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RAS proteins are the most frequently mutated in cancer, yet they have proved extremely difficult to targetin
drug discovery, largely because interfering with the interaction of RAS with its downstream effectors comes
up against the challenge of protein—protein interactions (PPIs). Sequence-defined synthetic oligomers
could combine the precision and customisability of synthetic molecules with the size required to address
entire PPl surfaces. We have adapted the phosphoramidite chemistry of oligonucleotide synthesis to
produce a library of nearly one milion non-nucleosidic oligophosphoester sequences
(phosphoestamers) composed of units taken from synthetic supramolecular chemistry, and used
a fluorescent-activated bead sorting (FABS) process to select those that inhibit the interaction between
KRASS12P (the most prevalent, and undrugged, RAS mutant) and RAF, a downstream effector of RAS that
drives cell proliferation. Hits were identified using tandem mass spectrometry, and orthogonal validation

. showed effective inhibition of KRASS2P with I1Csq values as low as 25 nM, and excellent selectivity over
iizzgfe% 21:?; ﬁgf,%?fg;ogzgm the wild type form. These findings have the potential to lead to new drugs that target mutant RAS-driven
cancers, and provide proof-of-principle for the phosphoestamer chemical platform against PPIs in

DOI: 10.1039/d4sc07218a general — opening up new possibilities in neurodegenerative disease, viral infection, and many more
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Introduction

RAS proteins are small GTPases with a GTP-bound “active” state
(RAS-GTP) and a GDP-bound “inactive” state (RAS-GDP)" which
they cycle between. When in the active conformation, RAS
interacts with downstream effector pathways, such as RAF-
MEK-ERK, RalGDS and PI3K-AKT-mTOR, to drive proliferative
signalling.>® Kirsten Rat Sarcoma (KRAS) is the most frequently
mutated of the RAS family of proteins, accounting for approxi-
mately 75% of RAS mutations.” Within KRAS, 98% of the
mutations are seen at the G12, G13, or Q61 positions, which
lock the protein in the GTP conformation, and hence promote
tumourigenesis, but the G12D mutation is the most prevalent
overall.>® KRAS®'*? is commonly found in pancreatic,® colo-
rectal,’ and lung cancers,' which are associated with poor
prognosis in patients'> and have high rates of mortality."

“School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent, CT2
7NH, UK

*Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK

°School of Pharmacy, University College London, 29-39 Brunswick Square, London,
WCIN 1AX, UK. E-mail: chris.serpell@ucl.ac.uk

“School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK. E-mail: M.D.
Garrett@kent.ac.uk

T Electronic  supplementary  information
https://doi.org/10.1039/d4sc07218a

(ESI) available. See DOI:

© 2025 The Author(s). Published by the Royal Society of Chemistry

The difficulty in drug discovery for RAS is that the only
obvious pocket for a small molecule is occupied by GDP or GTP
which are both strongly bound,** and present at high cellular
concentrations,” making their replacement difficult to
envisage. The downstream activity of RAS is driven through
protein-protein interactions (PPIs), which involve large surfaces
that are relatively flat and featureless compared with the clefts
that medicinal chemists classically target.’ In the case of RAS,
the interaction surfaces lack even well-defined 3D features
which could be addressed with compounds such as a-helix
mimics."”” Nonetheless, small molecule inhibitors have been
found which exploit the nucleophilicity of cysteine in the G12C
mutant, combined with a less-obvious binding site, which have
been approved for the treatment of non-small cell lung cancer.
However, this mutant is only present in 12% of such cancers,
and resistance has been observed to develop rapidly.'*'* While
there has been some progress with small molecule G12D
inhibitors, such as Mirati Therapeutics MRTX1133,* there is
still a great need for more drug discovery research in this area,
particularly in the light of drug resistance.

