
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 2
:1

6:
27

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Spatial correlatio
aState Key Laboratory of Physical Chemist

Chemistry and Chemical Engineering, Xiam

E-mail: chengjun@xmu.edu.cn
bLaboratory of AI for Electrochemistry (AI4E
cInstitute of Articial Intelligence, Xiamen U
dState Key Laboratory for Mineral Deposits

Engineering, Nanjing University, Nanjing,

xiandongliu@nju.edu.cn
eFrontiers Science Center for Critical Eart

Nanjing, Jiangsu 210023, P. R. China

† Electronic supplementary informa
https://doi.org/10.1039/d4sc06967f

‡ These authors contributed equally to th

Cite this: Chem. Sci., 2025, 16, 2325

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 13th October 2024
Accepted 19th December 2024

DOI: 10.1039/d4sc06967f

rsc.li/chemical-science

© 2025 The Author(s). Published by
n of desorption events accelerates
water exchange dynamics at Pt/water interfaces†

Fei-Teng Wang,‡a Jia-Xin Zhu, ‡a Chang Liu,a Ke Xiong,a Xiandong Liu *de

and Jun Cheng *abc

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces

will affect the elementary step of an electrochemical process. Simulating the interfacial structure and

dynamics with a realistic representation will provide us with a solid foundation to make a connection

with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights,

we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange

dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps. We

reproduce interfacial structures consistent with ab initio molecular dynamics (AIMD) results and obtain

diffusion and reorientation dynamics in agreement with the experiment. We show that the hydrogen

bonds at the interface become stronger than those in bulk water, which makes the diffusion,

reorientation, and hydrogen-bond dynamics slower. Our findings reveal that the spatial correlation of

desorption events, driven by the breaking and making of hydrogen bonds, accelerates water exchange

dynamics. These dynamics occur on timescales of several hundred picoseconds at 337 K and 302 K. We

take a solid step forward toward studying the in situ interface water dynamics and attribute the fast

water exchange dynamics to the spatial correlation of the desorption events.
1 Introduction

The signicance of electrochemical reactions at solid/liquid
interfaces is widely acknowledged due to their important roles
in various industrial applications, such as electrocatalysis,
electrolysis, and corrosion.1 To study the electrochemical reac-
tions, the Gouy–Chapman–Stern (GCS) model has been estab-
lished as a well-known phenomenological model.2–6 A
molecular-level understanding of interfacial phenomena
necessitates the integration of microscopic information into the
GCS model. Therefore, many in situ spectroscopic techniques
have been developed to characterize the microscopic structures
at the metal/water interfaces, for example, surface X-ray scat-
tering spectroscopy to measure the water density prole,7 X-ray
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absorption spectroscopy to investigate the hydrogen bond
structure,8 and in situ Raman spectroscopy to study the struc-
tural change.9 Aside from probing the interfacial structures,
developing microscopic techniques with high temporal and
spatial resolution to study the interfacial dynamics represents
a frontier research topic.10,11 For example, Lapointe et al.
demonstrated that the ultrafast dynamics of a hydrated electron
at the metal/electrolyte interface can be followed with a resolu-
tion in the tens of femtoseconds using a pump–push–probe
scheme.12 The hierarchical interfacial dynamics expanding
from a few femtoseconds to several microseconds can funda-
mentally affect the electrochemical reaction mechanisms.
However, the state-of-the-art techniques to characterize the
interfacial dynamics can only provide limited information at
the metal/water interfaces.13 This limitation underscores the
importance of molecular dynamics simulations in advancing
our understanding of interfacial dynamics.

Of the many simulations of the interfacial dynamics (i.e.
electron transfer,14 proton-coupled electron transfer15,16), water
exchange dynamics are of fundamental interest as this process
constitutes the thermodynamic and kinetic basis of many
elementary steps. Limmer and Willard et al.17–19 studied the
water exchange dynamics at the Pt/water interfaces using clas-
sical molecular dynamics and suggested the timescale to be
over several nanoseconds at 298 K. Nevertheless, the high water
coverage (approximately 0.85 monolayer) and oxygen density
proles at the Pt/water interfaces are distinct from the results of
Chem. Sci., 2025, 16, 2325–2334 | 2325
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ab initio molecular dynamics (AIMD)20 simulations. For AIMD
simulations, observations of water exchange at the interfaces
are reported21,22 within 40 picoseconds. Nevertheless, the
samplings are deemed insufficient for capturing the full picture
of the dynamics of water exchange. Aside from the efficiency
issue, the choice of functionals23–25 and thermostats26–28 is also
reported to affect the structural dynamics, making the
comparison of different theoretical efforts and the connection
to experimental studies less clear.

