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Cobalt-mimochrome VI*a (CoMC6*a), a synthetic mini-enzyme with a cobalt porphyrin active site, is
developed as a biomolecular catalyst for electrocatalytic CO, reduction in water. The catalytic turnover
number reaches ~14 000 for CO production with a selectivity of 86:5 over H, production under the
same conditions. Varying the applied potential and the pK, of the proton donor was used to gain insight
into the basis for selectivity. The protected active site of CoMC6*a is proposed to enhance selectivity for
CO, reduction under conditions that typically favor H, production by related catalysts. CoMC6%*a activity
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Introduction

Electrochemical carbon dioxide (CO,) reduction is an appealing
route to renewable fuel production."” Achieving selectivity for
CO, reduction over proton reduction is an omnipresent chal-
lenge, since the reduction of CO, to CO, or any stable product,
requires protons (eqn (1) and (2)).>* Achieving selectivity in
a protic solvent such as water is particularly challenging.
However, there is significant interest in developing catalysis in
water as an abundant source of protons and a desirable
environmentally-friendly solvent.>” An additional challenge
raised by use of water as a solvent is the poor solubility of CO,.*°
Developing catalysts with microenvironments that sequester
and activate CO, in the presence of protons thus is of high
interest.'**

CO, +2H* + 2¢~ — CO + H,0 (1)
2H+ +2e — Hz (2)

Nature's enzymes achieve high selectivity and activity for
reactions such as CO, reduction by providing an active-site
microenvironment to promote substrate binding and trans-
formation and by controlling electron and proton delivery.'*™*°
Inspired by Nature's catalysts, artificial enzymes for CO,
reduction (see examples in Table S1t) have been prepared by
incorporation of synthetic CO, reduction catalysts, such as
[Ni(cyclam)]**,?® Ni(terpyridine),?* or cobalt porphyrins,??* into
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and selectivity change only marginally under air, indicating excellent oxygen tolerance.

proteins including azurin,* cytochrome bse,,* myoglobin,* an
artificial protein aRep,” or an engineered photosensitizer
protein.”* Some of these systems have been reported to achieve
enhanced activity*® and selectivity®® relative to the synthetic
catalyst outside of the protein environment. For example,
improved selectivity for CO, over proton reduction by [Ni(cy-
clam)]** bound to the protein azurin was attributed to the
protein scaffold providing restricting conformational flexibility
of the catalyst and an active site buried within a solvent-
excluded hydrophobic patch.*

Inspired by the importance of proton transfer steps in
enzymatic catalysis,”***° roles for endogenous*'”**** and
exogenous”?>?%* proton donors in determining CO, reduction
selectivity and activity have been proposed. The use of relatively
weak Breonsted acids as proton donors is proposed to slow
metal-hydride formation and thus disfavor the competing H,
evolution pathway."**** Electrochemical studies on an iron-
porphyrin electrocatalyst” and a cobalt macrocyclic catalyst®®
showed that using a higher-pK, buffer increases selectivity for
CO over H, production. Furthermore, in photochemical studies
employing cobalt porphyrin catalysts, presence of a higher-pK,
buffer (bicarbonate, as opposed to phosphate) was shown to
increase selectivity for CO over H, production.*”*® Other prop-
erties of buffers have also been implicated in determining
selectivity. For [Ni(cyclam)]*", buffer steric properties and
charges were found to impact selectivity for CO over H,
production; cationic buffers were proposed to stabilize an
activated Ni-CO, species in a second-sphere interaction,
favoring CO production.®

In a previous study, we reported CO, reduction catalysis by
a semisynthetic cobalt-porphyrin-containing mini-enzyme,
CoMP11-Ac, consisting of a cobalt porphyrin with a covalently
attached peptide donating an axial histidine ligand on the
proximal side of the porphyrin (Fig. 1a). For CoMP11-Ac,
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Fig. 1 Models of (a) CoMP11-Ac; (b) CoMC6*a.

selectivity for CO over H, production in water is increased by
using a higher-pK, buffer as an exogenous proton donor, which
is proposed to disfavor the formation of a metal-hydride species
that yields H,. Furthermore, catalysis at a more negative
potential (—1.4 V vs. Ag/AgCl/KCl(;np) lowers selectivity for CO
over H, production, while applying a less negative potential
(—1.2 V) increases selectivity.*