Larger molecules could be used to inhibit PPIs, and indeed
there are advances based upon natural sequenced polymers/
oligomers, including antibodies,* peptides,* and aptamers,*
which have been discovered through selection methodologies.
The disadvantages of using biomolecular chemistry are that
chemical diversity is fundamentally limited, and that it is
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recognised by biological processes, which can result in degra-
dation** and/or immune response.”® Synthetic foldamers which
can display a programmable set of functional groups can
circumvent these problems, but are currently best suited as
mimics of secondary structures with prior knowledge of which
groups should be displayed.***

Our approach is to create larger synthetic sequence-defined
molecules which could cover a significant amount of protein
surface area, without bias towards any particular protein
substructure. To ensure that uniform macromolecules (as
opposed to disperse polymers) can be obtained, we have
adapted the automated phosphoramidite chemistry used in
oligonucleotide synthesis®*** which is capable of >150
couplings,* but we have employed non-nucleosidic monomers,
to obtain phosphoestamers: that is abiotic, uniform oligo- or
polyphosphoesters.*** Lengths of up to 104 monomers have
been achieved this way by Lutz, illustrating that stepwise yields
can be just as good as those of conventional oligonucleotides.**

We herein report the synthesis of a phosphoestamer library,
and identification of active sequences through selection by
fluorescent activated bead sorting (FABS), which disrupt the
interaction between KRAS®'*P in its GTP form and the RAS
binding domain of C-RAF (RAF1-RBD) with ICs, values as low as
25 nM. The stringent process means these phosphoestamers
are selective and do not bind either the equivalent wild-type
KRAS, nor the GDP-hosting form. These results provide proof-
of-principle that phosphoestamers can be effective at blocking
medically important protein-protein interactions. While there
are potential pharmacokinetic challenges associated with large,
polyanionic compounds, these can be overcome, as seen in the
field of oligonucleotide therapeutics. Phosphoestamers there-
fore have the potential to be a transformative technology plat-
form across cancer and other diseases.

Results
General overview of the strategy

Our route to selection of phosphoestamers for PPI inhibition,
exemplified here for KRAS®**” in the GTP bound form and RAF
(Fig. 1), has five key steps: (1) choice and synthesis of phos-
phoramidite monomers; (2) synthesis of the one-bead-one-
sequence library; (3) rounds of fluorescence-activated bead
sorting (FABS) for the selection of phosphoestamers that
disrupt PPIs; (4) sequencing of selected phosphoestamers by
LC-MS/MS; and (5) resynthesis and validation of these mole-
cules in an orthogonal assay.

Monomer and library synthesis

Seven phosphoramidite monomers (Fig. 2) were selected for use
in the phosphoestamer library. The synthesis requires mono-
mers to be based upon diols which are then protected at one
hydroxyl with a dimethoxytrityl (or trityl if phenolic) group,
followed by activation at the second using 2-cyanoethyl N,N-
diisopropylchlorophosphoramidite (full procedures and data,
ESI Section 2.21). This yields monomers which can be linked
using standard automated oligonucleotide synthesis chemistry.
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Fig. 1 Overview of route to selection of phosphoestamers for PPI
inhibition.

The monomers were chosen such that they cover a wide range of
potential supramolecular interactions. BPA (based upon the
diol bisphenol A) and C12 (dodecanediol) provide hydrophobic
regions within the phosphoestamer, with BPA being rigid while
C12 is flexible. HEG (hexaethylene glycol) is hydrophilic.
Patterns of C12 and HEG have been shown to direct supramo-
lecular chemistry in phosphoestamers.®***** ¢SS (cyclic di-
serine) and cYY (cyclic di-tyrosine) are diketopiperazines
based upon amino acids which form a rigid structure and are
able to act as both hydrogen bond donors and acceptors.’”**
NDI (naphthalene diimide) and DAN (dialkoxynaphthalene) are
capable of m-m interactions, and in particular form a donor
(DAN)/acceptor (NDI) pair which also enables folding,*
including phosphoramidite
monomers were successfully synthesised, except C12 and HEG
which were available commercially.

in phosphoestamers.**** All

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Phosphoramidites used for the phosphoestamer library, and preparation of the library on TentaGel® (TG) beads with a photocleavable

(PC) linker by split-and-mix synthesis.

