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reaction conditions with label
ranking†

Eunjae Shim, a Ambuj Tewari, bc Tim Cernak ad and Paul M. Zimmerman *a

Pinpointing effective reaction conditions can be challenging, even for reactions with significant precedent.

Herein, models that rank reaction conditions are introduced as a conceptually new means for prioritizing

experiments, distinct from the mainstream approach of yield regression. Specifically, label ranking, which

operates using input features only from substrates, will be shown to better generalize to new substrates

than prior models. Evaluation on practical reaction condition selection scenarios – choosing from either

4 or 18 conditions and datasets with or without missing reactions – demonstrates label ranking's utility.

Ranking aggregation through Borda's method and relative simplicity are key features of label ranking to

achieve consistent high performance.
Introduction

Choosing reaction conditions is a routine yet important task for
organic chemists.1 This task is non-trivial, especially for reac-
tions that require different conditions for different
substrates.2–6 The literature, user guides,7,8 or advice from
experienced chemists can help shortlist conditions. Being able
to narrow down the possibilities further to an even smaller
number (k) of the most promising experiments would be prac-
tically useful (Fig. 1A).7,8 The key to successful reaction condi-
tion prediction therefore is to select the k-best conditions,
which amounts to a ranking problem.9,10

Machine learning (ML) has demonstrated promise for deci-
sion making in organic synthesis.11–16 Most ML approaches to
prioritizing reaction conditions17 have focused on quantifying
yield or selectivity.18–20 For example, yield is modeled as a func-
tion of substrates and reagents using multivariate regression
techniques: Y = f(S,C), where Y is predicted yield, and S and C
denote substrate and reaction condition descriptors, respec-
tively (Fig. 1B). While viable, this approach does not directly
model the primary goal – how reaction conditions perform
relatively to each other – and success highly depends on the
regressor's precision. Furthermore, yield predictions involving
unseen substrates can be unreliable, resulting in errors of >15%
even with dense datasets.21,22 Alternative, simpler strategies
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could generalize better and improve ML's utility in the everyday
problem of reaction condition selection.23,24

An intriguing alternative idea is to rank reaction conditions
from a predened list of conditions using only substrate features,
i.e., C= g(S) (Fig. 1C), which would reducemodel complexity (g(S)
is simpler than f(S,C)). Classication algorithms can in principle
achieve this goal by treating the top-k reaction conditions for
each training substrate as positive labels. However, in the typical
scenario of sparsely labeled training datasets, substrates will have
missing reaction conditions and the classier may miss the top-k
conditions. A classier's practical utility will therefore be
diminished in proportion to the number of missing datapoints.
Alternatively to classiers, label ranking (LR) is another strategy
in the form C = g(S) that outputs rankings of candidate reaction
conditions (see Label ranking algorithms)9,25–28 and is compatible
with incomplete datasets. By reducing the intricacies involved
with regressors and the demand for complete datasets compared
to classiers, LR could provide a practical tool for predicting
reaction conditions with small datasets.

LR therefore is a novel strategy that could facilitate experi-
mental campaigns by prioritizing effective reaction conditions
without the need for extensive combinatorial datasets. Accord-
ingly, we evaluate the utility of LR models against regressors
and classiers for selecting top reaction conditions from
a larger, pre-selected list of possibilities. Relatively small data-
sets of synthetically important reactions are considered,
including cases with missing reactions.
Label ranking algorithms

LR refers to a class of ML algorithms that predicts rank across
a predened set of labels (reaction conditions) given features of
an example (substrate). LR is distinct from the standard data
science problems of classication and regression yet sits
conceptually between the two. Binary classiers predict from
Chem. Sci., 2025, 16, 4109–4118 | 4109
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Fig. 1 (A) Reaction condition prediction from a predefined set. (B)
Currently, regressors are used to select reaction conditions. (C) This
work approaches the problem differently, by ranking the reaction
condition candidates using label ranking models.
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two choices – yes or no – while predictions from regressors can
be any number. LR, on the other hand, needs to choose from all
possible orderings amongst a nite set of labels. As this output
space is discrete, it is simpler than regression. Simultaneously,
with more possible outcomes than classication, LR can
capture more nuanced relationships.27

One of the two main components of LR is learning from
substrates using ML models. For example, ranking by pairwise
comparison (RPC, Fig. 2A) learns to predict higher yielding
Fig. 2 (A)–(C) Label ranking algorithms considered in this study. (D) Bor

4110 | Chem. Sci., 2025, 16, 4109–4118
conditions for a substrate across all possible pairs of condi-
tions.25 RPC employs probability-based classiers such as logistic
regressors or random forests (in this work random forests are
used, see Table S2†) to compare the pairs. Another ML technique
involves instance-based probabilistic models (IBM27 or IBPL,28

Fig. 2B), which are related to nearest-neighbor models. These
identify substrates from the training data which are most similar
to the query, assuming substrate feature similarity implies reac-
tivity similarity. Alternatively, label ranking random forest (LRRF,
Fig. 2C) utilizes random forest classiers to predict the highest
yielding condition.26 For any choice of LR algorithm, a new
reactant enters the model and produces multiple pieces of
information (pairwise preferences in reaction conditions,
multiple neighbors, and training instances with the same best
conditions for RPC, instance-based models and LRRF, respec-
tively). In order to output a single prediction, these choices need
to be combined into a single ranking, which is achieved in the
second component of LR algorithms.