We now investigate effects of biocatalyst structure on selec-
tivity for CO, vs. proton reduction. We have chosen a catalyst
that, like CoMP11-Ac, has a cobalt porphyrin active site and
axial His ligand, but that also has a peptide covering the distal
side of the heme. This catalyst is a synthetic mini-enzyme,
cobalt-mimochrome VI*a (CoMCé6*a, Fig. 1b). Mimochromes
are miniaturized porphyrin-based metalloproteins consisting of
a deuteroporphyrin sandwiched between two peptide chains
covalently bound to the porphyrin.***° MC6*a is a proven
framework  for  catalysis, displaying  peroxidase,**
peroxygenase**** or hydrogenase*>*® activities depending on
conditions and the metal ion. Its scaffold consists of a distal
decapeptide and a proximal tetradecapeptide that provides the
axial His ligand to the metal ion. Helical secondary structure is
favored by the inclusion of two 2-aminoisobutyric acid residues
in the distal peptide.*”

Previously, CoMCé6*a was shown to act as an electrocatalyst
for H, evolution from water with a turnover number (TON)
exceeding 230 000 (ref. 45) as well as a catalyst in a system for
photochemical H, evolution.*® Subsequent studies of CoMC6*a
catalysis of H, evolution from water revealed that buffer acid
species play a critical role in proton delivery to CoMC6*a during
catalysis, with their structures and pK, values impacting cata-
lytic rate, potential, and mechanism.”® In particular, proton-
coupled electron transfer (PCET) was shown to be required for
H, production by CoMC6*a, with the catalytic potential shifting
with the pK, of the buffer acid in a Nernstian fashion.
Furthermore, catalytic rate was shown to depend on buffer
sterics, an observation attributed to the impact of the distal
peptide in hindering proton delivery by protonated buffer.*
Interestingly, the specific effects of buffer acid on H, production
catalysis differ from those observed for CoMP11-Ac, for which
buffer pK,, but not buffer structure, plays a role in determining
catalytic rate, likely as a result of the solvent-exposed active site
of CoMP11-Ac.”
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Having observed these impacts of catalyst structure on H,
evolution catalysis by COMP11-Ac vs. CoMC6*a, we now turn to
investigating the impact of structure on CO, reduction by
CoMC6*a. We hypothesized that the more hydrophobic and
enclosed active site of CoMC6*a would favor CO, reduction.
Using conditions applied to CoMP11-Ac to facilitate compar-
ison, the roles of both applied potential and exogenous proton
donor pK, in determining CO, vs. proton reduction selectivity
and activity by CoMCé6*a are investigated. Comparison to
previous results on CoMP11-Ac indicates that the distal peptide
plays a role in enhancing selectivity for CO, reduction. Finally,
we demonstrate that this catalyst exhibits excellent tolerance for
oxygen, with minimal impact on CO, reduction activity or
selectivity.

Results and discussion

CoMC6*a was prepared and characterized as described in the
ESI (Fig. S1 and S2)t as well as previous publications.*>*” Cyclic
voltammetry (CV) of 1 uM CoMC6*a was carried out using
a hanging mercury drop electrode, used in previous related
work.?>*** As was observed for CoMP11-Ac,>* dip-and-stir
experiments® indicate that CoMC6*a adsorbs to the electrode,
acting as an immobilized catalyst (Fig. S3 and S4+).

Effects of applied potential

CV of 1 uM CoMCé6*a at pH 6 in 50 mM 3-morpholinopropane-
1-sulfonic acid (MOPS, pK, 7.2) under N, (Fig. 2) shows faradaic
current beginning at an onset potential of ~ —1.2 V vs. Ag/AgCl/
KCly) (all potentials reported herein are reported against this
reference). The rise in current forming a single peak is attrib-
uted to CoMCé6*a electrocatalytic H, evolution activity via
protonated buffer consumption, which was previously reported
under similar conditions.*>*®* When the solution is saturated
with CO, and placed under 1 atm CO,, two peaks are observed
at ~ —1.2 Vand ~ —1.5 V (Fig. 2). The resulting increase in
current at ~ —1.2 V may indicate selective CO, reduction over
proton reduction at this potential. Furthermore, the anodic
shift of the catalytic onset potential may be due to CO, coor-
dination and reduction or a coupled EC/CE reaction.

