP simulations.

By rst introducing this so-core potential on top of the
MLIP, we demonstrate in Fig. 4c that the previous instabilities
can be avoided during TI calculations. We computed the free
energy changes for steps (1) and (3) in Fig. 4a via the Bennett
acceptance ratio method42 from 16 separate simulations per

step
�
i:e:; z˛

�
0;

1
15

;.;
14
15

; 1
��

: Using the MLFF, we showcase

in Fig. 4a that the excess chemical potential computed using
so-core potentials matches the value from direct TI, conrm-
ing that this stepwise approach is a viable alternative. Moreover,
by demonstrating good agreement between the NNIP- and
MLFF-computed values for ~Fex(2) in Table 2, we show that excess
chemical potentials can be computed using multiple MLIP
architectures.

By leveraging so-core potentials, we were also able to
compute ~Fex(2) using PBE-D3 with AIMD simulations, shown in
Table 2. However, despite the system only containing 50 LiCl
pairs, the number of integration points for Gauss–Lobatto
quadrature was reduced from 10 to 5 to account for the large
computational expense. Given that n-point Gauss–Lobatto
quadrature is accurate for polynomials up to degree 2n − 3, this
reduction in integration points was not expected to negatively
impact our results.43 Indeed, we conrmed with MLFF calcula-
tions that this change had a negligible effect on computed
values. Without so-core potentials, DFT-based TI calculations
were not feasible due to challenges at low l with converging self-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Workflow for transforming ideal gas particles into Li+ and Cl− ions using soft core potentials. Free energy changes for each step in the
workflow are shown in blue, whereas the excess free energy for direct transformation is shown in orange. The overall free energy change for the
workflow is shown below the excess free energy of direct transformation. Excess free energies computed with both approaches used 50 LiCl
pairs at 943 K. Uncertainties are omitted for clarity but can be found in Table 2. Comparison of integration curves using both MLFF and NNIP
models (b) without and (c) with soft core potentials. All energy units are kcal mol−1.
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consistent eld calculations during wavefunction optimization.
In fact, even with so-core potentials, the TI window with the
smallest l (0.029816) occasionally sampled congurations for
which the wavefunction could not be optimized. By computing
~Fex(2) with AIMD on a reduced system of 50 LiCl, we demonstrate
consistency with the MLFF- and NNIP-based calculations,
further highlighting the accuracy and viability of the stepwise
approach for computing excess free energies with MLIPs.

Computing chemical potentials of solid phase lithium
chloride

For solid phase free energy calculations, we used the Einstein
crystal method rst proposed by Frenkel and Ladd,24,25 which
uses the Einstein crystal as a reference state with a known free
energy. By transforming the Einstein crystal into the real crystal
with TI, the absolute free energy of the real crystal can be
Table 2 Comparison of excess free energies at 943 K from the stepw
simulations, as defined in Fig. 4a. All values are reported in kcal mol−1

Potential ~Fex(1)/N ~Fex(2)/N ~Fe(

MLFF 3.64 � 0.01 −187.76 � 0.01 −
NNIP — −187.06 � 0.06 —
PBE-D3 — −187.6 � 0.2 —

a Stepwise Fex approximated using MLFF-computed values for ~Fex(1) and
discontinuities when employing NNIP and fail to converge when using PB

© 2025 The Author(s). Published by the Royal Society of Chemistry
computed. The Einstein crystal reference state consists of non-
interacting atoms whose positions are harmonically restrained
to their equilibrium lattice positions of the real crystal. In the
rst iteration of this method, the harmonic restraints of all
atoms were identical, but later the method was extended to
allow different spring constants for different atom types.23 As
long as the centers of mass of the Einstein and real crystals were
constrained, it was shown that the computed free energies of
a NaCl crystal were consistent regardless of the choice of spring
constants. However, the lowest uncertainties were achieved
when Na+ and Cl− spring constants were chosen to respectively
match their mean squared displacements (MSD).23

In this work, our Einstein crystal calculations employed
spring constants based on the Li+ and Cl− MSD in a 3 × 3 × 3
supercell at 800 K (kLi+ = 47.168 J m−2, kCl− = 98.550 J m−2). We
also conrmed that free energy calculations were independent
ise and direct TI approaches and MLFF-, NNIP-, and DFT-based MD

x
3)/N

Fex/N

Stepwise Direct TI

0.2410 � 0.0002 −184.37 � 0.01 −184.25 � 0.04
−183.66 � 0.06a —b

−184.2 � 0.2a —b

~Fex(3).
b Calculations at low l using the direct TI approach encounter

E-D3.