The one-bead-one-sequence phosphoestamer library was
constructed using split-and-mix techniques* (Fig. 2, ESI
Sections 2.3 and 2.4%). Creating 7mers of all the combinations
of the monomers produced 7’ = 823 543 unique full-length
sequences, plus any sequences that did not go to completion.
This library size was chosen based upon conservative estimates
of synthetic and analytical capacity from a previous project.**
Synthesis of the library was completed using automated phos-
phoramidite synthesis on TentaGel® M. NH, monosized (10
pm) Amino TentaGel Microspheres (TG-beads); TG-beads have
a polystyrene backbone with a PEG spacer and are chemically
inert, making them suitable to phosphoramidite addition.** The
TG-beads were modified with 10-hydroxydecanoic acid to create
hydroxy TG-beads and were swelled in dichloromethane before
a photocleavable linker was attached to allow for UV-activated
liberation of sequences from the TG-beads after fluorescent
selection.** The beads were then split for the first round of
monomer addition. After each monomer was added to an
individual pool, the library was mixed and split out again for the
second monomer addition, creating 49 different combinations
in the second step, before being mixed again as the cycle
continues. The resultant phosphoestamer library contained
over 200 million individual TG-beads, giving on average 268
beads for each of the 7” sequences, each displaying 10"" copies
of that specific phosphoestamer sequence (Fig. 2). The trityl
monitor was used to monitor the efficiency of each coupling,
with near-quantitative results at every step, consistent with
previous reports.’>**

Selection by fluorescence-activated bead sorting

Fluorescent-activated bead sorting (FABS) is a methodology that
allows for the selection of the highest binding phosphoestamer
to a specified protein target using a flow cytometer. Flow

© 2025 The Author(s). Published by the Royal Society of Chemistry

cytometry has previously been used for the selection and opti-
misation of aptamers***>*® and inhibitors of small GTPases
such as Rho and Rab.” We used several selection steps to
identify phosphoestamers that bind to KRAS®'?P-GMPPnP
(non-hydrolysable analogue of GTP) and disrupt any interaction
between KRAS“'?-GMPPnP and RAF1-Ras binding domain
(RAF1-RBD). Proteins were produced (ESI Section 3t) and fluo-
rescent labels were attached meaning that the binding affinity
between bead-confined phosphoestamers and proteins is
correlated to the fluorescence displayed by the bead in FABS
analysis. Gating can then be used to separate beads above or
below any chosen fluorescence intensity, indicating higher or
lower binding by the sequence on that bead. The proteins used
in the FABS selection were expressed with a biotin tag, which
was then used as a linker to fluorophore-labelled streptavidin
(STV). KRAS®'*P-GMPPnP and KRAS®'?P-GDP were tagged with
fluorescein-STV, and RAF1-RBD with rhodamine Red™-X-STV.

Selection of the phosphoestamer library for KRASS*?P-GTP/
RAF1-RBD PPI inhibition employed four rounds of FABS selec-
tion (Fig. 3, full data and analysis, ESI Section 47). In Round 1 the
phosphoestamer library was incubated with enough fluorescein-
tagged KRAS®'?"-GMPPnP to cover 4% of the library; only
phosphoestamers with a high affinity for KRAS®**"-GMPPnP
would therefore acquire detectable fluorescence, and thus be
retained for round 2 (Fig. 3a), giving 48 169 beads of the original 2
x 10°%, KRAS®'*P-GMPPnP was removed from the selected beads
by washing in preparation for the next round. The pool was then
incubated with fluorescein-tagged KRAS®'*P-GDP. Beads which
display a strong fluorescent signal would be bound to KRASS**P-
GDP, and were therefore removed in this round of FABS (Fig. 3b),
leaving 12111 library beads: since KRAS-GDP does not interact
with RAF, it is not directly oncogenic. KRAS®'?P-GDP was
removed by washing, and the remaining library was incubated