LR's second component aggregates the multiple pieces of
information into a ranking of reaction conditions. Despite the
task's simplicity, there is not a universal strategy for producing
an optimal ranking. Among numerous approximations, Borda's
method (Fig. 2D) has oen been employed in LR because of its
efficiency, availability of a modied version that deals with
missing data,29 and competitive performance against other
aggregation schemes.30 Borda's method, used in LRRF, assigns
a score to every reaction condition proportional to its place-
ment. Then, the nal output ranking is determined by sorting
the total score each condition collects across the multiple
rankings. A variant of this process is used in RPC, where scores
are assigned based on the probability of one condition to be
preferred over another. IBM and IBPL utilize probabilistic
models to compute the most likely ranking given the rankings
of nearest neighbors. Therefore, LR is a modular framework
where different models and aggregation strategies can be
combined to predict rankings between reaction conditions.

LR algorithms are structured such that predictions involving
all reaction conditions can be generated even if training data is
missing for some substrates. This is because a model can ll in
da's method, a rank aggregation method used in LRRF.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the gap by applying what has been learned from the labeled data
(RPC, IBM and IBPL), or imputing a score that corresponds to
the middle rank ((total number of conditions + 1)/2) in place of
the empty entries during aggregation (LRRF). This suggests LR
models can be trained in a data efficient manner,31 which would
be practical for situations where all possible substrate–reaction
condition pairs have not been evaluated. To evaluate LR's
utility, various well-structured, synthetically-relevant reaction
datasets were collected from the literature.
Fig. 3 Datasets of this study. Bold blue text denotes the number of
substrates. Bold green text shows the number of reaction condition
candidates.
Datasets

The reaction condition prediction problem appears in different
chemical contexts. For well-known reactions, the list of condi-
tions to choose from is relatively small. On the other hand,
relatively complex reactions involve more choices and more
experiments must be conducted to secure hits for new
substrates. Being able to include the best reaction condition in
these situations would facilitate experiment planning and
improve reaction outcome. Accordingly, to evaluate viable
algorithms in both situations, the following reaction datasets
were selected. The datasets were originally curated for the
purpose of either: (1) Developing reaction outcome prediction
strategies, or (2) Maximizing the chance of obtaining high yields
for a variety of substrates.

Datasets with a small set of reaction conditions. Introduc-
tion of a uorine to a molecule can positively impact its phys-
icochemical properties. As hydroxy groups are easily accessible,
deoxyuorination is a useful transformation. To evaluate the
utility of regressors in yield prediction, a deoxyuorination
dataset comprising 32 structurally diverse alcohol substrates
subjected to four bases and ve sulfonyl uorides was previ-
ously curated (Fig. 3A).20 Out of the 20 possible reagent
combinations, choosing the most reactive sulfonyl uoride with
the four bases includes the top-1 reaction condition >50% of the
time. To make this dataset a non-trivial example, ve equally
split subsets were considered, predicting the best base for
a given sulfonyl uoride.

C–heteroatom coupling reactions play an important role in
synthesizing pharmaceutically relevant molecules. Despite the
plethora of mechanistic studies and catalyst development for
palladium-catalyzed reactions, determining an effective reac-
tion condition is still considered difficult for new substrate
pairs. One high-throughput experimentation (HTE) campaign
screened four promising reaction conditions for various classes
of nucleophiles to determine the highest yielding one
(Fig. 3B).32 Specically, three sets of nitrogen nucleophiles – 61
primary alkyl amines, 32 sulfonamides and 24 amides – along
with a set of 19 thiol nucleophiles, each subjected to different
sets of four reaction conditions, were considered.

In another study, C–N coupling reactions with four distinct
catalytic systems (Cu, Pd, Ir/Ni- and Ru/Ni-photoredox) were
compared.33 Two sets of >160 substrate pairs were subject to the
four reaction conditions (Fig. 3C and D). Typical of HTE
campaigns surveying numerous substrates, raw analytical
measurements are reported because measuring calibration
curves for each product is impractical.30
© 2025 The Author(s). Published by the Royal Society of Chemistry
Datasets with more reaction conditions. The copper-
catalyzed Ullmann C–N coupling reaction can be a useful
alternative to the Pd-catalyzed counterpart. However, effective
recipes have been reported on a case-by-case manner and the
reaction mechanism remains elusive. It is therefore challenging
to predict suitable reaction conditions for different substrates.
As an effort to gain predictivity in this problem, a recent study
curated a dataset of 28 substrate pairs subject to 18 ligands
(Fig. 3E).17

Three other reaction datasets – nickel-photoredox catalyzed
C–N coupling of complex aryl halides,34 iridium catalyzed C–H
borylation35 and nickel-catalyzed borylation of aryl (pseudo)
halides36 – with >10 reaction conditions were also initially
considered. However, models failed to learn meaningful rela-
tionships between reactions and their outcomes as conrmed
with adversarial controls (see ESI Section 2†). These datasets
were therefore removed from subsequent analyses.

