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The investigation of material properties based on atomic structure is a commonly used approach. However, in
the study of complex systems such as high-entropy alloys, atomic structure not only covers an excessively vast
chemical space, but also has an imprecise correspondence to chemical properties. Herein, we present a label-
free machine learning (ML) model based on physics-based spectroscopic descriptors to study the catalytic
properties of AQAUCuPdPt high-entropy alloy catalysts. Even if the atomic structures of two such alloys are
different, these alloys may have similar catalytic properties if their spectral characteristics match closely.
One cluster with the strongest CO adsorption exhibited high selectivity for C,, product generation,

indicating that the spectra-based ML model can provide deeper chemical insight than one based on
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Accepted 17th January 2025 atomic structure. Moreover, such a model can be extended to other systems with consistent results, thus
demonstrating its transferability and versatility. This not only underscores the potential of spectral analysis in

DOI: 10.1039/d4sc06552b identifying high-performance alloy catalysts, but facilitates the formation of a new spectra-based modeling
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Introduction

High-entropy alloys (HEAs) are emerging as key players in the
field of catalysis, thanks to their distinctive interactions with
surface-adsorbed molecules, a factor central to the optimization
of catalytic reaction efficacy.’® The ability to populate their
surfaces with a diversity of elements can be leveraged to fine
tune their catalytic activity and selectivity.*® Despite the
potential, current research on HEAs tends to focus on
improving individual structural aspects.” Based on the atomic
structure, it is difficult to explore HEAs' vast chemical landscape
and identify high-performance catalysts. Because traditional
structural descriptors, such as atomic coordinates and
elemental types, fall short in comprehensively capturing the
diverse influences of adsorption site atoms in adsorbed mole-
cules and neglect crucial electronic information. Spectroscopy
is an invaluable tool for integrating experimental and theoret-
ical approaches. It is capable of providing information about
not only adsorption energies and adsorption structures but also
about the system's electronic structure.'®* This correlation
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approach and research theory in materials science.

encompasses crucial information about electronic energy levels
and charge distribution, endowing spectral signals with the
capacity to describe surface-molecule interactions, atomic and
chemical bond characteristics, and molecule-chemical envi-
ronment coupling.

To effectively design HEAs, a comprehensive understanding
of their chemical properties is essential, and machine learning
has been proven to be an effective tool for extracting insights
from spectroscopic data.” It is common practice in computing
spectroscopy-property relationships to use supervised learning.
However, obtaining reliable labels for supervised learning can
be challenging. Unsupervised learning methods, such as cluster
analysis, group similar unlabeled sets of data based on their
intrinsic properties to uncover patterns and structures that
supervised methods may miss.”® In particular, spectra-based
clustering is a promising method for providing deeper chem-
ical insights into the similarities and differences of HEAs'
properties than is attainable by utilizing atomic structure
alone.'>**

In this study, we employed infrared (IR) vibrational spec-
troscopy as a key descriptor and applied a clustering model to
explore the interactions between adsorbed molecules and high-
entropy alloy catalysts, revealing the intricate structure-prop-
erty relationships in these materials. We focused on HEAs
composed of Ag, Au, Cu, Pd and Pt. The noble metals Pd and Pt
demonstrate exceptional catalytic activity and stability,'>'® while
the metals Ag, Au and Cu contribute to enhanced selectivity and
adjustability of product distribution.” The similar atomic radii
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and face-centered cubic lattice structures characteristic of these
five metallic elements facilitate the synthesis of AgAuCuPdPt
HEAs, resulting in homogeneous solid solutions.™

Therefore, we selected this set of constituent elements, and
chose CO as an adsorbate molecule for studying the catalytic
performance of HEAs. The characteristics of CO adsorption plays
a pivotal role in the carbon dioxide reduction reaction (CO,RR),
significantly impacting product selectivity.**** We performed data
clustering analysis of IR spectra of CO adsorbed on the surface of
AgAuCuPdPt HEAs to obtain distinct clusters, and meticulously
analyzed the characteristics of each cluster—including CO
adsorption capacity and charge transfer computed by density
functional theory (DFT) calculations (Fig. 1). Our results revealed
notable differences in the catalytic performance among these
clusters. In particular, CO adsorption strength was closely linked
to the generation of C,, products. Consequently, the category of
vibrational spectrum of a small molecule adsorbed on a new high-
entropy alloy can be determined based on the established clus-
tering model (Fig. S471). The category information can be used to
infer the catalytic performance of the high-entropy alloy. This
process is implemented through an end-to-end model, which
predicts catalytic properties directly from the vibrational spectra,
thus eliminating the need for traditional, complex studies of the
reaction process and accelerating the screening and development
of high-performance catalysts. Furthermore, extending this clus-
tering model to other adsorbed molecules yielded comparable
outcomes, suggesting a strong correlation between the spectral
data and the catalytic properties of these HEAs.