To address the sampling issues we conducted machine
learning molecular dynamics (MLMD) simulations and
compared the oxygen density distributions from MLMD with
those from previous AIMD simulations.29 We also made
a benchmark comparison of the pure bulk water dynamics
between MLMD and experimental observations, which reveals
that by increasing the MD temperature by approximately 50 ±

10 K, the PBE-D3 predictions regarding the water dynamics
closely align with the experimental results of the diffusion
dynamics30 and reorientation dynamics.31,32 Based on the above
theoretical calibration of the simulation temperature, we
determine the residence timescale to be a few hundred pico-
seconds for water at the Pt/water interfaces at 337 and 302 K,
which is much faster than classical MD results.19 This height-
ened frequency of water exchange underscores the critical
importance of explicitly considering interface dynamics, espe-
cially in scenarios where water functions as a reacting species.
For example, the probability of the rst peak of adsorbed water
dissociation may be suppressed if the water molecules are
Fig. 1 Schematic illustration of the construction, validation, and applicat
and L are as follows: A (below 2.65 Å), B (2.65–4.5 Å), C (4.5–6.8 Å), and
models. All the distances are referenced to the Pt surfaces in contact with
each system, separately.

2326 | Chem. Sci., 2025, 16, 2325–2334
exchanged to the bulk region, which is closely related to the
interfacial neutral pH. We reveal that the acceleration of water
exchange is driven by the correlation between initial and
subsequent desorption events, and this correlation is key to the
observed acceleration. This correlation primarily operates
within the rst solvation shell of water molecules and during
the rst few picoseconds following the initial desorption event.
This research signicantly advances our comprehension of the
dynamics of water exchange at metal/water interfaces.
2 Computational details
2.1 Models and computations

An orthogonal 4 × 4 × 6 model for the Pt(100)/water interface
and a non-orthogonal 6 × 6 × 6 model for the Pt(111)/water
interface were constructed, with 6 atomic Pt slabs and water
molecules lled in between the top and bottom of the Pt
surfaces. The lattice parameter for the supercell is 11.246,
11.246 and 35.94 Å (16.869, 16.869 and 41.478 Å) in the x/y/z
direction. Here, the water density has been determined to be
0.97 g cm−3 at the middle 10 Å for the Pt(100)/water interface.
The water density for the Pt(111)/water interface is around
1.00 g cm−3 at the middle 10 Å. For the production run, we
expand both the models to orthogonal 8 × 8 × 6 Pt slabs as
shown in Fig. 1. For pure bulk water, a cubic box containing 128
water molecules was constructed with L equal to 15.65 Å.

All the density functional theory (DFT) calculations are per-
formed in CP2K/Quickstep.33 The Goedecker–Teter–Hutter
ion of the machine learning potential (MLP). The definitions of A, B, C,
L denote the water molecules within the middle 5 Å of the interface
water molecules. Here, twomachine learning potentials are trained for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(GTH) pseudopotentials34,35 are used to describe the atoms: H is
described by GTH-PBE-q1, with all electrons in the valence, the
O atom is described by GTH-PBE-q6 with 2s and 2p electrons in
the valence, and Pt is described by Pt GTH-PBE-q10 with 5d and
6s electrons in the valence. The DZVP-MOLOPT-SR-GTH
Gaussian basis36 set is used for all atom types except for Pt,
which uses a developed basis set for the GTH-PBE-q10 of Pt by
Le et al.20 The cutoff of the plane wave energy is set to 1000 Ry.
The Perdew–Burke–Ernzerhof (PBE) functional is utilized to
describe the exchange-correlation effect.37 Grimme D3 correc-
tion is included to consider the dispersion interaction.38
2.2 Machine learning potential and MD simulations

We utilize the DPGEN workow to iteratively update the
training dataset for developing machine learning potentials.
This workow consists of three main parts: training, explora-
tion, and labeling. Detailed descriptions can be found in the
original literature.39,40 Utilizing this workow, we have updated
the dataset of interfacial structures to 4300 for Pt(111)/water
and 4370 for Pt(100)/water. To conduct MD simulation with
ab initio accuracy and high efficiency, we use the deep potential
model to learn the structure-dependent energies and forces.
The se_a descriptor is used in this work.40 The training process
contains two sets of deep neural networks: the embedding
network for training descriptors and the tting network for
training MLPs. The size of embedding networks is set to (25, 50,
100) and that of the tting network is set to (240, 240, 240). The
cutoff radius of descriptors is set to 8.0 Å and the weight decays
smoothly from 0.5 to 8.0 Å. The test of rcut can be found in the
ESI (Fig. S4†). For the active learning process, 200 000 steps are
used to train the potential. For the nal production of MLPs, 2
000 000 steps are used.