Chem. Sci., 2025, 16, 113-123 | 115
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Fig. 3 FABS selection of top binding phosphoestamers. Yellow star = fluorescein label; pink star = rhodamine label. (a) Initial selection step,
selecting for phosphoestamers that bind to KRASS2P-GMPPnP. (b) Second selection step, selecting for phosphoestamers that do not bind to
KRASS12P_GDP. (c) Third selection step, selecting for phosphoestamers that do not bind to RAF1-RBD. (d) Fourth selection step, selecting top

phosphoestamers that bind to KRASS2P-GMPPnP.

with fluorescein-tagged KRAS®**P-GMPPnP and a 3-fold excess of
RAF1-RBD (rthodamine Red™-X tagged). Here, any phosphoes-
tamers from the library that had a high fluorescent signal using
the 585/29 and 600 nm bandpass filters (indicating rhodamine)
either had a high affinity for RAF1-RBD itself or, more likely given
prior selection rounds, bound KRAS®**P-GTP in a manner which
did not prevent the GTPase from also binding RAF1-RBD.
Conversely, those beads which did not acquire rhodamine fluo-
rescence must inhibit the PPI since their binding of KRAS was
selected for in the first round (Fig. 3¢); this was validated through
checking fluorescein fluorescence, which gave high readings
(Fig. S44, ESIY). The result of this third selection was 676 library
beads and so a fourth selection round was used to identify only
those with highest affinity for KRAS®'*’-GMPPnP. The selected
beads were washed again to remove any remaining proteins and
incubated with enough fluorescein-tagged KRAS®'* -GMPPnP to
cover 50% of the remaining library. For the final selection, 200
beads of the highest fluorescence were sorted such that each
individual bead was placed in an individual well of a 96-well plate
(Fig. 3d). The phosphoestamers were then cleaved from the TG-
beads via the photocleavable linker.

Sequencing of hit phosphoestamers by mass spectrometry

Phosphoestamers were sequenced and identified with a Q-TOF
nanospray LC-MS/MS method. A commercially purchased 7-
base DNA oligomer was used to identify the limit of detection

16 | Chem. Sci, 2025, 16, 113-123

and observe patterns in how phosphoestamers of this length
could fragment. These results showed the phosphoestamers
were most likely to be detected as [M — 2H]>~ parent ions, and
MS/MS identified c- and y-ions*® as the most predominant. Of
the 200 top phosphoestamers selected from FABS, 21 selected at
random (according to instrumental capacity) were prepared for
LC-MS/MS analysis, and 6 phosphoestamers (01-06) produced
data which could be fully interpreted (Table 1, full data analysis
ESI Section 51). MS/MS data revealed molecular ions which fell
within the expected phosphoestamer library range (1669.08-
3125.43 Da), with the exception of 06 (M = 1402.24) which
represents a truncation. Data from O1 showed not only the
common [M — 2H]*” parent ion, but also a smaller [M — H] ion
at 1710.693 m/z; this provided two separate sets of MS/MS data

Table 1 Phosphoestamer masses detected via LC-MS/MS

Neutral molecular

Phosphoestamer mj/z detected mass (Da)
o1 854.978 [M — 2H]*~ 1711.970
1710.963 [M — H]|~
02 992.314 [M — 2H]*~ 1986.642
03 911.342 [M — 2H]*~ 1824.698
04 971.321 [M — 2H]*~ 1944.656
05 971.288 [M — 2HJ>~ 1944.590
06 700.120 [M — 2H]*~ 1402.240

© 2025 The Author(s). Published by the Royal Society of Chemistry
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that could be analysed and compared when identifying the
sequence, assisting in validation of the workflow. Sequencing
was performed using RoboOligo, a programme designed for the
analysis of tandem mass spectrometry data of
oligonucleotides.*