To characterize product formation, controlled potential
electrolysis (CPE) experiments were run on 1 pM CoMCé6*a in

200
—CoMC6*a CO,
160 | —comc6a N,
< —no catalyst CO,
::5 120 | —no catalyst N,
=
2 80
s |
]
40
0

-0.6 -0.8 -1 -1.2 -1.4

: -1.6
E(V) vs Ag/AgCI/KCl(im)

Fig. 2 Cyclic voltammograms of 1 uM CoMC6*a pH 5.9 in 50 mM
MOPS, 0.1 M KCl, at 100 mV s7%, scan 2, under 1 atm of the indicated
gas.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the presence of MOPS for two hours, after which the headspace
gas was sampled and analyzed by gas chromatography (GC).
Experiments were run at —1.2 and —1.4 V to aid comparison to
published results on CoMP11-Ac at these conditions (Table
S2+).”* At —1.4 V under N, with no CO, present, H, is produced
with nearly quantitative faradaic efficiency (FEy, 96 £ 4%),
consistent with previous results.”** When a CO,-saturated
solution of CoMC6*a under one atmosphere of CO, is subjected
to CPE, the major product is CO (Tables 1, S3 and Fig. S57).
However, selectivity for CO formation over H, under these
conditions changes with applied potential, with higher selec-
tivity (85:6 FEco : FEy,) at —1.2 V compared to 68:24 at —1.4V
(Tables 1, S3 and Fig. S51). The turnover number (TON) for CO
production also is dependent on potential, with double the
value (2200 =+ 300) at the less cathodic potential of —1.2 V. In
comparison with results on CoMP11-Ac under the same
conditions (Table S2t), FEco (85 & 2%) and FEy, (8 & 2%) are
nearly the same as the values for CoMCé6*a at —1.2 V. However,
at —1.4 V (Table 2), CoMP11-Ac favors H, production, with FE¢o
of 21 4+ 5% and FEy, of 63 £ 13%. Thus, under these conditions
at —1.4 V, CoMCé6*a shows significantly greater selectivity for
CO, over proton reduction compared to CoMP11-Ac, supporting
the hypothesis that protection of the CoMC6*a active site by the
distal peptide enhances selectivity.

Effects of proton donor pK,

An important tool for addressing product selectivity and gain-
ing mechanistic insights in CO, reduction electrocatalysis is
tuning proton donor properties.*** For a number of catalysts in
water, protonated buffers have been shown to be the primary
proton donors in proton-requiring catalysis (except at low pH
values)® for H, production*** and CO, reduction,”**** with
buffer properties impacting catalytic rate, mechanism, and
selectivity.**** For CoMCé6%*a, properties of buffer acids have
been shown to impact electrocatalytic H, evolution efficiency,
activity, and mechanism: lower-pK, buffers result in an anodic
shift in the catalytic wave, which has been attributed to their

Table 1 Results of CPE experiments on CoMC6*a“
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Table 2 FE values for CoMP11-Ac and CoMC6*a at —1.4 V¢

Buffer Catalyst FE@m,) % FE(co) %
CAPS (pKEl 10.4) CoMP11-Ac 29+ 6 48 + 10
CoMC6*a 441 76 £+ 10
CHES (pK, 9.3) CoMP11-Ac 43+9 57 +4
CoMC6*a 14 +1 67 £ 12
MOPS (pK, 7.2) CoMP11-Ac 63 + 13 2145
CoMC6*a 24+ 4 68 + 8

“ Data on CoMP-11 from ref. 22 Data collected under 1 atm CO,, 0.5 M
buffer, pH 6.5. Full table of comparative results in ESI.

role in PCET,* and less bulky buffers increase catalytic current,
a phenomenon attributed to distal CoMCé6*a peptide hindering
proton donor access to the active site.** To determine the effect
of proton donor on CO, reduction selectivity by CoMC6*a, we
chose three structurally related buffers: MOPS, used above (pK,
= 7.2), N-cyclohexyl-2-aminoethanesulfonic acid (CHES, pK, =
9.3) and 3-(cyclohexylamino)-1-ethanesulfonic acid (CAPS pK, =
10.4; structures are shown in Fig. 3).