Datasets considered in this study cover synthetically impor-
tant transformations and span a range of sizes, from a dozen to
a few hundred. Datasets surveying different numbers of reac-
tion conditions will put LR to the test under diverse chemical
Chem. Sci., 2025, 16, 4109–4118 | 4111
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contexts. Moreover, variables in the reaction conditions vary
from a single component (Fig. 3A: bases, Fig. 3E: ligands) to
combinations of two (Fig. 3B: catalyst and base) and even
arbitrary combinations (Fig. 3C and D).

Metrics

There is no unique way to access the quality of predicted ranks
between reaction conditions. For example, top-1 accuracy
measures how well the highest yielding condition is ranked as
best by the model. It is also important, however, to understand
the quality of choices when the best case does not make it in the
top-k suggestions. In this context, mean reciprocal rank (MRR)
complements the top-1 accuracy by calculating the reciprocal of
the ground-truth rank, including all sub-optimal cases (e.g., if
the top prediction from RPC is actually the second best, its score
will be 0.5). To further promote the practicality of MRR, reac-
tions that failed to give product were further penalized to
a score of 0.04 since obtaining sub-optimal yields is preferred to
a yield of 0%. With MRR, random selection from four possi-
bilities corresponds to a score of 0.52, which is the average of 1,
1
2, 1/3 and 1

4. A perfect prediction results in a top score of 1.00
while the worst possible score is 0.25. Finally, the Kendall-tau
coefficient provides a holistic assessment of the full ranking
between all reaction condition candidates. Predictions that
perfectly rank all reaction conditions give a value of 1 while
random guesses correspond to 0 and the lowest possible score is
−1. As MRR best describes the practical utility of a model's top
suggestions, MRR is mainly used to discuss model perfor-
mances. Top-1 accuracy scores and Kendall-tau coefficients are
presented in the ESI.† All reported scores are averages across
cross-validation (CV) folds (see Sections S1.2.1 or S2.2† for
details).

Predicting the highest yielding reaction condition from four
candidates

Using fully combinatorial datasets. The initial investigation
focused on comparing the utility of different algorithms for
choosing the top-yielding condition from four candidates (data-
sets in Fig. 3A–D). For models based on random forests
(regressor, classier, LRRF and RPC), reactions were represented
with physical descriptors (see ESI Page S4†). In contrast, because
nearest neighbors computed from raw physical descriptors may
not be as meaningful for deducing reactivity similarity, count-
based Morgan ngerprints of 1024 bits and radius of 3 were
used for instance-based models (KNN, IBM and IBPL; see Fig. S7
and Table S3† for adversarial controls37,38). The nal recom-
mended reaction condition was selected as follows. For each test
substrate, RFR predicted yields for every reaction condition
candidate and the one with the highest predicted value was used.
On the other hand, for RFC, a multi-class classication problem
was formulated. Amulti-class RFC gives a single prediction out of
1–4, which condition will give highest yield, given a substrate.
The predicted class for each substrate was selected. For LR, the
condition at the highest rank was chosen. The baseline corre-
sponds to singly selecting the reaction condition that gives the
highest average yield across the training data, which is expected
4112 | Chem. Sci., 2025, 16, 4109–4118
to fall short for transformations that require different conditions
for different substrates.

The mean reciprocal rank (MRR) achieved by each model
with each dataset is shown in Fig. 4A (top-1 accuracy scores and
Kendall-tau coefficients can be found in Fig. S5 and S6†). The
rst ve rows correspond to the deoxyuorination dataset
depicted in Fig. 3A. The baseline struggles to make meaningful
suggestions since the best performing bases vary by substrate.
The random forest regressor (RFR) outperforms the baseline in
four cases, and the random forest classier (RFC) outperforms
RFR in three cases (rows 2–4). Two LR algorithms based on
random forests – LRRF and RPC – outperform RFR in three
cases (rows 2–4). RPC, in particular, achieves higher MRR than
RFC in four datasets (rows 1–3 and 5). Instance-based models
show relatively lower performances, rarely outperforming RFR.
These results suggest that while around 100 fully combinatorial
training datapoints may be enough to train effective regressors,
both classiers and LR can be useful alternatives for choosing
good reaction conditions.