Fig. 4a shows the RoboOligo analysis of 02, which was
identified as NDI-C12-C12-C12-NDI-BPA. Examining all the
sequences selected (Fig. 4b), there were some common patterns
identified, such as the multiple adjacent monomers of both C12
in 02 and 04, and of HEG in O1 and O3. Every initial monomer
used was found in at least one phosphoestamer sequence,
except ¢SS which was not seen in any top binder analysed. Of
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the sequences identified only one (04) was a full-length 7-mer,
with 01-05 being 5/6mer oligomers and 06 being a tetramer.
Given that monitoring trityl groups during synthesis showed
that the couplings were successful to the end, and having used
a redundancy of 268, at least one instance of each full-length
sequence should be present. It is therefore likely that these
smaller phosphoestamers are better binders compared to the
7mers. We have observed the selection of optimal sequences
arising from synthetic inefficiencies previously,”” and suspect
that the incidence of beads displaying an entire population of
truncated sequences could occur through imperfect distribu-
tion in the flow of reagents over the beads.

hv
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(@) RoboOligo analysis of O2. Other major peaks are indexed on alternative fragments (see ESI Section 5.27). (b) Sequences of top binding

phosphoestamers. Sequences are given by analogy with nucleic acid conventions (5’ to 3') meaning that the first monomer listed is the last one
added during chemical synthesis. This is evident from the location of the terminal phosphate which exists in the MS/MS spectra as a result of the
photocleavage reaction, leading to the HO- and -P (phosphate) termini.
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(@) Positive control compound Ch-3, and pure phosphoestamers O1-0O6 characterised by polyacrylamide gel electrophoresis. (b)

KRASG12P/RAF1-RBD interaction assay results for Ch-3. Data collected using area under the curve (AUC) of GFP emission spectra between 490
and 540 nm. Numbers 1-3 indicate biological repeats. (c) KRASS'2P/RAF1-RBD interaction assays results for O1-06. (d) ICsq values for Ch-3 and
01-06 calculated from assays. (e) Effect upon KRASWT/RAF1-RBD interaction of Ch-3 and top scoring phosphoestamers screened at
concentrations up to 3 x ICso for KRASS*2P/RAF1-RBD.

Validation of PPI inhibition by phosphoestamers

Phosphoestamers 01-06 were resynthesised on a 1 umol scale
using the DNA synthesiser and the yields were determined by
manually cleaving the final DMT protecting group of each
molecule and quantifying the DMT cation by UV-visible spec-
troscopy (ESI Section 2.4}). The achievement of desired length

M8 | Chem. Sci., 2025, 16, 113-123

and purity was confirmed by polyacrylamide gel electrophoresis
(Fig. 5a). The resynthesised phosphoestamers were purified
away from smaller molecules using C18 spin tips. To ensure the
assay was viable, a positive control Ch-3 (Fig. 5a) known to
disrupt KRAS®"?" interactions® was synthesised. An assay was
developed (ESI Section 61) in which polystyrene 96-well plates

© 2025 The Author(s). Published by the Royal Society of Chemistry
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were coated by overnight incubation with KRAS®**°-GMPPnP.>!
The wells were then washed with a blocking solution before
incubation with phosphoestamers and RAF1-RBD-GFP. Any
KRAS sites not blocked by the phosphoestamers would interact
with the RAF1-GFP and result in a fluorescent signal which
would be detected. In this assay, we first established that both
KRAS®'*P-GMPPnP and RAF1-RBD-GFP were required to give
a fluorescence signal. The assay was then conducted at varying
concentrations of Ch-3, giving a resultant ICs, of 6.35 £ 0.20 uM
(Fig. 5b), consistent with reported assays performed with the
same compound.®

Conducting the same assays with the phosphoestamers
(Fig. 5¢ and d) showed that 01, 02, 03 and 05 had ICs, values
below 100 nM: 20-250 times smaller than the positive control 8.
06 showed no change in fluorescent signal across three repeats,
and so is unlikely to have any effect on the PPIs between
KRAS“*?P and RAF. 06 is the smallest phosphoestamer, and it is
possible that the MS/MS has only detected a fragment of a whole
chain that does not successfully disrupt the PPIs on its own, or
that some multivalency effect which was in operation on the
beads but cannot work with isolated strands.