Chem. Sci., 2025, 16, 3078–3091 | 3083

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc07253g


Fig. 5 Solid and liquid phase chemical potentials from MLFF and DFT
predictions compared to experiment.45 Uncertainties of the fitted lines
are omitted for clarity, but error bars of MLFF and DFT data points are
smaller than the size of the markers.
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of our choice of spring constants for Li+ and Cl−. To compute
the free energy between an Einstein crystal and the real LiCl
crystal, we used 16-point Gauss–Legendre quadrature for our TI
calculations. Additional technical details of our Einstein crystal
calculations can be found in the Methods section.

Due to the nite size effects that arise from simulations with
constrained centers of mass,23 we computed the absolute free
energies of LiCl crystals constructed from 3 × 3 × 3, 4 × 4 × 4,
and 5 × 5 × 5 supercells comprising 108, 256, and 500 LiCl
pairs, respectively. The free energy components of each calcu-
lation are shown in Table S2.‡ Aer extrapolating to innite

system sizes
	
i:e:; lim

1=N/0
FLiCl=N



; we report the absolute free

energies of LiCl at T = 800, 850, 880, and 900 K in Table 3. The
free energy plot of the nite systems at each temperature shown
in Fig. S5‡ reveals a weak dependence on system size for our
Einstein crystal calculations.

To validate the free energies computed with the MLFF and
Einstein crystal method, we applied the method described in
ref. 44 for computing absolute free energies of solid LiCl entirely
with DFT calculations. Briey, to compute the free energy of
a solid, this approach rst approximates the solid as a set of
coupled harmonic oscillators, and then transforms the
harmonic crystal into the real crystal with TI to capture anhar-
monic contributions. Using this approach, we computed the
free energies of 3 × 3 × 3 and 4 × 4 × 4 LiCl supercells at T =

700, 750, and 800 K, which are reported in Table S3.‡ Calcula-
tions above 800 K were not considered with this approach
because they exhibited instabilities (i.e., imaginary normal
modes) in the harmonic approximation, breaking down for
larger equilibrium cell volumes at higher temperatures. Addi-
tionally, due to the signicant computational cost of these DFT
and AIMD calculations, larger supercells were not considered,
but absolute free energies extrapolated to innite system sizes
are reported in Table 3. Yet again, we demonstrate excellent
agreement between DFT- and MLFF-based free energy calcula-
tions, reporting only a 0.05 kcal mol−1 difference at 800 K, with
the DFT-computed free energies closely following the same
trend as the MLFF-computed free energies displayed in Fig. 5.
Lithium chloride melting point prediction

We have computed chemical potentials of LiCl in both solid and
liquid phases across a range of temperatures near the
Table 3 Solid phase chemical potentials at varying temperatures
extrapolated to infinite system size

Source T (K) Method
Chemical potential,
m (kcal mol−1)

MLFF 800 Einstein crystal −219.704 � 0.007
850 Einstein crystal −221.093 � 0.007
880 Einstein crystal −221.949 � 0.008
900 Einstein crystal −222.513 � 0.008

DFT 700 Harmonic + anharmonic −217.00 � 0.02
750 Harmonic + anharmonic −218.34 � 0.02
800 Harmonic + anharmonic −219.75 � 0.01

3084 | Chem. Sci., 2025, 16, 3078–3091
experimental melting point (883 K),45 which were also validated
by DFT- and AIMD-based calculations. These chemical poten-
tials are plotted against temperature in Fig. 5, which also shows
nearly linear trends for both phases based on MLFF calcula-
tions. Using thermodynamic tables,45 we have also plotted
experimental chemical potentials for both solid- and liquid-
phase LiCl. By locating the temperature at which the solid-
and liquid-phase trends intersect, the ambient pressure melting
point of LiCl is predicted to be 880 ± 18 K, which is remarkably
close to the experimental value of 883 K.
Conclusions

The next generation of nuclear technologies heavily relies on
the utility of molten salts for a variety of applications, ranging
from coolants in nuclear reactors to solvents for recycling spent
nuclear fuel. Despite great strides being made in experimental
measurements of important molten salt mixtures, atomistic
modeling can inform—and even accelerate—experiments by
leveraging MD simulations for thermodynamic property
predictions. However, poorly described interatomic interactions
will lead to inaccurate predictions, and unreliable free energy
methods frequently cause large uncertainties. Therefore, the
overarching goal of this work is to demonstrate how our MLIP-
accelerated, predictive framework can be leveraged to interro-
gate challenging thermodynamic properties of molten salts. To
this end, we predicted the melting point of lithium chloride
because previous studies have shown that previously
employed21 empirical methods fail to accurately predict this
important thermodynamic property.