The next four rows of Fig. 4A show model performances on
the C–heteroatom coupling reactions with four nucleophiles
(Fig. 3B). As small datasets with different conditions being
preferred for different substrates, similar trends are observed
with the rst ve rows. The baseline shows mediocre perfor-
mance compared to other strategies. RFR returned mixed
results, coming at 3rd or 4th place for nucleophiles other than
sulfonamide, where it came on top. RFC returned higher MRR
than RFR only for amides with a relatively small improvement.
LRRF and RPC performed well overall, being within the top-2
for three and two datasets, respectively. Instance-based
models, on the other hand, showed generally poor perfor-
mance, although IBM scored decently for the amide dataset.
These results imply effective reaction conditions can be selected
in the low-data regime (as few as 19 substrates), with LR models
showing high placements.

The last two rows of Fig. 4A assess models on datasets in
Fig. 3C and D. These datasets are distinctly larger than the
previous datasets, up to nine times the size (171 substrates). For
the amine dataset, the baseline performs well. All RF-based
models struggled to score a meaningfully higher score, being
outperformed by KNN and IBM. In contrast, the baseline selec-
tion criteria performed the worst on the bromide dataset. While
RFR outperformed it, it only matched KNN in terms of perfor-
mance. LRRF overall made best recommendations with IBM,
RFC, and RPC with slightly lower scores. In all, while instance-
based models seem to perform well with larger datasets, differ-
ences in performance across all models were relatively small.

Across all datasets evaluated, there was no consistently
superior algorithm. While RFR returned a higher average rank
compared to all instance-based models, it was outperformed by
alternative models. LRRF was the overall top performant, fol-
lowed by RPC and RFC, supporting them as useful strategies for
selecting the best condition from four candidates when a fully
combinatorial dataset is in hand. Although these conclusions
from evaluating model performance with MRR are useful,
analyses in the subsequent two paragraphs show how these
scores translate to an experimental campaign.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (A) Model performance evaluated by average MRR across CV
folds. Vertical lines classify algorithm types (baseline, regressor, clas-
sifiers and LR, from left to right). Green and bold black numbers
correspond to the top and second-best performants in each dataset,
respectively. (B and C) Number of pairs of ranks of conditions pre-
dicted by two models with grey squares in (A) rows 2 and 9, respec-
tively. (D and E) Resulting yield difference for cases where different
conditions were predicted. Green and blue bars correspond to
substrates where RPC or LRRF and RFR made better choices,
respectively. (F) Examples of different predictions from (D).
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Fig. 4B and C compare two pairs of models (RFR vs. RPC and
LRRF, respectively), both differing in MRR by 0.1. To under-
stand what this means for predicting the highest-yielding
© 2025 The Author(s). Published by the Royal Society of Chemistry
conditions, the quality of recommendations was compared.
Along the diagonals are the number of substrates where the two
models predicted the same reaction conditions. Off-diagonals
correspond to cases where RFR predicted better conditions
than the other model (below diagonal) or worse (above diag-
onal). In both datasets, conditions recommended by RFR and
the other model were simultaneously among the better half
(bottom right quadrants) for ∼65% of substrates. The alternate
model, however, suggested better reaction conditions than RFR
more frequently (10 vs. 3 and 4 vs. 1 in Fig. 4B and C, respec-
tively). Among them are cases where RFR predicted one of the
two lower yielding reaction conditions, while RPC or LRRF
identied the best (ve substrates in Fig. 4B and one in Fig. 4C).
Predictions of lower rank would result in lower yields, so this
aspect was quantied next.

Model-specic differences in yield for individual substrates
are shown in Fig. 4D and E. The blue and green bars correspond
to the yield benet and detriment of using RFR over the other
model. These comparisons reveal specic substrate(s) with RPC
and LRRF achieving nearly 20% and 50% higher yield over RFR,
respectively (lemost green bar). For the remaining substrates
in Fig. 4D, the benet is less than 10%. When RFR suggested
a better condition, a similar pattern was observed with the
highest benet (rightmost blue bar) being smaller. Although
detailed distributions differ by datasets, these observations
generally hold for comparisons between RF-based models
(Fig. S7–S17†). As such, in cases where cumulative benet
across multiple substrates is important, higher-performing LR
algorithms should be prioritized.

Lastly, specic predictions with largest yield differences in
Fig. 4D are shown in Fig. 4F. When pyridine-2-sulfonyl uoride
is the uorination reagent, RPC and RFR suggested one of the
bulkier bases, presumably recognizing the major structural
aspect (sterical accessibility) of the substrates. The models did
not, however, uniformly capture the more subtle feature
(benzylic 17 vs. allylic 18).

Using incomplete datasets. Although possession of fully
combinatorial datasets is advantageous in model building,
sparsely populated datasets aremore common. Literature reports
are representative sources of such data where arbitrarily selected
substrates are evaluated under different reaction conditions.
Under such sparsity – substrates being tested with as low as two
reaction conditions – learning relative preferences would bemore
practical than the alternatives: predicting specic yield values, or
classication which requires knowing the positive label. There-
fore, the utility of LR against typical classiers and regressors
under this situation was evaluated next. To simulate missing
data, results for two out of four reaction conditions for every
reactant were randomly masked in the training data (see Section
S1.3† for results when one reaction is masked). For each CV fold,
10 different sets of data removals were used. Average MRR values
across all evaluations were measured (see Fig. S22 and S23† for
top-1 accuracy scores and Kendall-tau coefficients).