The molecular dynamics (MD) simulations are performed
with both the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) package41 and CP2K package.33 For the
exploration in the DPGEN, we use LAMMPS to conduct MD. The
simulation is conducted in the NVT ensemble and we set the
temperature to 330/430/530 K to include the congurations
distributed around these temperatures. The time step is set to
0.5 fs and the Nose–Hoover thermostat is used to control
temperature with the temperature damping parameter setting
to 100 fs.42,43 For the equilibration and production run, we used
the CP2K package. For the convenience of comparison to
previous ab initio molecular dynamics (AIMD) simulations,29,44

we performed second-generation Car–Parrinello MD in
a canonical ensemble (NVT) using a time step of 0.5 fs. The
Langevin friction coefficient gD is set to 0.001 fs−1. The intrinsic
friction coefficients gL are set to 2.2× 10−4 fs−1 for H2O and 5×
10−5 fs−1 for Pt based on preliminary tests.44 The validation runs
involve performing a 1 ns simulation using the MLP with K
point correction included. Then, we extracted 200 structures
and calculated their energy and force using the rst-principles
calculations (2 × 2 × 1 k point setup). We compared the
RMSE (root mean square error) of the energy and force to those
determined by the MLP. The results are shown in ESI Table S1†
(columns 5 and 7). To determine whether the thermostat affects
© 2025 The Author(s). Published by the Royal Society of Chemistry
the intrinsic dynamics, we conducted a subsequent 10 ns MD
simulation in the NVE ensemble aer 10 ns simulations in the
NVT ensemble.

2.3 K point correction

Our test shows that the energy and force will gradually converge
when we increase the k point density. But, the high k-point
density will be very expensive to label the data. Here, we propose
a K point correction scheme. In this scheme, we rst test the
energy convergence over different k-point grids. It is observed
that 2 × 2 × 1 is good enough with the RMSE of energy smaller
than 1 meV per atom. Then we get the energy/force difference
determined by a 2 × 2 × 1 k point setup and gamma point.
Finally, we learn this difference using the se_a descriptor. Aer
testing and validating this newly trained potential over a series
of structures, we get a stable MLP (machine learning potential)
to predict the energy/force difference between gamma point and
a converged k grid setup. Using this MLP, we can get the
difference of all the structures that are initially labeled by
gamma point. Then we add this difference to the gamma point
labelled data. The tests are shown below. It can be seen that this
correction lowers the RMSE of energy and force, which could
give a better description of expanded models. With the above
correction, we trained MLPs for Pt(100)/water and Pt(111)/water
interfaces, respectively. The RMSE for energy and force can be
found in ESI Table S1† for both systems.

2.4 Formulae for statistical analysis

The one-dimensional diffusion coefficient is obtained based on
the mean square displacement (MSD):

D1d ¼ MSD

2t
(1)

The three-dimensional diffusion coefficient is obtained
based on the mean square displacement (MSD):

D3d ¼ MSD

6t
(2)

We used the three-dimensional formula to determine the
diffusion coefficients for pure bulk water molecules. The nite
size correction to the diffusion coefficients was estimated using
the expression proposed by Dünweg and Kremer:45,46

DDw ¼ kBTz
6ph

. Here kB is the Boltzmann constant, T is the

temperature, z equals 2.83729, and h is the viscosity of liquid
water whose value was taken from experimental data. L is the
size of the cubic simulation cell.

The hydrogen-bond dynamic correlation function is dened
as follows:

CHBðtÞ ¼ hhðtÞað0Þhð0Þi
hhð0Þi (3)

where the operator h(t) is one if the hydrogen bond criterion is
met. a(0) is 1 if the water molecules are in a specic region. The
timescales used to do correlation function analyses at different
Chem. Sci., 2025, 16, 2325–2334 | 2327
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temperatures can be found in ESI Table S3.† The dipole–dipole
auto-correlation function is as shown below:

Crot(t) = hPl(m(t)a(0)m(0))i (4)

where m(t) represents the dipole orientation at time t of all water
molecules in a specic region. a(0) is 1 if the water molecules
are in a specic region. Pl is the lth degree Legendre polynomial.
The sum of the vector product is normalized over the initial
vector. The residence time correlation function is dened as
below:

CresðtÞ ¼ hhðtÞhð0Þi
hhð0Þi (5)

where h(0) is 1.0 if the water molecules are situated in the
specied region and 0.0 otherwise. h(t) is 1.0 if it meets the
standard at the time interval t and 0.0 if not. The result is
averaged over all the molecules at the time origin. Following the
denition of Limmer et al., the ux correlation function is
dened as:

CexcðtÞ ¼ hgðtÞhð0Þi
hhð0Þi (6)

where h(0) is 1.0 if the water molecules are situated in the initial
region and g(t) is 1.0 if the original water molecules are in the
nal region. The result is also averaged over all the molecules at
the time origin. Here we use the vertical distance centers
between the peaks and valleys to dene the stable region. Now,
A is 1.8 to 2.45 Å. B is 2.9 to 3.8 Å. L is 5.2 to 12.75 Å.