Given that the chemical potential is the basis for predicting
themelting point of LiCl, as well as many other thermochemical
properties, we performed several chemical potential calcula-
tions of both molten and solid LiCl through TI-based
approaches with DFT-trained MLIPs. For select cases, we
demonstrated excellent agreement between our MLIP-based
© 2025 The Author(s). Published by the Royal Society of Chemistry
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predictions and DFT free energy benchmarks, with absolute
errors of 0.16 and 0.05 kcal mol−1 for liquid- and solid-phase
calculations, respectively.

Liquid phase chemical potentials are notoriously difficult to
compute, and perhaps even more challenging to achieve
consistent results across the many free energy methods.16,17,20,30

We explored two commonly used thermodynamic pathways for
liquid phase chemical potential calculations where either one or
all LiCl ion pairs are transformed from noninteracting particles
into fully interacting ions. Signicantly, we achieved consistent
results across both pathways for a system of 150 LiCl pairs at 943
K, with an absolute deviation of only 0.11 kcal mol−1, when
accounting for the difference in the ideal terms of eqn (7) and
(10). To achieve this consistency, we found that signicantly
more sampling (2.0 vs. 0.2 ns per TI window) was required for the
single ion pair insertion pathway to avoid oversampling of short
interionic distances, which can appreciably alter excess chemical
potential calculations (±2 kcal mol−1). This can possibly explain
the difficulties seen in previous theoretical studies20,35 that used
single ion pair insertion. We also found that less sampling was
required to converge calculations when the ions were xed at
large interionic distances, but we note that other sampling
challenges may arise for molten salts that exhibit signicant
short- and intermediate-range ordering.3,6,11,14,29 These insights
will become particularly important when single ion pair insertion
is the most appropriate pathway for studying a thermodynamic
process for minor components in molten salts. We also demon-
strated how so-core potentials can address the unique chal-
lenges that arise for TI calculations withMLIPs when two ormore
atoms become too close at small coupling parameter, l. Using
a stepwise TI approach, we were able to achieve good agreement
for excess chemical potentials computed with both MLFF and
NNIP architectures (−184.37 and −183.66 kcal mol−1, respec-
tively) and AIMD (−184.21 kcal mol−1), which were also consis-
tent with the value from direct TI calculations
(−184.25 kcal mol−1). This agreement showcases how our
predictive framework is both accurate and extensible to a variety
of MLIP architectures.

Solid-phase free energy calculations were markedly less
challenging than in the liquid phase. We used the Einstein
crystal method for all solid LiCl free energy calculations. By
applying this method for varying system sizes, we reported
absolute free energies of solid LiCl extrapolated to innite
system sizes at a range of temperatures. Free energies from
Einstein crystal calculations were also validated against DFT
calculations, which involve computing the harmonic vibra-
tional contributions and accounting for anharmonic effects
through TI for a hybrid Hamiltonian that couples a harmonic
crystal to a real crystal via a series of AIMD simulations. Excel-
lent agreement was observed at 800 K between MLFF and DFT,
with values of the total chemical potentials of −219.704 and
−219.75 kcal mol−1, respectively.