First, we collected CVs of CoMC6*a under N, or CO,, with the
solution saturated with the respective gas. Under N,, there is
only one feature, which is between —1.4 and —1.6 V, and was
previously shown to be associated with catalytic H, evolu-
tion.*** The peak current of this low-potential feature decreases
with increasing buffer pK,, consistent with lower H, production
activity with less acidic proton donors (Fig. 3).

Under CO,, the CV changes dramatically but in a manner
dependent on the buffer present. With all three buffers, an
increase in current under CO, relative to that under N, is seen at
~ —1.2'V, a potential at which CPE experiments show (vide infra)
there is minimal H, production (Fig. 3 and Table 1). This result
suggests that there may be enhanced CO, reduction ~ —1.2 V.

To determine products formed, two-hour CPE experiments
on CoMCé6*a in MOPS, CHES and CAPS buffers at pH 6 were
performed at —1.2 and —1.4 V, with results in Tables 1, S3-S5
and Fig. S5-S7.1 The UV-vis spectrum of the catalyst in bulk

Gas Buffer Eb (V) FE(I—[Z) % FE(CO] % TON[HZ) TON[CO) QT (C)
CO, CAPS (pK, 10.4) —-1.4 4+1 76 £ 10 110 £ 20 2100 £ 600 2.6 +0.4
-1.2 4+4 73 £5 11 £ 10 230 £10 0.3 £ 0.1
CO, CHES (pK, 9.3) —-1.4 14 +1 67 £12 280 £+ 10 1300 & 400 1.9 £ 0.1
-1.2 11+1 86 + 11 100 £ 20 800 £ 200 0.9 £ 0.1
CO, MOPS (pK, 7.2) —-1.4 24+ 4 68 + 8 390 £+ 120 1100 £ 200 1.6 £ 0.5
-1.2 61 85 11 160 + 40 2200 £ 300 2.5+ 0.2
N, CAPS (pK, 10.4) —-1.4 88 + 10 ~0 1100 £ 400 ~0 1.2 £ 0.3
—1.2 No above-background activity®
N, CHES (pK, 9.3) —-1.4 97 £ 14 ~0 1800 £ 200 ~0 1.8+ 0.1
—-1.2 78 £ 14 ~0 130 + 30 ~0 0.2 £0.1
N, MOPS (pK, 7.2) —-1.4 96 + 4 1.0 £ 0.3 3900 + 1500 45 + 12 39+1.4
-1.2 No above-background activity

“ Two-hour CPE experiments conducted on 1 uM catalyst in 0.5 M buffer with 1 M KCI. Data shown corresponds to the average of at least three
individual runs, the error corresponds to the difference between the average and the replicate with the greatest difference from the average; ESI
shows detailed results. The pH of all MOPS, CHES, and CAPS solutions after purging with CO, was 6.5 & 0.2; and 7.2 + 0.2 when purged with
N,. ” Potentials reported vs. Ag/AgCI/KCl1ny. © Activity is not reported if it did not exceed three times background in more than one replicate.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.3 CVsof 1 uM CoMC6*a in 50 mM (a) CAPS, (b) CHES, (c) MOPS.
For all CVs, pH = 5.9, [KCll = 0.1 M and scan rate = 100 mV s . Arrows
in the CV traces indicate the scanning direction.

solution shows minimal change before and after CPE, indi-
cating catalyst robustness (Fig. S81). Under N, at —1.2 V, no
activity above background was observed in the presence of CAPS
or MOPS, and very low activity was observed in CHES, indicating
that minimal H, production occurs at —1.2 V in the presence of
all three buffer acids under these conditions, consistent with
prior results on CoMC6*a.”®* At —1.4 V under N,, the charge
passed exceeds background for all three buffers, with H,
formation with FEy, values from 88 to 97%. As we lower buffer
pK,, we see an increase in TONy, supporting the hypothesis
that more acidic proton donors enhance H, production activity,
in line with prior results.*

When CPE of CoMCé*a is performed under CO,, CO
becomes the major product under all conditions used here. At
—1.2 V under CO,, FE¢o is approximately the same for experi-
ments run with the three different buffer acids (ranging from 73
to 85%) and the FEy, values are also similar (4-11%), indicating

5710 | Chem. Sci, 2025, 16, 5707-5716
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that the pK, of the buffer does not have a significant impact on
selectivity at —1.2 V. In contrast, at —1.4 V under CO,, FEy,
increases from 4 + 1% to 14 £ 1% to 24 + 4% as buffer pK,
decreases, showing that increased buffer acidity enhances H,
evolution under a CO, atmosphere, possibly by promoting
formation of a metal hydride or its protonation. FEco shows
minimal change with buffer pK, at —1.4 V, (67-76%), indicating
that the effect of increased buffer pK, on enhancing selectivity
for CO production at —1.4 V results primarily from decreasing
H, production.