Overall, LRRF returned the highest average rank across all
datasets, followed by RFR and RPC, which differed by small
amounts. LR algorithms particularly performed well on the rst
and last sets of evaluations (Fig. 5A rows 1–5 and 10–11),
Chem. Sci., 2025, 16, 4109–4118 | 4113
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Fig. 5 (A) Model performance on datasets where each substrate is
missing 50% of reactions. Green and bold black numbers correspond
to the top and second-best performants in each dataset, respectively.
(B) Comparison of MRR degradation between models. Three datasets
with the largest detriment are shown. (C) Kernel density estimation
plots of standard deviation of MRR across data masks, collected across
CV folds and datasets.
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underperforming RFR in only two cases (rows 1 and 10). Other
than these two, LRRF was either the top (rows 2–5) or the
second-best performant (rows 1 and 11). RPC outperformed
LRRF in one case (row 11), although the difference in average
MRR was small (<0.016). Thus, LR remains an effective strategy
to select effective reaction conditions under low-data situations.

RFR shows performance comparable to LR with a high
average rank of 2.6 and being the top performant in ve cases
(Fig. 5A). A signicant portion of this overall rank stems from
the high placement with all of C–heteroatom coupling datasets
(rows 6–9) where an MRR difference of up to 0.051 is observed
compared to LR models. This consistency may be attributed to
these datasets' structure of the four reaction conditions which
are combinations of two catalysts and two bases. RFR can
leverage this toward predicting yields since reagent information
4114 | Chem. Sci., 2025, 16, 4109–4118
is included in the input unlike LR where the reagents are treated
as outputs that cannot share information with each other. As
such, RFR may be the algorithm to use over LR when the reac-
tion condition candidates are combinatorial in reagents,
particularly when a large portion of data is missing (when only
one reaction condition was masked, in two out of the four
datasets, LRRF showed higher MRR scores than RFR although
differences were small. See Fig. S19†).

Data sparsity presented a challenge for all models and thus
lower MRR than Fig. 4A are observed, up to a decrease of 0.15
MRR score (Fig. 5B). Most notable is the degradation of RFC's
performance from being comparable to LR with full datasets to
only slightly better than the baseline in terms of average rank
across incomplete datasets (3.6 vs. 3.9). This failure of RFC with
incomplete datasets is likely due to the ground-truth best
condition being part of the masked data. This causes the
positive labels to be marked with suboptimal conditions,
thwarting RFC's learning of the best one. Regressors, in
contrast, does not suffer from this problem as they are trained
on yields of each reaction, and thus are one of the two less-
degraded models in Fig. 5B (this observation holds in 8 out of
11 datasets, see Fig. S24†). Relative outcomes, which RPC learns
from (Fig. 2A), are ideally also not impacted by missing data-
points. However, with 50% of the data missing, the number of
examples to learn pairwise preferences from drops threefold (6
vs. 2) and can result in a relatively high performance degrada-
tion (Fig. 5B, le two columns). In comparison, although LRRF
is dependent on the ground-truth best condition due to the base
model being RFC, the impact on performance is mitigated
(Fig. 5B) by the ranking aggregations (LRRF's MRR degradation
is the lowest in 4 out of 11 datasets, see Fig. S24†).

The impact of missing data was further investigated by
a kernel estimate of the MRR distribution across the 10 dataset
masks (Fig. 5C, c.f. Fig. S26†). In both plots, RFC's distribution
of MRR values is larger than other algorithms, which is expected
from models trained on suboptimal labels. LRRF's distribu-
tions, while also larger overall than RFR and RPC, is notably on
the lower side compared to RFC, supporting Borda's aggrega-
tions mitigating prediction variance.

Altogether, LRRF presents effective ways for selecting high-
yielding reaction conditions from four choices regardless of
with and without missing data. This is in contrast to conven-
tional RFR and RFC, which fell relatively short under particular
scenarios – when the available datasets were fully combinatorial
and incomplete, respectively.
Predicting conditions from a larger number of possibilities

Dealing with relatively less studied transformations involves
conducting multiple reactions to search for the right condi-
tions. While this goal is shared with prior examples over
a focused set of possibilities, the larger number of reaction
conditions at play presents a challenge for regressors and
ranking algorithms alike. Accordingly, the study was extended
to evaluate algorithms on the Ullmann dataset with 18 ligands
(Fig. 3E; results using other datasets and adversarial control
studies are presented in Fig. S32–S36†). To simulate a practical
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc06728b


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 1
0:

40
:0

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
reaction condition search situation, we assumed about 25% of
the candidates can be tested. Accordingly, each model was
allowed to select four ligands for evaluation. While label
ranking algorithms and RFR were trained in the same manner
as the previous section, a multi-label RFC was used for selecting
multiple reaction conditions. In contrast to multi-class RFC that
learns to map a substrate to its best reaction condition, multi-
label RFC aims to connect the substrate to the top-k reaction
conditions simultaneously. To ensure four reaction conditions
are recommended, the top-4 reaction conditions with the
highest probability of returning positive labels were selected.
The top-1 accuracy and reciprocal ground-truth rank of the
highest yielding ligand selected by each model were computed
and averaged across CV folds (see Section S2.2† for details).