Using the array of solid- and liquid-phase LiCl chemical
potentials computed at varying temperatures, we predicted the
melting point of LiCl to be 880 ± 18 K, which matches excep-
tionally well with the experimental value of 883 K. Interestingly,
our computed chemical potentials only differ from
© 2025 The Author(s). Published by the Royal Society of Chemistry
experimental values by 0.5–1.0 kcal mol−1, suggesting that PBE-
D3 excels at describing LiCl systems. Indeed, this is consistent
with a previous benchmarking study on various electronic
structure methods.46 Thus, for a system where existing models
have been shown to fail,21 using the predictive framework pre-
sented herein, we have demonstrated a dramatic improvement
in the accuracy of thermodynamic predictions by leveraging
MLIPs to achieve DFT-level accuracy. This exciting result
demonstrates the utility of our MLIP-accelerated, predictive
framework for studying the challenging thermodynamic prop-
erties of molten salts. By validating against DFT at several
points and demonstrating predictions with multiple MLIP
architectures, we demonstrate both the broad utility and accu-
racy of this computational approach. More importantly, in
doing so, we also lay the foundation for high-throughput
predictions of thermodynamic properties to guide experimen-
tation and ultimately support the next generation of nuclear
technologies.

In a broad context, this work facilitates the computation of
free energy quantities from condensed phase simulations with
ab initio accuracy, without making any assumptions about the
underlying interatomic potentials. Examples of properties that
can, in principle, be computed for arbitrary systems—such as
molten salts, aqueous and nonaqueous electrolytes, brines, and
radioactive liquid waste—are the solvation free energies, solu-
bilities, phase diagrams, activity coefficients, redox potentials,
vapor pressure, to name a few. The rst practical challenge with
these simulations is to develop robust and accurate MLIPs that
adequately cover the relevant congurational space—a task that
becomes increasingly difficult as the complexity of the system of
interest grows. The second challenge lies in attaining the
accuracy necessary for these thermodynamic calculations to be
truly predictive, allowing them to effectively guide measure-
ments, improve their efficiency, and maximize the value of
experiments. While achieving DFT accuracy for thermodynamic
properties of liquids and complex uids is now attainable, the
eld of science is likely to move towards pushing these simu-
lations to reach a level of accuracy comparable to that of small
molecules in the gas phase using advanced electronic structure
methods.

Methods
Methodology for computing chemical potentials of liquid
systems

The chemical potential of a pure system is thermodynamically
dened as,

m ¼
�
vG

vN

�
N;p;T

¼
�
vF

vN

�
N;V ;T

; (4)

for the isobaric–isothermal (NpT) and canonical (NVT) ensem-
bles, respectively, where G is the Gibbs free energy and F is the
Helmholtz free energy. Given that the number of particles (N) is
a discrete quantity, eqn (4) can practically be understood as,

m ¼
�
DG

DN

�
N;p;T

¼
�
DF

DN

�
N;V ;T

; (5)
Chem. Sci., 2025, 16, 3078–3091 | 3085
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where DN = 1 and the ensembles with N and N + 1 particles are
effectively equivalent for sufficiently large N. Notably, while the
chemical potential is typically computed by adding a single
particle to a system (i.e., N/ N + 1), it is also correct to consider
the reverse process (i.e., N − 1/ N), which is more appropriate
notation for the thermodynamic process considered in this
work. For microscopic systems, (DF/DN)N,V,T in general will
experience nite size effects due to large pressure differences
between the N- and (N − 1)-ensembles for small N. However, in
our simulations the pressure difference between theN- and (N−
1)-ensembles is very small even for N = 50 LiCl pairs and
sufficiently close to 1 bar, resulting in the negligible

Ð
Vdp term

(<0.01 kcal mol−1). Therefore, the chemical potentials
computed in the NpT and NVT ensembles should be nearly
identical. For computational convenience, we have chosen to
compute the chemical potential from NVT simulations (i.e., m =

(DF/DN)N,V,T) at the equilibrium volume from the NpT simula-
tion at 1 bar.

In the liquid phase, the chemical potential of a species can
be represented as a sum of an ideal chemical potential (mid) and
an excess chemical potential (mex),

m = mid + mex, (6)

where the ideal term represents the free energy of the ideal gas
particles that can be computed analytically, while the excess
term represents the deviation from ideal behavior due to
interactions with the environment (solvent) and is much more
challenging to compute. Several approaches exist for computing
the excess chemical potential, such as the Widom particle
insertion method,31 quasi-chemical theory (QCT),47 and
alchemical transformation method.48 In this work, we use
alchemical transformations to compute excess chemical
potentials of molten LiCl.