The vertical distances of the peaks and valleys of the oxygen
density prole are used to distinguish water molecules in
different regions. To study the residence dynamics and avoid
the inclusion of water molecules that are at the boundary of
different adsorption peaks, we use the middle values between
the peaks and valleys. For example, the rst chemisorbed peak
is at around 2.3 Å and the rst valley is at around 2.65 Å. So, we
use 2.45 Å as the plane to choose those water molecules in the
chemisorbed state in the A region. Based on these distinct
regions, we conduct the residence correlation function analysis.
3 Results and discussion
3.1 Validation of the machine learning potential

First, we extracted 200 initial structures (Fig. S1†) from AIMD
simulations for Pt(111) and Pt(100)/water interfaces.29 Then we
started the active learning process using the DPGEN workow.39

This workow contains three parts: training, exploration, and
labeling. Aer updating the dataset to achieve low RMSE for
energy and force (Fig. S2, S3 and Table S1†), we implemented
a k-point density correction scheme (see Methods and Fig. S4†)
to enhance the machine learning potential (MLP) performance.
Using this corrected MLP and expanded interface models, we
conducted MLMD. We compare the oxygen density distribution
proles from our MLMD and previous AIMD simulations.29 The
RMSE values are below 0.60 meV per atom for energy and 80
meV Å−1 for forces (Fig. S1–S4 and Table S1†). Additionally, the
temperature in the NVT ensemble and total energy in the NVE
2328 | Chem. Sci., 2025, 16, 2325–2334
ensemble during the 10 ns simulations for both systems can be
referenced in Fig. S5 and S6.† No systematic energy dri is
observed in the NVE simulation, conrming the robustness of
the MLPs. From the oxygen density distributions derived from
the MLMD and AIMD,29 we can see that the peak positions align
consistently with previous AIMD simulations.29 The rst peak is
identied at a vertical distance of 2.3 Å for both models, suc-
ceeded by a second peak at 3 Å for Pt(100) (3.1 Å for Pt(111)). A
third peak is discernible at 5.9 Å, while valleys are observed at
2.65 Å and 4.5 Å. To investigate water exchange processes at the
interface, we categorize water molecules into different regions:
A (below 2.65 Å) representing the rst peak adsorbed state, B for
the second peak adsorbed state (2.65–4.5 Å), C (4.5–6.8 Å), and L
denotes the water molecules within themiddle 5 Å of themodel.
These classications can also differentiate the OH vector and
water bisector distributions along the surface normal (Fig. S7
and S8†), dividing them into distinct regions (Table S2†). Our
subsequent analysis and exploration of dynamics will proceed
according to the structural classication outlined above.
3.2 Benchmark comparison of water dynamics

As discussed in the introduction, direct detection of water
dynamics at metal/water interfaces is limited by the constraints
of detection resolution (both temporal and spatial). In contrast,
the diffusion coefficients based on the high-temperature
multinuclear-magnetic-resonance probe experiment30 and re-
orientation lifetimes based on the THz spectroscopy47 of liquid
H2O and D2O are experimentally accessible. Therefore, we
conduct a benchmark comparison of these properties by per-
forming machine learning molecular dynamics simulations of
pure bulk water with 128 water molecules in the simulation box.
We use the mean squared displacement (MSD) method to
calculate the diffusion coefficients and track the displacement
every 10 ps over a 5 ns trajectory. We estimated the nite size
correction to the diffusion coefficients as introduced above. For
water reorientation dynamics, we analyzed the second Legendre
polynomials of the correlation function associated with the
water bisector as shown in eqn (4). We tted the lifetime using
two exponential forms. Fig. 2A shows the diffusion coefficients
(red) and the tted lifetime (orange) of water bisector re-
orientation dynamics over temperatures. The experimental data
are extracted from previous publications30,47 (black data points
for reorientation dynamics and grey data points for diffusion
dynamics). A 50 K temperature shi in our simulations aligns
the trend of water diffusion coefficients over temperature with
experimental data. This is similar to previous tests on MD
simulations using the PBE functional, which suggested an
increase of around 100 K (ref. 48) of the simulation temperature
to match the experiment. For the reorientation dynamics, we
observe that the slow lifetime ts well with the experiment aer
we shi the simulation temperature (see Fig. S13† for the
comparison of a fast lifetime). The best t is obtained by
shiing the simulation temperature by 43 K. Aer the temper-
ature shi, the reorientation lifetimes from the simulation at
302/337 K are about 2.5 ps faster than the experimental
results.47 Based on the above comparison, we assume that we
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc06967f


Fig. 2 (A) Benchmark comparison of water bisector reorientation
dynamics and diffusion dynamics from simulations and experimental
observations. (B) The oxygen diffusion along the surface from its
original position within 20 ps for the Pt(100)/water interface. (C) Mean
squared displacements (MSD) of the oxygen atom of water L parallel to
the Pt surfaces. For the NVE ensemble, the subscript 1/2/3 stands for
the three temperatures. (D) The diffusion coefficients for water B, C,
and L of Pt(100) and Pt(111). The data of expt.diff is reproduced with
permission from ref. 30. The data of expt.Rs is reproduced with
permission from ref. 47.
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can use PBE-D3 to study the water dynamics by increasing the
simulation temperature by approximately 50 ± 10 K. A similar
approach of shiing temperature to correct for functional errors
has been oen used in previous work.48–51 In the following
section, we present results from MLMD simulations where the
temperature was adjusted by 50 K.
3.3 Diffusion dynamics