For this challenging dataset with different ligands returning
highest yields for different substrates, RFR was only comparable
Fig. 6 (A) Performance of each algorithm on the Ullmann dataset
evaluated by top-1 accuracy and MRR across CV folds. Green and bold
black numbers correspond to the top and second-best performants in
each dataset, respectively. (B) Dependence of the quality of LRRF's
prediction for each substrate pair (columns) on the number of training
substrates that share the best ligand (rows). (C) Predicted ranks of the
best ligand for each test substrate averaged across leaf nodes in LRRF's
base RFC are compared against ranks after the first Borda aggregation.
(D) Example with the largest yield difference between ligands pre-
dicted by RFR and LRRF.

© 2025 The Author(s). Published by the Royal Society of Chemistry
to the baseline (Fig. 6A; top-1 accuracy difference of 0.036
corresponds to one substrate out of 28; see Fig. S37 and S38† for
further analysis). In contrast, RF-based LR algorithms per-
formed well when searching amidst 18 possible ligands.
Particularly, LRRF's top-1 accuracy and MRR scores were higher
than RFR's by 0.150 and 0.172, respectively (Fig. 6A). Notably,
there were seven substrates for which LRRF identied the best
ligand while RFR could not, but none the other way round
(Fig. S39A†).

To provide insight into LRRF's performance, LRRF predic-
tions across all CV splits were interrogated. LRRF's predictions
include the highest yielding ligand when two or more examples
in the training set shared the same optimal ligand (Fig. 6C, rows
marked 2 and below; 18 of 19 examples). One might imagine
that LRRF's base RFC accurately identied these training
substrates and this was the origin of the good performance.
This is not the case, however, as the average of predictions from
each decision tree situate the best ligand at the fourth place or
lower (Fig. 6D, x-axis). Borda's aggregation improves the
placement of the desired ligand (Fig. 6D, markers all above grey
diagonal line), including a ligand with an average rank as low as
8 as one of the nal four recommendations (blue marker at the
le bottom of solid box in Fig. 6D). Combined, this suggests the
importance of Borda aggregation in LRRF, reinforcing the base
classier which may be insufficient on its own.

Specic examples were interrogated to gain further insight
into the differences between models. The reaction leading to 21
(Fig. 6D) showed the largest yield difference between the pre-
dicted best ligands (see Fig. S39A† for all yield differences when
best predicted ligands differed between LRRF and RFR, and
Fig. S39B† for the specic example where RFR's benet is
highest, by 7%). LRRF's prediction for coupling 19 and 20
included L5, the ground-truth best ligand, while RFR's best
performing ligand was L3, which is actually 4th best. This
difference occurs while L1, L2 and L4 overlap between the two
models' predictions. In fact, all predictions between RFR and
LRRF have at least two ligands overlap (Fig. S40†), yet this still
leads to a signicant difference in both top-1 accuracy and
MRR.

The more important consideration that needs to be made is
whether a sufficient number of substrates have been studied
compared to the number of reaction condition candidates. This
is because LR models require sufficient data to learn relation-
ships between substrates and relative reaction condition
performance. Here, while LR was shown useful on the Ullmann
dataset (which had 1.5× the number of reaction conditions of
substrates) it failed to meaningfully surpass adversarial controls
on aryl halide borylation datasets with a comparable substrate-
to-reaction condition ratio (Fig. S35 and 36†).

Discussion

Selecting the best reaction condition out of multiple candidates
is a problem chemists face every day. Although development of
generally applicable reaction conditions will mitigate this issue,
it accompanies signicant experimental exploration.12,39–41

When a dataset is already available, it is practical to leverage it
Chem. Sci., 2025, 16, 4109–4118 | 4115
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to downsize experiments for a specic substrate. The standard
practice is to choose conditions that give the best average
results—i.e., those that work well for a variety of substrates—
but many cases remain where this choice becomes limiting.
When a fully combinatorial dataset is in hand, a simple diag-
nosis can be done by counting the frequency of each condition
being the top performant. If the most frequent condition
accounts for less than half of the substrates in hand (which
roughly corresponds to MRR& 0.6), ML could be worthwhile to
consider.

Currently, the most straightforward way to go about tailoring
reaction conditions for new substrates is with regressors, by
predicting yields from each condition candidate. RFR is widely
used for this purpose, particularly on small datasets.13,20,42 For
the task of prioritizing the reactions to try for new substrates,
however, RFR was generally not effective. Even though predic-
tions were all made on reaction conditions that RFR has been
exposed to, precise differences between them were not accu-
rately modeled in small datasets with a few dozen substrates.