03 had the lowest ICs, value, at 25.14 & 1.06 nM; suggesting
the strongest affinity for KRAS®'*P-GMPPnP. O1 had a similar
structural motif to O3 and had the second lowest IC5, at 51.94 +
3.75 nM. The HEG-HEG-HEG sequence could be key to
improving binding to KRAS®"*-GMPPnP compared to the other
oligomers. O5 had a similar IC5, to O1, 58.08 & 3.78 nM, but the
only similarity between these two is a HEG-DAN subsequence
within the phosphoestamers. 02 was the only 6-mer and had
a higher ICs, 70.87 £ 2.88 nM, which could suggest that 5-mer
phosphoestamers do have a greater affinity for KRAS proteins
compared to the longer chains. The only full length (7-mer)
phosphoestamer was 04, and like O2 had a much larger ICs,,
309.38 £ 198.09 nM; the standard deviation was large meaning
this molecule potentially does not bind or disrupt interactions
consistently - this is unsurprising given its very flexible nature,
which may only bind when multivalency is provided on a bead
surface.

Since four phosphoestamers were determined to have
consistent dissociation activity between KRAS®**°-GMPPnP and
RAF1-GFP, we then used the same assay to determine whether
these molecules would have any activity against KRAS™'-
GMPPnP or whether they would be selective for the mutant form
(Fig. 5e). Testing ‘high’ and ‘low’ concentrations of 01, 02, 03,
and O5 (approximately ICs, + 3 and ICs, x 3 respectively), it
was found that only O5 caused a decrease in fluorescent signal,
indicating disruption of the KRAS™"-GMPPnP/RAF1-GFP inter-
action, and weaker selectivity. An ICs, for the WT PPI was
determined for O5 at 125.61 £ 8.45 nM, more than twice that of
the value for KRAS®'?*P-GMPPnP, meaning that even O5 has
some selectivity for KRASS'*P-GMPPnP over the WT.

Overall, the FABS selection process was successful in
providing potential inhibitors of the KRAS®**°/RAF1 PPI, with
these phosphoestamers having a much stronger binding affinity
for KRASS'?P compared to the positive control used. Addition-
ally, three of these phosphoestamers are selective for the
mutant active form KRAS®"*P over KRAS™™.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Discussion

We have combined several different techniques - phosphor-
amidite synthesis, one-bead-one-compound library synthesis,
fluorescence-activated bead sorting, and tandem mass spec-
trometry - to create a unique methodology for the selection of
novel phosphoestamers that selectively inhibit protein-protein
interactions between mutant KRAS®'*” and RAF1. FABS was
first investigated some time ago,”»** but has been largely
neglected until recently because of problems such as auto-
fluorescence® and insufficient loading of the beads. More
recently, using modern instruments, these problems are mini-
mised,**® while FABS provides unique features such as simul-
taneous analytical readout of affinity, customisable selection
gates, and multi-parametric selection.’”*® The potential of the
method is further supported here, and with our previous work
on identifying modified nucleic acid aptamers.*

The top three final targets (01, O2 and O3) were inactive
against KRAS™" but inhibited KRAS®'*® with ICs, values of
between 25 and 58 nM. Mutations in RAS cause overactive cell
signalling, driving 30% of cancers including ~95% of pancre-
atic, 45% of colorectal cancers and 32% of lung adenocarci-
nomas,* and it stands as an extremely important drug target in
cancer therapy.® Current examples of KRAS®**P-GTP inhibitors
work at between 180 nM and 6 pM (ref. 50, 61 and 62) in
biochemical assays, and our methodology has exceeded the
activity of those compounds. MRTX1133, a highly optimised
G12D drug in clinical trials has an IC5, of 5 nM, but binds to the
inactive GDP-form of the protein.*® We have not undertaken any
chemical optimisation of phosphoestamers, but nonetheless
have obtained strong inhibitors. Our mechanistic aim differs in
that our selection was set up not for binding to a particular site,
but for blocking of a specific PPI - in this case one which only
the GTP form participates in. This is important because it
means that in principle, our method could be used to generate
phosphoestamers addressing any other PPI of interest, thus
opening up access to modulating mechanisms in diseases as
diverse as neurodegeneration® and viral infection.**