Results and discussion

Initially, we constructed a theoretical database of IR spectra and
catalytic properties for AgAuCuPdPt HEAs with adsorbed CO,
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for exploring the intrinsic correlation between CO IR spectra
and the CO adsorption process. To obtain additional high-
entropy structures, the Monte Carlo method* was applied to
randomly generate 4688 configurations of AgAuCuPdPt HEAs
with various ratios and atomic structures. In this approach, we
first performed DFT structural optimization to obtain catalytic
properties including CO adsorption Gibbs free energy and
charge transfer for each periodic HEA (Fig. S57). Since the metal
atoms that interacted strongly with CO were mainly located near
the adsorption site, we extracted surface metal atoms within 5 A
of the CO molecule for spectral descriptor calculations,*® where
the coordinates of these metal atoms were fixed (Fig. S67).
Therefore, despite the geometric structure of the local cluster is
fixed, metal atoms beyond the 5 A range influence the coordi-
nates of these fixed atoms. The effect of this broader spatial
information can also be reflected to a certain extent in the IR
spectra of CO molecules. Furthermore, the number of metal
atoms within the 5 A range typically ranges from 7 to 12,
resulting in a combinatorial space of at least 57 = 78125
possibilities. This makes the combinatorial space of spectral
sampling extremely large, encompassing a vast number of
possible atomic arrangements, and consequently demon-
strating the diversity and intricacy inherent to HEAs. More
importantly, these metal atoms exhibit significant interactions
with the adsorbed molecules, typically representing the most
active sites in catalytic reactions. The relative positions and
interactions of these metal atoms can exert a substantial
influence on the spectral results. To validate this hypothesis,
benchmark tests were conducted on the CO adsorption struc-
tures of four typical HEAs. Specifically, a 5 x 5 bilayer HEA
metal atom cluster was selected, where the distance between the
CO molecule and the farthest metal atom exceeded 5 A
(Fig. S71). Subsequently, we calculated the CO IR spectra of
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Fig.1 Protocol for using clustering analysis to estimate the catalytic performance of AQAUCuPdPt HEAs using spectroscopic descriptors. Initially,
construct various CO adsorption configurations of AQAUCuPdPt HEAs with different compositions and spatial arrangements; subsequently,
perform CO IR spectroscopic DFT calculations for each configuration; next, utilize clustering model analysis to analyze the IR spectra and the
catalytic characteristics of each cluster; finally, transfer the clustering model to NO and O, adsorption systems.
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these structures, with the resulting indicating six distinct
vibrational modes, including the CO wagging modes, the HEA-
C-0O bending modes, the HEA-CO stretching mode, and the
C-O stretching mode (Fig. S8t). These spectra were then
compared with those obtained from previously smaller single-
layer HEA clusters (Fig. S91). The computational results indi-
cated that the spectra from both methods were highly similar,
with Spearman correlation coefficients exceeding 0.91. In
particular, the slab thickness has a negligible impact on the
frequency, with the frequencies of the characteristic peaks
exhibiting near-complete overlap. The influence of atoms
beyond a range of 5 A on the CO spectra is limited. An analysis
was also conducted to determine the impact of atomic varia-
tions within the 5 A range on the CO spectra. This analysis
involved the comparison of spectra under different conditions,
including varying metal types (Fig. S10t), identical metal types
but different atomic arrangements (Fig. S117), and selecting
a single spectrum from each cluster to compare its similarity
with the remaining spectra in the dataset (Fig. S121). The
resulting Spearman correlation coefficients or their averages
were below 0.8, indicating that changes in atoms within the 5 A
range significantly affect the vibrational modes of CO.