Reformulating the problem to predicting the top-k condi-
tions appears to us a more focused task than regression, and
likely to be more successful. Not only are reagent descriptors no
longer necessary, but also the goal becomes more tied to the
practical question of ‘what is the best condition for this
substrate?’. Among conventional ML models, classiers like
RFC have some efficacy, but herein RFC was only effective for
the easiest scenario involving fully combinatorial datasets. The
lack of the ability to cope with missing data and applicability to
situations with more choices leaves room for alternative
ranking strategies.

RF-based LR models consistently performed well in recom-
mending the highest yielding reaction condition across
different situations and datasets. LR was able to compete or
outperform RFR by learning how conditions compare for
different substrates. The aggregation of these multiple
comparisons empowers LRRF and RPC to cope with missing
data and prioritize useful conditions from a larger pool, even
when conventional models fall short. For sensitive trans-
formations like those studied here, high reactivity can only be
achieved with certain conditions compatible with the substrate.
In other words, substrates that have common high yielding
conditions likely share key features that affect reactivity. Among
LRRF and RPC, the assumption LRRF was developed upon –

substrates that share the best condition are likely to be similar
in the overall rank of conditions26 – makes chemical sense for
conditions that give good yield. As such, LRRF is well-posed for
reaction condition recommendation.

Conclusion

By learning relative performances between reaction conditions,
LR is a ML framework that is particularly well suited for pre-
dicting useful conditions for new substrates. Largely, LR was
able to prioritize higher yielding reaction conditions better than
RFR under a variety of situations. Particularly effective and
consistent was LRRF, a LR variant of RFC that outputs ranking
between reaction conditions from training substrates predicted
4116 | Chem. Sci., 2025, 16, 4109–4118
to share the best condition. Key features supporting LRRF's
performance were ranking aggregation (Borda's method) and its
low dimensionality, due to reaction conditions being the output
of the model, rather than part of its input. In all, the results of
this work suggest that LR should be more widely considered for
making decisions in organic synthesis.
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28 W. Cheng, K. Dembczyński and E. Hüllermeier, Label
Ranking Methods Based on the Plackett-Luce Model, Proc.
Int. Conf. Mach. Learn., 2010, vol. 27, pp. 215–222, DOI:
10.5555/3104322.3104351.

29 T. K. Ho, J. J. Hull and S. N. Srihari, Decision Combination in
Multiple Classier Systems, IEEE Trans. Pattern Anal. Mach.
Intell., 1994, 16, 66–75, DOI: 10.1109/34.273716.

30 H. Werbin-Or, L. Dery and E. Shmueli, Beyond Majority:
Label Ranking Ensembles Based on Voting Rules, Expert
Syst. Appl., 2019, 136, 50–61, DOI: 10.1016/
j.eswa.2019.06.022.

31 P. Raghavan, B. C. Haas, M. E. Ruos, J. Schleinitz,
A. G. Doyle, S. E. Reisman, M. S. Sigman and C. W. Coley,
Dataset Design for Building Models of Chemical Reactivity,
ACS Cent. Sci., 2023, 9, 2196–2204, DOI: 10.1021/
acscentsci.3c01163.

32 N. J. Gesmundo, B. Sauvagnat, P. J. Curran, M. P. Richards,
C. L. Andrews, P. J. Dandliker and T. Cernak, Nanoscale
Chem. Sci., 2025, 16, 4109–4118 | 4117

https://doi.org/10.1039/d1sc06932b
https://doi.org/10.1039/C0SC00331J
https://doi.org/10.1016/j.tet.2019.05.003
https://doi.org/10.4304/jcp.9.3.557-565
https://doi.org/10.1007/s10994-021-06122-3
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1038/s41586-024-07021-y
https://doi.org/10.1038/s41586-024-07021-y
https://doi.org/10.1126/science.aar5169
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1126/science.aau5631
https://doi.org/10.48550/arXiv.2205.14829
https://doi.org/10.1126/sciadv.adn3478
https://doi.org/10.1126/sciadv.adn3478
https://doi.org/10.1126/science.adg2114
https://doi.org/10.1126/science.adg2114
https://doi.org/10.26434/chemrxiv-2022-x694w
https://doi.org/10.1021/jacs.8b01523
https://doi.org/10.1021/acs.accounts.0c00770
https://doi.org/10.1021/acs.accounts.0c00770
https://doi.org/10.1038/s41467-023-39283-x
https://doi.org/10.1038/s41467-023-39283-x
https://doi.org/10.1021/acs.jcim.3c00577
https://doi.org/10.1002/wcms.1733
https://doi.org/10.1016/j.artint.2008.08.002
https://doi.org/10.1016/j.artint.2008.08.002
https://doi.org/10.1016/j.eswa.2018.06.036
https://doi.org/10.1016/j.eswa.2018.06.036
https://doi.org/10.1145/1553374.1553395
https://doi.org/10.1145/1553374.1553395
https://doi.org/10.5555/3104322.3104351
https://doi.org/10.1109/34.273716
https://doi.org/10.1016/j.eswa.2019.06.022
https://doi.org/10.1016/j.eswa.2019.06.022
https://doi.org/10.1021/acscentsci.3c01163
https://doi.org/10.1021/acscentsci.3c01163
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc06728b


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 1
0:

40
:0

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Synthesis and Affinity Ranking, Nature, 2018, 557, 228–232,
DOI: 10.1038/s41586-018-0056-8.