Fig. 2B depicts the diffusion characteristics of water molecules
along the surface over 20 ps, analyzing the movement of water's
oxygen atom. Water molecules in region A exhibit localized
movements near the apex of the Pt atom. In region B, water
molecules are constrained by the hydrogen bond network
formed by the relatively immobile water molecules in region A.
As we move to region C, these constraints begin to diminish,
with water in region L experiencing even less restriction in its
movements.

For the interface models, we use the MSD method to calcu-
late the diffusion coefficients and track the displacement every
10 ps over a 5 ns trajectory (Fig. 2C). Due to the isotropic
diffusion along the surfaces on Pt(111)/Pt(100) surfaces that are
different from the stepped Pt/water interface as we recently
observed,52 we choose to show the one-dimensional diffusion.
Here, we did not include the nite size correction as the
correction is relatively small and the comparison between
different types of water molecules makes the correction less
important. The MSDs of water molecules L obtained from
simulations in NVE ensembles for Pt(111) and Pt(100) are pre-
sented in Fig. 2C (see Fig. S17† for NVT results). We obtain the
diffusion coefficients from the slope of the MSD over time.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Here, we did not include the nite size correction as the target is
to compare the relative trend of the diffusion dynamics. Fig. 2D
shows the diffusion coefficients of water molecules in B, C,
and L regions. Compared to the diffusion coefficients of pure
bulk water molecules (Fig. 2A) at the respective temperature, the
1D diffusion coefficients of water L along the xy plane parallel to
the Pt surface are faster by about 0.2/0.6/0.9 × 10−5 cm2 s−1 at
270/302/337 K, which is also observed in a previous study53 and
we attribute this difference to the connement of the interfacial
water molecules. Moving from region L to C and B (Fig. 2D), we
observe a decrease in diffusion coefficients, with water B
exhibiting nearly half the diffusion coefficient of water L.
Taking the deviation into consideration, the diffusion coeffi-
cient difference between the Pt(111) and Pt(100) interfaces is
mild. This trend aligns with observations on copper single
crystal surfaces.53 The distributions of diffusion coefficients are
further detailed in Fig. S9.†
3.4 Hydrogen-bond and reorientation dynamics

The hydrogen-bond (HB) geometry formed between two water
molecules is depicted in Fig. 3A, with dOO set at 3.2 Å and q at
30° for stable hydrogen bonds. We dene a correlation function
for hydrogen bonds (see the Computational details section) in
specic regions, which tracks the duration of stable hydrogen
bonds. This allows us to study the dynamics of hydrogen
bonding within these regions. We then t this correlation
function using two exponential functions (Fig. S10†) to obtain
the timescales associated with hydrogen bond changes as sug-
gested by previous studies of bulk water molecules.54,55 In this
context, the mean and deviation values for the slow timescale
are presented in the main text, while the results for the fast
timescale can be referenced in Fig. S11.† In Fig. 3B, it is evident
that the HB lifetime of pure bulk water increases from 2.4/6.6 ps
at 337 and 302 K to 31.2 picoseconds at 270 K. A prior AIMD
simulation of pure bulk water at 298 K, utilizing revised PBE
with dispersion correction, determined a slow lifetime of
approximately 18 ps (with dOO set at 3.4 Å).55 Moreover, an AIMD
simulation at the coupled cluster level with an aug-cc-pVDZ
basis set of pure water molecules suggested a slow hydrogen
bond lifetime of 5.11 ps at 300 K.54 The choice of parameters to
dene hydrogen bonds and time intervals to do correlation
function analysis as well as the function forms to t the life-
times may affect the results in a minor way. The discrepancies
between the revised PBE with dispersion correction and PBE-D3
suggest that these two functionals generally predict stronger
hydrogen bonds than observed experimentally, leading to
overestimation of their lifetimes. Neither functional matches
the experimental results as well as high-level electronic theo-
ries. The tted lifetime difference between bulk water and
water L is minimal at both 337 K and 302 K. To better converge
the analysis of the dynamics, we run 20 ns simulations at 270 K
for each model in the NVE ensemble. The mean slow lifetime of
water L in the Pt(100)/water model is approximately 10 ps
shorter than that of bulk water. In the Pt(111)/water model, it is
about 10 ps longer than that of bulk water. We attribute the
difference in lifetime values observed across different models
Chem. Sci., 2025, 16, 2325–2334 | 2329
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Fig. 3 (A) Hydrogen bond correlation function.CHB(t) represents the hydrogen bond correlation function for watermolecules in specific regions.
The inset figure defines hydrogen bonds using the distance between two oxygen atoms and the angle between HO and OO0. The distance is set
to 3.2 Å and the angle to 30°. (B–D) The fitted lifetime of the slow hydrogen bond dynamics of water L, AB, and C. See NVT results in Fig. S18.† (E)
The joint probability distribution of finding an O–H–O0 geometry with a given n–q configuration for water molecules. Here, n is the difference
between the distance of OH and HO0. q is defined as the angle betweenOH andOO0. Arrows are used to point to the stable/metastable geometry
for a, b, and c. For the scale bar, P denotes the frequency count, and Pmax represents the maximum frequency count of a given O–H–O0