Alchemical transformation uses thermodynamic integration
(TI) to gradually transform one or more ideal gas particles into
fully interacting species in one or more steps. When trans-
forming a single LiCl pair (DN = 1) from ideal gas particles to
LiCl ions (N − 1 / N) in the canonical ensemble (NVT), the
chemical potential can be computed by,

mLiCl ¼ �1

b
ln

�
V 2

LLi
3LCl

3NLiNCl

�
þ
ð1
0

dl
0
�
dUðl; DN ¼ 1Þ

dl

�
l¼l

0
;

(7)

where LX is the thermal de Broglie wavelength, b = 1/kBT, kB is
Boltzmann's constant, and T is temperature. The two terms on
the RHS of eqn (7) respectively represent the ideal and excess
chemical potentials, which were derived following the original
work of Kirkwood for the NVT ensemble,48 where the ideal term
is computed analytically and the excess term is computed with
TI. The chemical potential can be computed in a different
manner from the total Gibbs free energy (G),

Nm = G = F + pV. (8)

Therefore, we can also compute the chemical potential in the
NVT ensemble by computing F at the equilibrium volume from
3086 | Chem. Sci., 2025, 16, 3078–3091
NpT simulations at 1 bar. Importantly, by simulating at these
conditions, the pV term in eqn (8) becomes vanishingly small
(<0.01 kcal mol−1 for the smallest system with N= 50 LiCl pairs)
and is not included further. Like the DN = 1 pathway, the
alchemical transformation method can also be used to trans-
form the entire system from an ideal gas into N LiCl pairs (DN=

N) to directly compute the excess free energy (Fex) of the entire
system. However, since the thermodynamic pathway differs
from the single LiCl pair transformation, the expression for
computing the chemical potential in the canonic ensemble
instead becomes,

NLiClmLiCl = Fid + Fex, (9)

NLiClmLiCl ¼ �1

b
ln

�
VNLiþNCl

LLi
3NLiLCl

3NClNLi!NCl!

�

þ
ð1
0

dl
0
�
dUðl; DN ¼ NÞ

dl

�
l¼l

0
; (10)

where the two terms on the RHS of eqn (10) respectively represent
the ideal and excess free energies of the system. While both
approaches theoretically yield the same total chemical potential,
the expressions for the ideal chemical potentials differ by kB-
T(ln(NLi!NCl!)−NLiNCl lnNLiNCl)/(NLiNCl), which is reected in the
computed excess terms. As a separate issue, Anwar, et al. noted
errors in chemical potentials computed using a single pair, which
were attributed to difficulties in sampling the full inter-ion
distance distribution.20 Similar challenges were noted by Fer-
rario, et al. in a solubility study of KF in water.35 Mester and
Panagiotopoulos49,50 did not report these problems for ion pair
insertion in water, but their calculations were based on simula-
tions with tens of nanoseconds and likely sampled the necessary
degrees of freedom sufficiently. The all-atom alchemical trans-
formation approach has successfully been used to compute the
chemical potentials of molten NaCl using RIM20 and liquid Si
using AIMD.44 Zhang, et al.51 developed a robust NNIP for water
and employed TI to predict the full phase diagram of water. Non-
equilibrium thermodynamic methods have also been used to
predict changes in free energies.52,53
Methodology for computing chemical potentials of solid
systems with the Einstein crystal method

For solid systems, the absolute free energy can be computed
using the Einstein crystal method.24,25 An Einstein crystal (EC)
consists of non-interacting atoms that are tethered to their ideal
lattice positions with a harmonic restraint. The analytical
expression for the absolute free energy of an Einstein crystal is
given by,

FEC ¼ 1

b

XM
i¼1

ln

�
bkiLi

2

2p

�3
2

; (11)

where b = 1/kBT, kB is Boltzmann's constant, T is the tempera-
ture, M is the number of atoms, k is the harmonic spring
constant of atom i, and L is the thermal de Broglie wavelength
of atom i. For the LiCl system with two atom types, the potential
energy (UEC) of an Einstein crystal is given by,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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UEC ¼ kLi

2

XNLi

i¼1

ðri � r0;iÞ2 þ kCl

2

XNCl

i¼1

ðri � r0;iÞ2; (12)

where ri − r0,i is the displacement of atom i from its equilibrium
lattice position. The free energy difference between the Einstein
crystal and the real crystal (RC) can be computed using TI. In this
approach, simulations are performed using a hybrid potential (HTI),
which couples the two states through a coupling parameter, l,