Comparison to results on CoMP11-Ac (Fig. 1) provides
insight into how catalyst structure impacts selectivity. Similar to
CoMC6*a, at —1.2 V, CO : H, selectivity of CoMP11-Ac shows no
dependence on buffer acid pK, (Table S2t). At —1.4 V, also like
CoMC6*a, CoMP11-Ac shows an increase in selectivity for CO,
reduction over proton reduction as the pK, of the buffer acid is
increased (Table 2 and S2t).”> CoMP11-Ac and CoMCé6*a thus
show similar trends in CO: H, selectivity with buffer acid pkK,,
with no dependence at —1.2 V and an increased FEq : FEy, with
decreased buffer acidity at —1.4 V, dominated by an impact on
FEy,. However, COMC6*a has a higher CO : H, selectivity under
all conditions, always in favor of CO, reduction. These results
indicate that the CoMC6*a structure enhances CO, reduction
selectivity over proton reduction, an effect primarily seen at the
more negative potential used herein.

For CoMP11-Ac, two mechanisms were proposed at the two
different potentials.”?* At —1.4 V, a mechanism invoking formal
Co(i) formation was proposed, consistent with an estimated
Co(u/1) reduction potential of —1.42 V.*> Cobalt hydride is
proposed to yield H, upon protonation, and this process
accounts for the greater FEy, at a more negative potential. This
mechanism is in line with the observed selectivity dependency
on the buffer acid pK, at —1.4 V, as a more acidic proton donor
will favor Co(1) protonation,*® thus biasing the system toward H,
formation. At —1.2 V, a mechanism in which CO, binding
couples to electron transfer to form a formal Co(1)-CO, adduct
was invoked, which avoids directly forming a Co(1) species and
accounts for the lack of dependence of selectivity on buffer pK,
at this potential. This mechanism has a selectivity-determining
step prior to any protonation step, which suggests that selec-
tivity will not depend on proton donor pkK,, in line with the
experimental results at —1.2 V.

To consider this model for CoMC6*a, we measured the
formal Co(u/1) reduction potential. This was accomplished
under N, at high pH and with a rapid scan rate, conditions at
which H, evolution is suppressed. From quasi-reversible CVs at
pH 10-12, a midpoint potential of ~ —1.58 V was measured
(Fig. S971). Thus, under the conditions used here for catalysis,
direct formation of Co(r) is not possible. For CO, reduction,
reaching this formal oxidation state will require CO, binding
before or coupled with reduction. For proton reduction, PCET is
required, as was previously demonstrated.*® These observations
lead to the proposed mechanism in Fig. 4, which has its basis in
published mechanisms for CO, reduction and proton reduction
by cobalt porphyrins.”® However, the low potential of Co(u/1)
MC6*a precludes direct formation of a Co(x) species under these
conditions, a process typically invoked in related systems.?*3”>

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Proposed mechanisms for H, and CO formation catalyzed by
CoMC6*a. The dotted lines indicate processes not observed or ex-
pected under the conditions used herein.

To provide additional data to test this model, effects of CO,
concentration on catalysis were measured.

Effects of CO, partial pressure

Prior experiments examined the effect of proton donor (buffer)
concentration on catalysis. Next, we examined effects of CO, by
collecting voltammograms as a function of CO, partial pressure
(Pco,).” In the presence of increasing partial pressures of CO,
(Fig. 5), a CV wave develops on the anodic side of the voltam-
mogram, consistent with a process that is dependent on the
concentration of CO,. The proposed mechanism, invoking
coupled CO, binding and reduction, should be dependent on

30 ,,
—100% g
25 —75%
- 50% /
< 20 —25% %
£ 15 ' "
g NS
5 10 &= /-
o /
°| a
%8 08 o a2 4 6
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Z - - -y =-1.1301 - 0.14644x
g 115 TTee_
5 ~~2
=) S~
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()] -
< %
£ 25
>
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0 0.16 0.32 0.48 0.64
'IOQ(PCOZ)