33 S. Lin, S. Dikler, W. D. Blincoe, R. D. Ferguson,
R. P. Sheridan, Z. Peng, D. V. Conway, K. Zawatzky,
H. Wang, T. Cernak, I. W. Davies, D. A. DiRocco, H. Sheng,
C. J. Welch and S. D. Dreher, Mapping the Dark Space of
Chemical Reactions with Extended Nanomole Synthesis
and MALDI-TOF MS, Science, 2018, 361, eaar6236, DOI:
10.1126/science.aar6236.

34 S. D. Dreher and S. W. Krska, Chemistry Informer Libraries:
Conception, Early Experience and Role in the Future of
Cheminformatics, Acc. Chem. Res., 2021, 54, 1586–1596,
DOI: 10.1021/acs.accounts.0c00760.

35 D. F. Nippa, K. Atz, R. Hohler, A. T. Müller, A. Marx,
C. Bartelmus, G. Wuitschik, I. Marzuoli, V. Jost, J. Wolfard,
M. Binder, A. F. Stepan, D. B. Konrad, U. Grether,
R. E. Martin and G. Schneider, Enabling Late-Stage Drug
Diversication by High-Throughput Experimentation with
Geometric Deep Learning, Nat. Chem., 2024, 16, 239–248,
DOI: 10.1038/s41557-023-01360-5.

36 J. M. Stevens, J. Li, E. M. Simmons, S. R. Wisniewski,
S. DiSomma, K. J. Fraunhoffer, P. Geng, B. Hao and
E. W. Jackson, Advancing Base Metal Catalysis Through
Data Science: Insight and Predictive Models for Ni-
Catalyzed Borylation Through Supervised Machine
Learning, Organometallics, 2022, 41, 1847–1864, DOI:
10.1021/acs.organomet.2c00089.
4118 | Chem. Sci., 2025, 16, 4109–4118
37 K. V. Chuang and M. J. Keiser, Adversarial Controls for
Scientic Machine Learning, ACS Chem. Biol., 2018, 13,
2819–2821, DOI: 10.1021/acschembio.8b00881.

38 J. A. Kammeraad, J. Goetz, E. A. Walker, A. Tewari and
P. M. Zimmerman, What Does the Machine Learn?
Knowledge Representations of Chemical Reactivity, J.
Chem. Inf. Model., 2020, 60, 1290–1301, DOI: 10.1021/
acs.jcim.9b00721.

39 J. Rein, S. Rozema, O. Langner, S. Bruno, M. Hardy, J. Siu,
B. Mercado, M. Sigman, S. Miller and S. Lin, Generality-
Oriented Optimization of Enantioselective Aminoxyl
Radical Catalysis, Science, 2023, 380, 706–712, DOI:
10.1126/science.adf6177.

40 C. C. Wagen, S. E. McMinn, E. E. Kwan and E. N. Jacobsen,
Screening for Generality in Asymmetric Catalysis, Nature,
2022, 610, 680–686, DOI: 10.1038/s41586-022-05263-2.

41 N. H. Angello, V. Rathore, W. Beker, A. Wołos, E. R. Jira,
R. Roszak, T. C. Wu, C. M. Schroeder, A. Aspuru-Guzik,
B. A. Grzybowski and M. D. Burke, Closed-Loop
Optimization of General Reaction Conditions for
Heteroaryl Suzuki-Miyaura Coupling, Science, 2022, 378,
399–405, DOI: 10.1126/science.adc8743.

42 J. Schleinitz, M. Langevin, Y. Smail, B. Wehnert, L. Grimaud
and R. Vuilleumier, Machine Learning Yield Prediction from
NiCOlit, a Small-Size Literature Data Set of Nickel Catalyzed
C–O Couplings, J. Am. Chem. Soc., 2022, 144, 14722–14730,
DOI: 10.1021/jacs.2c05302.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1038/s41586-018-0056-8
https://doi.org/10.1126/science.aar6236
https://doi.org/10.1021/acs.accounts.0c00760
https://doi.org/10.1038/s41557-023-01360-5
https://doi.org/10.1021/acs.organomet.2c00089
https://doi.org/10.1021/acschembio.8b00881
https://doi.org/10.1021/acs.jcim.9b00721
https://doi.org/10.1021/acs.jcim.9b00721
https://doi.org/10.1126/science.adf6177
https://doi.org/10.1038/s41586-022-05263-2
https://doi.org/10.1126/science.adc8743
https://doi.org/10.1021/jacs.2c05302
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc06728b

	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b

	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b
	Recommending reaction conditions with label rankingElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4sc06728b