geometry. P/Pmax denotes the normalized probability distribution. (F) The difference between the normalized joint probability of water AB and L
at 387 K. Arrows are used to indicate the main geometry difference at the interface. (G) The radial distribution function (RDF) for O–O of
interfacial water molecules at 337 K and water L at 270/302/337 K. The experimental data is reproduced with permission from ref. 58.
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and ensembles to the water exchange dynamics at the inter-
faces. As shown in Table S3,† we track the hydrogen bond in the
water L region by about 200 ps at 270 K, during which water
molecules can leave the L region. This incorporates the
hydrogen bond dynamics of interfacial water molecules into the
tted lifetime of water L. Interfacial water molecules in region
AB (Fig. 3C) exhibit a longer HB lifetime, while those in region C
(Fig. 3D) possess a lifetime comparable to those in region L at
the respective temperatures. This suggests an exchange of water
molecules between regions L and C. The observation that
interfacial water molecules possess a longer HB lifetime aligns
with the trend that interfacial water molecules exhibit lower
diffusion coefficients.

To further investigate the trend of longer lifetimes observed
for interfacial water molecules, we analyzed the joint probability
distribution of the O–H–O0 geometry. As dened in the caption
of Fig. 3, a more positive value of n in the O–H–O0 geometry
suggests a stronger hydrogen bond. Fig. 3E illustrates three
geometry domains (a), (b), and (c), indicated by arrows. In
domain (a), cos q is nearly 1.0 and n is close to −1.0 Å (Fig.
S12A†), suggesting a strong hydrogen bond. In domain (b), cos q
is close to 0.60 and n is close to −3.60 Å. This geometry does not
correspond to a stable hydrogen bond between the observed
donor and acceptor water molecules (Fig. S12B†). However,
these donor water molecules may form hydrogen bonds with
other surrounding water molecules. For geometry domain (c),
the values of cos q and n are approximately −0.40 and −2.20 Å,
respectively.56 This hydrogen bond geometry involves donor
water molecules (O) that accept hydrogen from dened acceptor
water molecules (O0), but do not donate hydrogen to them (Fig.
S12C†). An analysis of the disparity in joint probability between
2330 | Chem. Sci., 2025, 16, 2325–2334
water molecules in the bulk and interface regions (Fig. 3F)
reveals that hydrogen bonds in the interface (green) exhibit
a more positive n compared to those in the bulk region (purple).
This observation is supported by the radial distribution func-
tion (RDF) of O–O, where the hydrogen bonds in the AB region
are approximately 0.1 Å shorter than those in the L region
(Fig. 3G). These ndings highlight the distinct characteristics of
interfacial water molecules: stronger hydrogen bonds with
longer lifetimes, and lower diffusion coefficients. It should be
further noted that PBE-D3 calculations predict a shorter O–O
RDF peak compared to experimental observations.57 By raising
the simulated temperature by 50 K, a closer alignment of the
peak position and height in the simulation results with the
experimental data is achieved.58