Fig. 5 (a) Linear sweep voltammograms of 1 uyM CoMC6%*a in 50 mM
CHES, 0.1 M KCL, pH 5.9 + 0.1 at 100 mV s~! under different Pco, the
arrows indicate the direction of increasing Pco,. (b) Plot of E; vs.
—log(Pco,) showing a slope of ~150 mV per decade. R? = 0.94.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the following equation under equilibrium conditions. Note that
Ej, refers to the half-wave potential:

M +e + CO, 2 [M-CO,]™ (3)

. 0.0592 M — COzH)
E=E"+ lo 4
( [M]Pco, @
E, = E”— 0.0592log(Pco,) ()

To analyze these data, we chose a current near the foot of the
wave (1.5 pA) to reflect the CO,-dependent process that occurs at
less cathodic potentials than H, production because a distinct
peak is not always present in the voltammograms of CoMC6 *a.
We then define E; as the potential at which this current is
reached; we have used this approach when E, (eqn (5)) cannot
be readily defined (Fig. 5).>

E; = —0.0592 log(Pco,) + E” (6)

The negative non-zero slope seen in Fig. 5 reflects the
increasing current with increasing Pco,, consistent with a rela-
tionship between CO, concentration and electron transfer,
which supports our proposed mechanism. However, because
a clear peak is not present reflecting primarily CO, reduction,
defining a quantitative relationship is not possible from these
data.

Examination of Fig. 5a reveals that the voltammogram is
nearly the same under 75% and 100% CO,, which contrasts
with the clear changes from 0 to 75%. This change in depen-
dence suggests that, above 75%, substrate (CO,) availability is
no longer a limiting factor in catalysis. Notably, this observation
differs from what is seen for CoMP11-Ac, for which the anodic
shift continues for all Pco, values in the same range. To deter-
mine whether the proton donor becomes limiting under these
conditions, we measured CVs for CoMC6*a under a CO,
atmosphere under varied concentrations of CHES buffer (the
buffer used in Fig. 5). In contrast with the increase in catalytic
current seen as a function of [CHES] (and all buffers)*® under N,,
the CVs under CO, are nearly invariant as a function of [CHES]
(Fig. S10 and S117). These observations for CoMC6*a indicate
that, in the presence of CO,, a process other than CO, or proton
delivery limits catalysis. This may be a conformational rear-
rangement of the catalyst, i.e., of the distal peptide to facilitate
substrate access, or a later step in catalysis such as C-O bond
breakage.

Effect of air on catalysis

Since practical sources of CO, such as flue gas tend to have
impurities such as oxygen (0O,), which has been shown to
negatively affect many CO, reduction catalysts, developing
catalysts that can facilitate CO, reduction in the presence of
oxygen is a priority.> To test whether O, impacts CO, reduction
catalysis by CoMCé6*a, a CV of a CoMC6*a solution saturated
with CO, was collected under room air (Fig. 6). The CV of
CoMC6*a was not significantly impacted by the presence of air,
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Fig. 6 (a) CVs of 1 uM CoMC6*a in 50 mM MOPS, pH 5.9 + 0.1. For all
CVs, [KCll = 0.1 M and scan rate = 100 mV s~%. Arrows in the CV traces
indicate the scanning direction. (b) CPE experiments run in 0.5 M
MOPS, 1 M KCl, the concentration of catalyst was 1 uM when present.
The pH of all MOPS after purging with CO, was 6.5+ 0.1;and 7.2 + 0.2
when purged with N,. Potentials reported vs. Ag/AgCU/KClym). H:
headspace S: solution.

overlaying closely with CVs under CO, and nitrogen, suggesting
the possibility of air-tolerant CO, reduction. Results were
similar for CVs of CoMCé6*a solutions saturated with CO,
whether under 1 atmosphere of CO,, N,, or air. Next, two-hour
CPEs were run to determine the impact of air on product
formation. The resulting CPEs (Fig. 6 and Table 3) showed no
significant difference in selectivity. The overall charge passed
and TON values decreased when CO, was removed from the
headspace. This observation is consistent with lower activity
with a decrease in available substrate and demonstrates an
effect of changing the headspace on the two-hour CPE experi-
ment. These results indicate that CoMCé6*a maintains CO,
reduction activity and selectivity in the presence of O,. Note that
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air tolerance for H, evolution by CoMCé6*a was previously
demonstrated.*