HTI(l) = lHRC + (1 − l)HEC, (13)

where l ˛ [0, 1]. The free energy difference is then computed
with

DFCOM
EC/RC ¼

ð1
0

dl

�
vHTIðlÞ

vl

�
l¼l

0
¼

ð1
0

dl
�
URC �UEC

�
l¼l

0 ; (14)

where h.il=l0 denotes an ensemble average of a quantity at
a single value of l. Due to the constraints on the centers of mass
for both EC and RC states, size dependent free energy terms
must also be included,20,23–25

DFCOM
EC ¼ �1

b
ln

0
BBB@

b

2p
PN
i¼1

mi
2

ki

1
CCCA

3
2

; (15)

DFCOM
RC ¼ �1

b
ln

�
V

NLiCl

�
; (16)

Finally, the absolute free energy of the real crystal can then
be expressed as,

NLiClmLiCl(s) = FEC + DFCOM
EC + DFCOM

EC/RC + DFCOM
RC . (17)

Density functional theory (DFT) simulation details

All DFT calculations in this work were performed with the Vienna
Ab initio Simulation Package (VASP)54–57 using the gradient-
corrected exchange–correlation functional developed by Per-
dew–Burke–Ernzerhof (PBE).58–61 Dispersion interactions were
included via Grimme's DFT-D3 method.62 The PBE-D3 method
has been shown to perform well at describing various properties
of lithium chloride in solid46 and liquid63 phases. The projector
augmented-wave (PAW) method64,65 was used to describe core-
valence electron interactions and valence electrons were
expanded with plane waves. Self-consistent eld (SCF) calcula-
tions were considered converged once the energy difference
between consecutive iterations was less than 10−5 eV. Charge
mixing was controlled during SCF calculations with the Pulay
mixing scheme.66 A kinetic energy plane wave cutoff of 650 eVwas
employed in all calculations, except the generated neural network
interatomic potential training data which used a cutoff of 500 eV.
However, negligible differences in energies and forces were
observed between 500 and 650 eV cutoffs. All calculations were
performed at the G-point with a 1 × 1 × 1 k-point mesh grid.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Machine learning interatomic potentials

The MLIP architecture implemented in VASP, known as
a machine learning force eld (MLFF), is a highly data efficient
kernel-based method and can be trained using an on-the-y
algorithm that uses Bayesian linear regression to both opti-
mize model parameters and provide uncertainty estimates.67,68

As a result, only structures with high error estimates are used
for training, thereby greatly reducing the number of DFT
calculations required to train the potential when compared to
neural network-based architectures. Another benet of the
MLFF architecture is the compatibility with the thermodynamic
integration (TI) method due to the coupling parameter, l, that is
incorporated directly into the Hamiltonian of the potential,67

HðlÞ ¼
XNa

i¼1

jpij2
2mi

þ
X
i;M

UiðlÞ þ l
X
i;M

UiðlÞ þ
XNa

i¼1

Ui;atom; (18)

whereNa is the number atoms, pi is themomentum of atom i,mi

is the mass of atom i, Ui is the potential energy of atom i due to
interactions with its local environment, Ui,atom is the potential
energy of an isolated atom (or ion), and M is the set of atoms
that will be modied by l. A detailed description on how the
coupling parameter, l, is integrated into the potential energy
function Ui can be found in ref. 67. Briey, rather than linearly
scaling interatomic interactions [i.e., Ui(l) = lUi], Ui(l) in eqn
(18) scales interactions at the level of atomic ngerprints. In this
way, at l = 0, Ui does not consider atoms in M when evaluating
energies, forces, and stresses.

Since eqn (18) only scales interatomic interactions during TI,
it consequently becomes important when training the MLFF to
provide values for Ui,atom of each atom type. Otherwise, the
resulting free energies from TI calculations will incorrectly
include contributions from Ui,atom when evaluating hvH(l)/vli.
Using the same DFT settings from training, Ui,atom was
computed for both isolated Li+ and Cl− ions rather than neutral
atoms to properly quantify interaction energies during training.
The energies of isolated ions were computed by extrapolating to
an innitely large cell size by repeating calculations for cubic
cells with box lengths of 25, 35, and 45 Å while correcting for
monopole interactions between periodic images (using VASP
setting IDIPOL= 4), yielding values of 5.28877 and −3.98253 eV
for Li+ and Cl−, respectively.