Generally, the vibrational modes of CO are typically closely
related to their short-range interactions at adsorption sites.
However, it is imperative to comprehensively understand the
sensitivity of the changes in CO vibrational modes to the
surrounding environment of HEAs, the effects of metal atoms
with long-range interactions on the vibrational modes of CO
must be considered. A comparison was made between the
adsorption spectra of CO in HEAs with identical active sites but
different surrounding atomic compositions. The results
demonstrated significant alterations in the vibrational modes
(Fig. S131). This phenomenon indicates that the vibrational
modes of CO can still capture not only the short-range inter-
actions at adsorption sites but also the relatively long-range
environmental influences, reflecting the structural diversity of
HEAs. Subsequently, the XGBoost algorithm** was applied to
assess the significance of vibrational modes in the CO IR
spectra (Fig. $141).>® The results indicated that the two lowest-
frequency vibrational modes only slightly correlated with the
clustering results. Thus, we focused on the other four vibra-
tional modes as key features for characterizing the infrared
signals of CO adsorption.

After defining the spectroscopic feature descriptors, we
extracted them from the spectral data. Subsequently, we applied
the Gaussian mixture model®*® to them for feature clustering,
resulting in four distinct clusters. To visualize the clustering
results, we employed the t-SNE method” to reduce data
dimensionality. Unlike conventional linear dimensionality
reduction techniques, such as Principal Component Analysis
(PCA), the t-SNE method is adept at managing complex
nonlinear relationships present in high-dimensional data. The
comparison of the results obtained from two-dimensional (2D)
and three-dimensional (3D) representations following t-SNE
dimensionality reduction (Fig. S157) indicates that the projec-
tions of latent dimension 1 and latent dimension 2 onto the 3D

plane closely resemble the 2D visualization. The 2D
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visualization offers a more intuitive comprehension of the high-
dimensional spectra. As shown in Fig. 2a, the four clusters are
spatially separated, indicating significant clustering effects. To
gain a deeper understanding of the significance of each cluster,
we performed a comprehensive assessment of CO adsorption
Gibbs free energy and charge transfer for each cluster (Fig. 2b
and c). The results demonstrates that AgAuCuPdPt HEAs in
cluster 1 exhibited the strongest CO adsorption capacity,
coupled with the greatest charge transfer from HEA to CO. HEAs
in cluster 2 also exhibited a strong CO adsorption capacity, but
with charge being transferred from CO to HEA. In contrast,
cluster 3 showed variable CO adsorption performance with
a wide range of Gibbs free energies and degrees of charge
transfer, revealing the presence of varying adsorption sites.
Cluster 4 had the weakest CO adsorption Gibbs free energy,
suggesting a limited CO adsorption capacity.

We analyzed the distribution of the four vibrational
frequencies and intensities utilized in each cluster (Fig. S167).
As illustrated in the figure, the overlap of intensities within the
clusters is considerable, suggesting that intensity is not the
primary factor differentiating the clusters. In contrast, the
boundaries of the frequencies are much more distinct, partic-
ularly for the first and fourth clusters, where the intervals
between each frequency are the widest. This indicates that the
adsorption structures and catalytic performance of these
substances differ the most and the distribution of frequencies
plays a pivotal role in the clustering of the data. Our analysis
was therefore focused on the CO adsorption frequency, espe-
cially the prominent stretching vibration peaks located in the
high-frequency IR region.”® Notably, this peak occurred at the
lowest frequency in cluster 1 HEAs, while in cluster 4 HEAs, it
occurred at the highest (Fig. 2d). This result underscores the
direct correlation between CO adsorption strength and shift in
the vibration peak. Subsequently, the projected density of states
(PDOS) of the adsorption structure was calculated using DFT to
comprehensively analyze the adsorption behavior and elec-
tronic structure characteristics of CO on the HEA surface
(Fig. S171). As illustrated in the figure, the charge density of
HEAs is much higher than that of CO. There is an overlap
between the orbitals of the high-entropy alloy and the molecular
orbitals of CO, indicating an interaction between the CO
molecule and the HEA. Specifically, the metallic properties of
HEAs exert a considerable influence on the electronic structure
of the adsorbed CO, resulting in a modification of the strength
of the C-O bond and, consequently, the vibrational frequency.
In particular, if the adsorbed metal site exerts a strong electron-
donating effect, the C-O bond will undergo elongation and
weakening due to the intense electron filling, resulting in
anotable decrease in the C-O vibrational frequency. Conversely,
if the electron-donating effect of the adsorbed metal site is
weak, the C-O bond will retain a vibrational frequency that is
similar to that of a free CO molecule. Furthermore, we con-
ducted an analysis of the factors contributing to the alterations
in other vibration modes. HEA-C-O bending vibration (modes 3
and 4) reflect changes in geometric and surface electronic
structures during the adsorption of CO (Fig. S16a and bt). In
cluster 1, the interaction between the CO 7 orbitals and the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Clustering results of CO IR spectra and analysis of the characteristics of each cluster. (a) Separation of descriptors into four clusters using
the t-SNE method. (b and c) Box plots depict the changes in CO adsorption Gibbs free energy and charge transfer for each cluster. (d) Distri-
butions of CO stretching vibration peak frequencies of the four clusters. (e and f) Distribution of bridge and hollow CO adsorption sites on cluster