The reorientation of water molecules is intricately linked to
the dynamic rearrangement and restructuring of the hydrogen
bond (HB) network.59 Studies have demonstrated that rotational
anisotropy is directly related to the second-order rotational
autocorrelation function of the transition dipole moment of
excited molecules.31 To assess the reorientation dynamics at the
interface, we analyzed the second Legendre polynomials of the
correlation function associated with the water bisector, which
closely aligns with the direction of the dipole moment.32 The
same trajectory employed for the analysis of hydrogen bond
dynamics was utilized to study the reorientation dynamics.
Subsequently, a two-exponential form was employed to t the
correlation functions for water A, B, C, and L for Pt(100)/water
and Pt(111)/water interfaces. Fig. 4A illustrates the slow life-
time of pure bulk water (blue) and water L for the reorientation
dynamics as determined by MLMD (see Fig. S13† for a fast
lifetime). Compared to pure bulk water (Fig. 4A, green, also
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The fitted lifetime for water bisector reorientation dynamics.
Here only the slow lifetimes are shown. See Fig. S13† for the fast
lifetimes. (A) Water L at Pt(100)/water and Pt(111)/water interfaces and
pure bulk water molecules (green). (B) Water A at the interfaces. (C)
Water B at the interfaces. (D) Water C at the interfaces.
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shown in Fig. 2A, orange), the reorientation dynamics of water L
exhibit a slower rate at 270 K. The lifetime of water L is
approximately 10–15 ps, about 5 ps slower than that of bulk
water at the Pt(111)/water and Pt(100)/water interfaces. The
deviation between NVE and NVT results is approximately 5 ps
(see Fig. S19† for NVT results). As with hydrogen bond
dynamics, this difference is likely attributable to water exchange
dynamics and the time interval used for reorientation correla-
tion function analysis. At the other two temperatures, the life-
time difference between water L and pure bulk water is minor,
a trend also observed for hydrogen bond dynamics and diffu-
sion dynamics. This minor difference may be attributed to the
time interval used for correlation function analysis (Table S3,†
60 ps at 302 K and 20 ps at 337 K), which is short enough to be
mildly affected by water exchange dynamics. Similar to
hydrogen bond lifetime, the reorientation lifetime progressively
increases from water L to B and A (Fig. 4B–D). Conversely, water
C exhibits a slightly faster reorientation rate compared to other
regions. The results presented herein contrast with those re-
ported by Limmer et al.,17 who suggest that the reorientation
dynamics timescale at the interface is signicantly slower than
the characteristic relaxation time for bulk water.
Fig. 5 (A) The distribution of the residence time for the individual
water molecule. (B) The pair correlation function of water molecules.
Here, the referenced oxygen atoms of water molecules are those just
before desorption occurs. The observed O0 of water molecules are
those at the same snapshot but desorb within 10 ps. (C) The water flux
correlation function for water AB at 302/337 K for Pt(100) and Pt(111).
(D) The slope of the flux correlation functions over time. (E) The
schematic representation of the water exchange mechanism. For
clarity, the vacant sites that can be occupied by the surrounding water
molecules are not shown.
3.5 Water exchange dynamics and mechanism

Following a comprehensive benchmark comparison of the
temperature-dependent dynamic properties with the experi-
mentally observed dynamics of bulk water, a closer alignment
was observed upon increasing the simulated temperature by 50
K. This adjustment will be considered in our investigation of
water exchange dynamics.

To study the residence dynamics and avoid the inclusion of
water molecules that are at the boundary of different adsorption
peaks, we use the middle vertical distance between the peaks
and valleys of the oxygen density proles. Specically, we
designate the region 1.8 to 2.45 Å from the Pt surface as the
© 2025 The Author(s). Published by the Royal Society of Chemistry
stable adsorbed region for water A, and 2.9 to 3.75 Å for water B.
The collective set of adsorbed water molecules is denoted as AB.
Additionally, we dene the non-adsorbed state as the region
spanning 5.2 to 12.75 Å away from the Pt surface, which allows
us to examine water exchange dynamics with the adsorbed
state. This strategy is also used by Natarajan and Behler.53 The
aforementioned classication permits the investigation of both
the residence time of all adsorbed water molecules and the
residence time of individual water molecules within the
adsorbed layer (Fig. 5A). This distribution encompasses all
residence times of individual water molecules. Here, we denote
the residence time of all adsorbed water molecules as R and the
residence time of a single individual water molecule as RS
(Table 1).

As shown in Table 1, the residence time for water A (sR) at
302/337 K is only on the order of tens of picoseconds for both
interfaces, indicating that water molecules in the A region
exhibit a high degree of exibility and readily depart from the
adsorbed layer. The timescales for water AB at 302/337 K are
signicantly faster than the residence times of adsorbed water
molecules at Pt(100)/water and Pt(111)/water interfaces ob-
tained from classical MD simulations60 at 298 K (ranging from
several to tens of nanoseconds)17,19 with high water coverage
Chem. Sci., 2025, 16, 2325–2334 | 2331
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Table 1 The residence time for all the adsorbed water molecules and
individual water molecules (sR for one exponential fit of water AB and
water A and sRS for the individual water molecules AB). For the resi-
dence time of individual water molecules, the residence times of
a single water molecule in the AB region were collected. This resulted
in a distribution of residence times, as shown in Fig. 5A. A single
exponential function was used to fit this distribution, yielding a char-
acteristic time representing the average residence time of individual
water molecules. Here, the temperatures have been adjusted based on
the benchmark comparison of water dynamics

Ensemble T (K)

sR (ps) sRS (ps)