While more investigations are needed to understand the
basis for this air tolerance, there are a few reported examples
that provide context. One is a cobalt phthalocyanine catalyst
anchored to carbon nanotubes for CO, reduction. In this
system, FEqo drops from 93% to 0% in the presence of 5% O,.
However, protecting the cobalt phthalocyanine with a bio-
inspired polymer of intrinsic microporosity increased FE¢o in
the presence of 5% O, to 75.9%. At levels of O, in air of 22%,
however, FEco decreased to 49.7%.> Another oxygen-tolerant
transition-metal catalyst for CO, reduction is an iron-
porphyrin catalyst with four ferrocenes in its distal site that
displays a 500-fold faster rate of CO, binding compared to O,
binding, giving the catalyst high FE., of 84% in the presence of
25% 0,.°° Its O, tolerance is also attributed to its favorable 4-
electron reduction of O, to H,O that avoids the formation of
destructive reactive oxygen species, as well as rapid CO,
binding.**

Insights into effects of catalyst structure on activity

Nature's enzymes have enviable properties, typically rapid
catalysis, high substrate and product specificity, and great
efficiency (i.e. low overpotential). These properties are attrib-
uted to the active-site microenvironment provided by the poly-
peptide matrix.">*” However, Nature's metalloenzymes can be
challenging to isolate in significant quantities and often are
large structures with a low density of active sites. Furthermore,
many enzymes that make H, and that reduce CO, are sensitive
to oxygen. Thus, there has been interest in developing biomo-
lecular catalysts that are relatively easy to prepare and work
with, but retain the advantage of having polypeptide matrix that
can be tuned to engineer the active site environment.®*®
However, despite the progress made to date, there are few
examples in which structure-function relationships have been
demonstrated in engineered biomolecular catalysts,>®?*15:5%6¢
especially for systems that exhibit high activity and robustness
(i.e., high TON values).

Prior investigation of the mechanism of electrochemical
proton reduction by CoMC6*a revealed that proton delivery to
CoMC6*a is slow relative to CoMP11-Ac and is impacted by
steric hindrance of the proton donor.*® The data are consistent
with the requirement of a conformational rearrangement of

Table 3 Results of CPE experiments on CoMC6*a in the presence and absence of air®

GASHeadspace GASsolution Eb (V) FE(HZ] % FE(CO) % TON(HZJ TON(CO) Qr (C)
CO, CO, —-1.2 6f1 85 + 11 160 + 40 2200 £ 300 2.5+ 0.2
Air CO, —-1.2 4+1 86 £7 67 + 30 1500 £ 500 1.7 £ 0.6
N, CO, —-1.2 5+14 90 £ 10 80 + 60 1500 + 200 1.6 +£ 0.1
N, N, —1.2 No above-background activity®

“ Two-hour CPE experiments conducted on 1 pM catalyst in 0.5 M MOPS with 1 M KCI. Results correspond to the average of at least three individual
runs, the error corresponds to the difference between the average and the replicate with the greatest difference from the average. The pH of all
solutions was adjusted to 6 for experiments. CPEs under air were purged with CO, before the headspace was replaced with air ~99% of the CO,
was replaced. ” Potentials reported vs. Ag/AgCI/KClypy). © Activity is not reported if it did not exceed three times background in more than one

replicate.
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CoMCé6*a to facilitate proton delivery, i.e., to expose the distal
side of the porphyrin, which is protected by a helix in the folded
mini-protein (Fig. 1). In contrast, CoMP11-Ac reacts with proton
donors in a diffusion-controlled manner, provided the proton
donor has a pK, below ~7.5.*° Those results revealed the impact
of the distal helix on H, evolution reactivity of CoMCé6*a: it
slows proton delivery, changes mechanism, and increases
catalyst robustness, as reflected by TONy, values nearly 10-fold
higher (230 000) than what is seen for CoMP11-Ac (25 000).*>**