1 AgAuCuPdPt HEAs.

metal orbitals causes a redistribution of the electron density
within the CO molecule. This redistribution strengthens the
interaction between the C-O bond and the surface metal atoms,
thereby increasing the vibrational frequency. In the stretching
vibration of HEA-CO (mode 5), the focus is on the covalent
interactions between the CO molecule and the HEA surface
(Fig. S16ct). In cluster 1, strong adsorption and electron
donation from the surface metal atoms to CO enhance the
chemical bonding between the alloy and CO, resulting in an
increased vibrational frequency. In contrast, the cluster 4
demonstrates weaker interactions, leading to a reduced vibra-
tional frequency. This demonstrates that spectral analysis is
able to precisely define structural properties, enabled by its high
degree of sensitivity to variations in the data achieved by the
clustering method. This sensitivity is crucial for discerning
subtle differences in the catalytic performance of the HEAs,
thereby providing a comprehensive depiction of an alloy's

© 2025 The Author(s). Published by the Royal Society of Chemistry

interaction with CO at a molecular level. The connection
between the spectra and the catalytic properties also enhances
the interpretability of the clustering results.

We further analyzed the adsorption environments in the
clusters, particularly noting the structural features unique to
cluster 1. This cluster was characterized by two primary
adsorption modes: hollow adsorption, identified in 1289
instances, and bridge adsorptions, observed in 181 cases
(Fig. S187). Fig. 2e and f illustrates the distribution of these two
adsorption sites. Bridge adsorption sites were predominantly
concentrated on Pd and Pt atoms, while the atoms creating
hollow adsorption sites were more diverse, covering atoms of all
five metals observed, with Pd, Cu, Au, and Pt being more
abundant (Fig. S19%). The presence of these active sites
enhances the adsorption of CO on the alloy surface, while also
promoting the flow of electrons to CO, strengthening the
connection between HEAs and C, weakening the C-O bond and