AB A AB

Pt(100) NVT 302 208(19) 50(17) 74
337 90(8) 18(8) 42

NVE 302 224(16) 44(12) 79
337 99(7) 20(4) 45

Pt(111) NVT 302 240(20) 33(7) 112
337 107(10) 13(3) 55

NVE 302 251(21) 34(7) 128
337 106(13) 13(3) 60
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(larger than 85%). To facilitate comparison with the previous
MLMD study, we also tted the lifetime of water AB using two
exponential forms. At the Pt(111)/water interface, the slow
residence time at 302 K (352 K without adjustment) in this work
is approximately 20% (100 ps) faster than that obtained from
previous MLMD simulations at 350 K for the same interface,61

which may be related to the model difference (the inclusion/
exclusion of the liquid/vacuum interface, the cell size). It is
difficult to denitively exclude the possibility of both timescales
tted using different exponential forms based solely on resi-
dence dynamics analysis. However, further analysis of the water
ux correlation function, presented in the next section, indi-
cates that exchange processes associated with the slower time-
scale extracted from two exponential forms cease much earlier.
Therefore, we favor the timescale obtained from sR. If individual
water molecules resided in the adsorbed layer independently,
the overall residence time would be signicantly longer than the
residence time of individual water molecules. However, the
observed ratio between the residence time of individual water
molecules and the residence time (sR) of water AB is only 2–3.
This suggests that when an individual water molecule departs
from the adsorbed layer, its departure inuences the residence
times of other water molecules, effectively reducing the overall
residence time of the adsorbed water molecules.

To investigate the spatial correlation of exchange events, we
examined the RDF of adsorbed water molecules. The reference
water molecule is the rst to desorb, while the observed water
molecules are those desorbing shortly aer the initial event. We
scrutinized the nal snapshot just before the rst desorption
transpires, testing periods of 5/10 ps to ensure consistency (Fig.
S14†). The results remained unaffected by the choice of period.
Fig. 5B demonstrates that the RDF exhibits a peak at a pair
distance of approximately 2.7 Å, corresponding predominantly
to the rst solvation shell of water molecules within the
adsorbed layer. When an adsorbed water molecule breaks free
2332 | Chem. Sci., 2025, 16, 2325–2334
from the solvation shell at the adsorbed layer, the original
hydrogen bond network is broken. Consequently, the
surrounding adsorbed water molecules are afforded a height-
ened likelihood of exchanging with non-adsorbed water. This
spatial correlation gradually diminishes beyond 2.7 Å and
becomes less pronounced at distances exceeding 10 Å.

To investigate the temporal correlation during the exchange
process, we employed the ux correlation function as outlined
in eqn (6) in the method section. The rapid exchange between
water A and B (Fig. S15†) aligns with their respective residence
times. The correlation results for the exchange between water
AB and non-adsorbed water molecules are illustrated in Fig. 5C.
Fig. 5D displays the slope of this ux correlation function over
time, reecting the rate of water exchange. When the exchange
rate decays to zero, all adsorbed water molecules no longer
reside in the adsorbed layer. Notably, the exchange rate
demonstrates an initial increase within the rst 5–10 ps, sug-
gesting the efficacy of correlation at this timescale.

To provide a concise overview of the water exchange process,
we propose a three-stage model based on the desorption of all
initially adsorbed water molecules as shown in Fig. 5E.

Pre-desorption stage: prior to the initiation of the exchange
process (Fig. S16B†), the hydrogen bond network evolves, and
local adsorbed water molecules lose one or two hydrogen bonds
(Fig. S16C†). This loss of hydrogen bonds results in faster
instantaneous water diffusion (Fig. S16D†).

Acceleration stage: following the initiation of the rst
desorption event, the local hydrogen-bond environment is dis-
torted, signicantly increasing the likelihood of desorption for
adjacent adsorbed water molecules. This distortion triggers
a chain reaction of successive desorption events, driven by both
spatial and temporal correlations. It is important to note that
the relatively low coverage of A (0.15 ML) and AB (0.58/0.71 ML
for Pt(111) and Pt(100)) means that space for incoming water
molecules to adsorb is not a limiting factor, in contrast to
classical MD simulations.19

Post-desorption stage: approximately 10 ps into this stage,
a signicant fraction of the initially adsorbed water molecules
have transitioned to the bulk region. The remaining adsorbed
water molecules are isolated within their new local hydrogen
bond environments. This isolation results in a diminishing of
spatial and temporal correlations, leading to a gradual decline
in the exchange rate until it eventually halts.

4 Conclusions

In conclusion, we systematically investigated the water
exchange dynamics at the Pt(100) and Pt(111) water interfaces
using MLMD simulations. Increasing the MD temperature by
approximately 50 ± 10 K aligned the PBE-D3 predictions of
water dynamics with experimental observations of diffusion
and reorientation dynamics. We determined that the timescales
for water exchange dynamics are around several hundred
picoseconds (tens of picoseconds for water exchange between A
and B) at the experimental temperatures of 337/302 K. These
timescales suggest that water exchange dynamics could inu-
ence reaction mechanisms, particularly when water molecules
© 2025 The Author(s). Published by the Royal Society of Chemistry
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act as reacting species. We also found that water exchange is
expedited by the correlation of desorption events, particularly
within the rst solvation shell of water molecules and during
the rst few picoseconds. This research provides valuable
insights into the water exchange dynamics at solid/liquid
interfaces.
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