A full description of the MLFF training process and model
parameters can be found in the ESI.‡ For comparison with the
kernel-based MLFF, we also developed a neural network-based
interatomic potential (NNIP). The details of the NNIP training
and model parameters are also discussed in the ESI.‡

While the models developed herein are for pure LiCl
systems, careful considerations will be necessary for multi-
component systems to ensure the transferability of developed
models across a compositional range.69

Molecular dynamics simulations and free energy calculations

Molecular dynamics (MD) simulations with MLFFs and DFT
(AIMD) were performed using VASP, whereas NNIP-based MD
Chem. Sci., 2025, 16, 3078–3091 | 3087
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was performed using LAMMPS.70 All MD simulations employed
a 1 fs time step. Equilibrium densities were determined for all
solid and liquid phase systems using isobaric–isothermal (NpT)
simulations with at least 500 ps. In VASP, the Parrinello–Rah-
man barostat71,72 was used to maintain system pressure at 1 bar
using a friction coefficient of 5 ps−1 and a ctitious mass of
1000 amu for the lattice degrees-of-freedom. Unless otherwise
stated, all isothermal MD simulations (NpT or NVT) in VASP
employed the Langevin thermostat with a ction coefficient of
10 ps−1. Aer equilibrating the density for each system size and
temperature, another 500 ps of equilibration was performed
with xed volume, isothermal (NVT) simulations. NVT simula-
tions in LAMMPS with the NNIP employed the Nose–Hoover
thermostat73 to maintain system temperature.

All liquid-phase free energy calculations were performed in
the NVT ensemble. For MLFF- and NNIP-based TI calculations
using the DN = N thermodynamic pathway, additional equili-
bration was performed over 200 ps and the following 300 ps
were used for statistical averaging at 880, 910, and 943 K. Using
the DN = 1 thermodynamic pathway, equilibration was instead
performed over 1 ns and the following 2 ns was used for
statistical averaging at 943 K. For MLFF-based liquid-phase free
energy calculations, the values of l for each TI window were
determined from 10-point Gauss–Lobatto quadrature aer
applying a variable transformation to convert the integration
variable from x ˛ [−1, 1] to l ˛ [0, 1] with l(x) = [(x + 1)/2]2,
following the same approach for liquid calculations in ref. 44.
The resulting l values used in liquid-phase TI calculations were:
[0.000000, 0.001619, 0.017060, 0.068141, 0.174190, 0.339469,
0.546066, 0.755834, 0.921153, 1.000000]. The free energies
associated with introducing or removing the so-core potentials
were computed using the Bennett acceptance ratio method42

from 16 separate simulations, where z in eqn (3) ranged from
0 to 1 with 16 equally spaced windows�
i:e:; z˛

�
0;

1
15

;.;
14
15

; 1
��

: The so-core potential in eqn (3)

was implemented using the PLUMED library39,40 for NNIP-based
simulations in LAMMPS. Due to the large computational
expense, AIMD-based chemical potential calculations at 943 K
were only performed for 10 ps and instead used the 5-point
Gauss–Lobatto quadrature rule, where (aer variable trans-
formation from x to l) l = [0.0, 0.029816, 0.25, 0.68447, 1.0].

MLFF-based Einstein crystal calculations were performed in
the NVT ensemble at 800, 850, 880, and 900 K with the Andersen
thermostat74 to ensure the center ofmass was constrained during
MD. As opposed to free energy calculations in the liquid phase,
Einstein crystal calculations converged signicantly faster and
only required 100 ps of sampling. Free energies were conrmed
to match calculations based on 1 ns of MD. For solid-phase
calculations, the values of l for each TI window were deter-
mined from 16-point Gauss–Legendre quadrature aer applying
a variable transformation to convert the integration variable from
x ˛ [−1, 1] to l ˛ [0, 1] with l(x) = [(x + 1)/2]2, following the same
approach for solid calculations in ref. 44. The resulting l values
used in solid-phase TI calculations were: [0.00529953,
0.02771249, 0.0671844, 0.1222978, 0.19106188, 0.27099161,
3088 | Chem. Sci., 2025, 16, 3078–3091
0.35919822, 0.45249375, 0.54750625, 0.64080178, 0.72900839,
0.80893812, 0.8777022, 0.9328156, 0.97228751, 0.99470047].
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authors upon reasonable request.
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