Chem. Sci., 2025, 16, 4646-4653 | 4649
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causing a decrease in the stretching vibration frequency of CO.
In clusters 2 and 4, the top adsorption mode was exclusively
observed; this mode reduced adsorption energies and encour-
aged CO molecules to release electrons, which leads to an
increase in the C-O vibration frequency. The experimental
spectra of CO align with the theoretical spectra, showing that
the stretching vibration frequency of the C-O bond decreases in
bridge adsorption compared to linear adsorption, which results
in a redshift.***° In cluster 2, the adsorption sites were primarily
at Pd and Pt (Fig. S20}), while Ag and Au acted as the key
adsorption sites in cluster 4 (Fig. S211). In Fig. 2a, cluster 2 data
appear in the lower right (violet points), while cluster 4 data are
positioned in the lower left (orange points). The clean separa-
tion of these distributions distinctly validates the proficiency of
the clustering technique in identifying and differentiating
between diverse adsorption environments. Cluster 3 emerged as
the most varied, with a mix of three adsorption modes including
3 top adsorptions, 555 bridge adsorptions, and 589 hollow
adsorptions (Fig. S22-S24t). This cluster incorporated all five
metals, with Cu being the predominant element, followed by
Au, Pd, Ag, and Pt in descending order of abundance (Fig. S251).
The unique feature of this cluster displayed the broadest range
of data distribution and energy adsorption variation. In addi-
tion, a comparative analysis of the PDOS under varying
adsorption sites and modes was conducted, as illustrated in
Fig. S26.7 The investigation revealed that the charges of Pd and
Pt exhibit enhanced concentration and intensity in the vicinity
of the Fermi level and the coupling peaks of the PDOS of CO
near the Fermi level are more pronounced, suggesting a robust
adsorption interaction of CO at these metal sites. Conversely,
the PDOS of Ag and Au near the Fermi level exhibits a paucity of
peaks, with a significant reduction or near absence of coupling
peaks in the CO PDOS, indicative of weaker CO adsorption at
these sites. Then we constructed a distribution plot for the
structures and adsorption energies of each adsorption site
within each cluster (Fig. S27f), which also indicated the
strength of adsorption is closely related to the metal composi-
tion of the adsorption sites. As the content of Pd and Pt at the
adsorption sites increases, the adsorption becomes stronger;
conversely, an increase in Ag and Au content weakens the
adsorption. The variety of adsorption modes and their distri-
bution across different metal compositions not only reflect the
unique catalytic potentials of each cluster, but also highlight
the intricate interplay of structural and electronic factors in
determining catalytic efficacy.

When adsorption of CO is enhanced, the CO residence time
on the catalyst is prolonged, thus increasing the possibility of
C-C coupling and facilitating the generation of C,.
products.®*** Additionally, experimental evidence suggests
a correlation between the C-O stretching vibration frequency
and catalytic performance. The strong interaction between CO
and the catalyst weakens the C-O stretching vibrations and
reduces the energy barrier associated with coupling.**** The
HEAs in cluster 1 exhibited the strongest adsorption capacity for
CO and the weakest C-O stretching vibrations, making them
the most likely candidates for the production of C,, products.
To confirm this hypothesis, we randomly selected two

4650 | Chem. Sci,, 2025, 16, 4646-4653
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structures from cluster 1 with distinct adsorption sites
composed of AuCuPd or PdPt, and computed the entire process
of creating C,H, and CH3;OH (Fig. 3a and b). The outcome
revealed that generating CH;OH had a considerably higher
energy barrier than producing C,H,. This suggested that cluster
1 catalysts have a pronounced preference for generating C,.
products. The lower energy barrier for C,H, formation under-
lines the nuanced catalytic behavior of these alloys, indicating
a potential for tailored catalysis of the CO,RR. For the remain-
ing clusters, we also randomly selected several structures and
analyzed their catalytic behavior. In cluster 2, two structures
with Pd and Pt adsorption sites for CO were examined, and both
predominantly favored the production of C,H, compared to the
generation of CH;OH (Fig. S28 and S29t). In cluster 3, although
the hollow sites composed of AgAuAu or AuCuPd were slightly
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Fig. 3 Validation calculations of AQAUCUPdPt high-entropy cluster 1
alloy structures that demonstrate high selectivity and activity for C,,
products of the CO,RR. (a) Free energy diagram for the production of
CH=zOH and C,H4 on the hollow site composed of AuCuPd metal
atoms in cluster 1. (b) Free energy diagram for the production of
CH3OH and C,H4 on the bridge site composed of PdPt metal atoms in
cluster 1. (c) Comparison of the free energy barriers of the RDS for the
production of CHzOH or C,H4 in all clusters.
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Fig. 4 Clustering of O, and NO IR spectra and analysis of the chara

cteristics of each cluster. (a and b) Box plots depict the changes in O,

adsorption Gibbs free energy and charge transfer for each cluster. (c) Distribution of O, stretching vibration peak frequencies for the four

clusters. (d and e) Box plots depict the change in NO adsorption Gibb
stretching vibration peak frequencies for the four clusters.

more likely to generate C,H, products, the tendency was not
obvious (Fig. S30 and S317). As for cluster 4, the Ag or Au sites
within the high-entropy alloy catalysts were entirely favorable
for producing CH;OH (Fig. S32 and S337). Most notably, cluster
1 exhibited the lowest free energy barrier of the rate-
determining-step (RDS) for producing C,H, compared to
other clusters, indicating its enhanced catalytic activity for
generating C,, products (Fig. 3c). These findings highlight the
unique catalytic performance of each cluster and demonstrate
that cluster 1 exhibits high selectivity and activity for C,.
products. This insight into the specific catalytic behavior of
cluster 1 opens up new avenues for the development of
specialized high-entropy catalysts.