Given the more hydrophobic nature of the CoMC6*a active
site relative to CoMP11-Ac, we hypothesized that it may display
greater CO, reduction activity and/or selectivity compared to
CoMP11-Ac. This prediction is consistent with reports that
hydrophobic microenvironments can improve activity and
selectivity for CO, reduction in MOF- and materials-based
catalytic systems.'»*** and also for catalysts within protein
environments.>**

For electrocatalytic CO, reduction at —1.2 V, CoMP11-Ac*
and CoMC6*a (Table 1) yield similar and high selectivities for
CO production (Table S2} compares results on these catalysts).
For CoMP11-Ac at —1.2 V in the presence of MOPS, CHES, or
CAPS buffers, values of FE¢o range from 81 to 88%, and FEgy,
ranges from 5 to 8%, similar to the respective ranges for
CoMC6*a (73-86% and 4-11%). The measure that does change
when comparing these catalysts under these conditions is TON
measured in 2-hour experiments; CoMP11-Ac generally has
higher TON values for both H, and CO production at —1.2 V, by
a factor of four- to six-fold for CO production and two- to seven-
fold for H, production, suggesting that the more solvent-
accessible active site of CoMP11-Ac facilitates reaction turn-
over at —1.2 V. However, when CPE is run at —1.2 V for 24 hours
(Fig. S127), the gap in TON values for CO production between
these catalysts closes, with a TON¢o of 14 000 for CoMC6*a
compared to 32 000 for CoMP11-Ac (Table S6%). This result is
attributed to a loss of overall activity for CoMP11-Ac in this
longer experiment, in which it yields FEgo of 61% compared to
86% for CoMC6*a. We propose that the more protected nature
of the CoMCé6*a active site maintains catalyst integrity and
activity in this longer experiment. Its total value of FEy, + FEco
is 91%, but this value is only 70% for CoMP11-Ac. We propose
that catalyst degradation, which is significant for CoMP11-Ac,
accounts for the balance of FE, consistent with the observa-
tion that CoMP11-Ac undergoes deactivation and degradation
in longer CPE experiments.®* These results illustrate how
supermolecular structure confers advantages for CoMCé6*a
catalysis that translate to it maintaining high activity and
selectivity for CO production in longer (24-hour) experiments.

These differences in selectivity between these catalysts
change substantially for reactions run at more negative poten-
tial. At —1.4 V in the three different buffers, CoMC6*a has FE¢o
values that vary little (67-76%), while FEcq is lower and more
variable (21-48%) for CoMP11-Ac. FEy, values differ signifi-
cantly between these two catalysts at —1.4 V, ranging from 4 to
24% for CoMCé6*a and 29-63% for CoMP11-Ac in the three
buffers. Overall, for both catalysts, a decreased buffer acid pKj, is
correlated with a higher FEy;,. We also see that the TON value
for CoMC6*a at —1.4 V is highest with the least acidic proton

© 2025 The Author(s). Published by the Royal Society of Chemistry
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donor (CAPS), but for COMP11-Ac, TON( at —1.4 V with CAPS is
its lowest value among the three buffers. While the basis for this
difference is speculative, we propose that these observations
support the proposal that the protected and hydrophobic active
site of CoMCé6*a facilitates CO, binding and inhibits proton
delivery to both enhance CO production and inhibit H, evolu-
tion, especially at lower potentials that enhance H, evolution
activity. However, in CoMP11-Ac, with its solvent-exposed distal
site, the pK, of the proton donor is the key factor determining
overall catalytic activity, such that CO production activity (TON)
increases with a more acidic proton donor even as FEco
decreases.

Conclusions

CoMC6*a is a synthetic mini-enzyme that electrochemically
catalyzes CO, reduction to CO in water. We provide evidence
that its selectivity for CO, over proton reduction is enhanced
relative to CoMP11-Ac, particularly at more negative potentials,
which we attribute to protection of its active site and its lower
Co(u/1) potential. The catalytic mechanism for CO formation
requires CO, binding before or coupled with Co(u) reduction for
CO formation. CoMCé6*a displays an outstanding TONcc of 14
000 over 24 hours and excellent selectivity of 86:5 CO:H,
products in the same 24-hour experiment, demonstrating that
a small artificial biocatalyst can be active, robust, and selective
for CO, reduction in water. Furthermore, the activity of
CoMC6*a is minimally impacted by air, an unusual and desir-
able property for a CO, reduction catalyst.
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