Looking forward to potential applications which would
ideally be in medicine, it will be immediately clear to any
medicinal chemist that the molecules selected are not classi-
cally ‘drug-like’ in their size, polarity, or rigidity: phosphoes-
tamers are large, polyanionic, and very flexible, which means
that their ability to cross membranes is probably minimal, but
this does not mean that they should be dismissed for drug
discovery. These molecules are physicochemically related to
oligonucleotides, which are now a successful class of drug,
operating inside the cell, with the overwhelming majority
relying on effects of chemical modification (such as phosphor-
othioation®) rather than on delivery vehicles to achieve this.*
Nonetheless, vehicles such as lipid nanoparticles exist,*” and we
are in the process of exploring these possibilities.

In comparison with existing technologies for inhibition of
PPIs, phosphoestamers have a number of advantages. Use of
small molecules requires identification ‘hot spots’ (smaller
areas which contribute decisively to the binding energy), the
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discovery of which is laborious®® without guarantee of success.*®
Nonetheless, the precise design of small molecule structure
means that they can be exquisitely optimised when hits are
found. The phosphoestamer selection platform does not
require hot spots, but is just as amenable to precise and arbi-
trary structural modification. Current alternatives to small
molecules are biopharmaceuticals (peptides, antibodies, and
nucleic acid aptamers) or derivatives thereof. A general draw-
back of using such systems is that their chemistry is the same as
that used by the body, meaning that they can be recognised by
immune processes, or be subject to enzymatic degradation. The
extent varies: peptides® are attractive for their ease of chemical
modification” which permits fine-tuning of target engagement
and pharmacokinetics, but are recognised by proteases”™ and
the immune system;”” antibodies” have good biostability” and
only residual immunogenicity in humanised versions,” but are
only minimally chemically customisable;”® while aptamers’” can
be modified in a range of ways’® and are negligibly immuno-
genic,” but rapid degradation and elimination is a problem.*
For phosphoestamers, there are physiological nucleases which
might pose a degradation risk, but even for nucleic acids these
can be circumnavigated through modifications,* or indeed
through addition of non-natural monomers, including some we
have used here.** Toll-like receptors recognize nucleic acids as
part of the innate immune system, but these are specific to
certain sequences and structures,® and would not be expected
to be activated by any oligophosphoester. We can therefore
expect that phosphoestamers will be less susceptible to degra-
dation or immune response due their bioorthogonality, but
these hypotheses are currently under investigation in our lab.

Phosphoestamers are an interesting class of materials in
themselves, displaying sequence-, concentration-, and cation-
dependent supramolecular chemistry.®® This responsive
behaviour, particularly self-assembly could impact therapeutic
applications, but in the case of the short oligomers here we have
no observed any evidence of that, and due to their potency we
are working well below the critical aggregation concentration of
much more hydrophobic systems.**

In summary, there is a wide scope of opportunities and
challenges for ahead phosphoestamers in applied biomedical
science.

Conclusions

We have synthesised and screened a library of phosphoes-
tamers for inhibition of the undrugged mutant KRAS®'*"-GTP/
RAF interaction, through fluorescence-activated bead sorting,
identifying six novel molecules through tandem mass spec-
trometry analysis. Validation assays showed that three of these
phosphoestamers show both a high affinity to KRAS®**" that
disrupts the interaction with RAF1, and does not affect the
equivalent PPI in the wild type protein. This affinity is an
improvement upon previously synthesised inhibitors, and if
intracellular access can be engineered, it provides leads for
development of new types of drugs. It also provides proof-of-
concept that this technology platform could be used to iden-
tify inhibitors against other difficult protein-protein
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interactions in cancer and also other disease areas, both inside
and outside the cell.
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