To assess the transferability and versatility of the spectral-
based clustering model, we extended our analysis to other
diatomic molecules (Fig. S34 and S357) and aimed to determine
if these small molecules exhibit comparable characteristics in
our clustering framework. We constructed more limited data for
0O, and NO, calculating the spectral and catalytic performance of
359 AgAuCuPdPt HEAs adsorbing O, and 300 AgAuCuPdPt HEAs
adsorbing NO. Remarkably, when applying the same clustering
model used for CO, we observed analogous clustering outcomes
(Fig. S36 and S377). From the IR spectra of CO, O,, and NO
molecules adsorbed on the high-entropy alloy surface (Fig. S387),
it can be observed that these small molecules exhibit similar
bending vibrational modes in the low-frequency region and
similar stretching vibration peaks in the high-frequency region.
These commonalities facilitate comprehension of the adsorption
behavior and vibrational characteristics of diverse small mole-
cules on high-entropy alloy surfaces. We noted that in both
adsorbing O, and NO scenarios, the interaction strength between
the high-entropy alloy surface and the small molecule adsorbate

© 2025 The Author(s). Published by the Royal Society of Chemistry

s free energy and charge transfer for each cluster. (f) Distribution of NO

is most pronounced in cluster 1, diminishing progressively in the
other three clusters (Fig. 4a and d). Furthermore, our analysis
revealed a persistent correlation between the degree of charge
transfer from the small molecule to the high-entropy alloy and
the frequency of the stretching vibrational peak. Specifically,
greater charge transfer from HEA to O, or NO correlated with
lower frequency vibrational peaks, suggesting that the spectral
data reliably reflects the adsorption state of the small molecules
on the HEAs (Fig. 4b, c, e and f). A further analysis of the metal
composition at the adsorption sites for CO, O,, and NO in each
cluster (Fig. S3971) revealed that the overall metal composition is
quite similar. The first cluster exhibits elevated concentrations of
Cu, Pd, and Pt, whereas the fourth cluster displays augmented
levels of Ag and Au. The alterations in metal composition at the
adsorption sites were corroborated by IR spectroscopy, wherein
the vibrational characteristic peaks exhibited regular shifts.
These trends align with our earlier findings for CO adsorption,
illustrating the robustness of our clustering model. This simi-
larity in results across different molecules not only validates the
transference of the clustering model but also emphasizes its
versatility in categorizing various molecular adsorptions. The
consistent patterns we identified suggest that our model can
effectively discern and classify adsorption characteristics,
regardless of the specific molecule involved. This finding high-
lights the potential of our methodology to serve as a powerful tool
in the broader realm of molecular spectroscopic analysis.

Conclusions

This study conducts a significant exploration into the catalytic
capabilities of AgAuCuPdPt HEAs through a spectra-based
clustering model. The interactions between these HEAs and
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various adsorbed molecules were captured effectively by
computing and analyzing the IR spectra generated by vibra-
tional modes of the adsorbed species. Properties of these
systems were found to cluster, permitting us to elucidate
distinct catalytic properties of each cluster. Notably, the strong
CO adsorption characteristic of cluster 1 significantly enhances
the likelihood of producing C,. products. It is also interesting to
find that HEAs can have similar catalytic selectivities even
though they possess different atomic structures, suggesting that
spectroscopic analysis is a better tool to describe material
properties. This study provides invaluable insights for the
design and development of efficient and specialized high-
entropy alloy catalysts. It also explores an entirely new path
towards establishing a spectroscopic encoding method for
chemical substances, as it is a spectra-based chemical theory
that does not depend on structural coordinates. This approach
could be expanded in the future to obtain more promising
catalysts by exploring other types of alloys and alternative
spectroscopic techniques, particularly those derived from
dynamic simulations that are more representative of real-world
environments.
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