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ustering of high-entropy alloy
catalysts: improved insight over use of atomic
structure†

Huirong Li,‡a Donglai Zhou,‡a Pieter E. S. Smith,b Edward Sharman,c Hengyu Xiao,b

Song Wang,*a Yan Huang*a and Jun Jiang *a

The investigation of material properties based on atomic structure is a commonly used approach. However, in

the study of complex systems such as high-entropy alloys, atomic structure not only covers an excessively vast

chemical space, but also has an imprecise correspondence to chemical properties. Herein, we present a label-

free machine learning (ML) model based on physics-based spectroscopic descriptors to study the catalytic

properties of AgAuCuPdPt high-entropy alloy catalysts. Even if the atomic structures of two such alloys are

different, these alloys may have similar catalytic properties if their spectral characteristics match closely.

One cluster with the strongest CO adsorption exhibited high selectivity for C2+ product generation,

indicating that the spectra-based ML model can provide deeper chemical insight than one based on

atomic structure. Moreover, such a model can be extended to other systems with consistent results, thus

demonstrating its transferability and versatility. This not only underscores the potential of spectral analysis in

identifying high-performance alloy catalysts, but facilitates the formation of a new spectra-based modeling

approach and research theory in materials science.
Introduction

High-entropy alloys (HEAs) are emerging as key players in the
eld of catalysis, thanks to their distinctive interactions with
surface-adsorbed molecules, a factor central to the optimization
of catalytic reaction efficacy.1–3 The ability to populate their
surfaces with a diversity of elements can be leveraged to ne
tune their catalytic activity and selectivity.4–6 Despite the
potential, current research on HEAs tends to focus on
improving individual structural aspects.7–9 Based on the atomic
structure, it is difficult to explore HEAs' vast chemical landscape
and identify high-performance catalysts. Because traditional
structural descriptors, such as atomic coordinates and
elemental types, fall short in comprehensively capturing the
diverse inuences of adsorption site atoms in adsorbed mole-
cules and neglect crucial electronic information. Spectroscopy
is an invaluable tool for integrating experimental and theoret-
ical approaches. It is capable of providing information about
not only adsorption energies and adsorption structures but also
about the system's electronic structure.10,11 This correlation
igent Chemistry, University of Science and

China. E-mail: jiangj1@ustc.edu.cn

efei 230026, China

ifornia, Irvine, California 92697, USA

tion (ESI) available. See DOI:

is work.

653
encompasses crucial information about electronic energy levels
and charge distribution, endowing spectral signals with the
capacity to describe surface–molecule interactions, atomic and
chemical bond characteristics, and molecule-chemical envi-
ronment coupling.

To effectively design HEAs, a comprehensive understanding
of their chemical properties is essential, and machine learning
has been proven to be an effective tool for extracting insights
from spectroscopic data.12 It is common practice in computing
spectroscopy–property relationships to use supervised learning.
However, obtaining reliable labels for supervised learning can
be challenging. Unsupervised learning methods, such as cluster
analysis, group similar unlabeled sets of data based on their
intrinsic properties to uncover patterns and structures that
supervised methods may miss.13 In particular, spectra-based
clustering is a promising method for providing deeper chem-
ical insights into the similarities and differences of HEAs'
properties than is attainable by utilizing atomic structure
alone.10,14

In this study, we employed infrared (IR) vibrational spec-
troscopy as a key descriptor and applied a clustering model to
explore the interactions between adsorbed molecules and high-
entropy alloy catalysts, revealing the intricate structure–prop-
erty relationships in these materials. We focused on HEAs
composed of Ag, Au, Cu, Pd and Pt. The noble metals Pd and Pt
demonstrate exceptional catalytic activity and stability,15,16while
the metals Ag, Au and Cu contribute to enhanced selectivity and
adjustability of product distribution.17 The similar atomic radii
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and face-centered cubic lattice structures characteristic of these
ve metallic elements facilitate the synthesis of AgAuCuPdPt
HEAs, resulting in homogeneous solid solutions.18

Therefore, we selected this set of constituent elements, and
chose CO as an adsorbate molecule for studying the catalytic
performance of HEAs. The characteristics of CO adsorption plays
a pivotal role in the carbon dioxide reduction reaction (CO2RR),
signicantly impacting product selectivity.19–21 We performed data
clustering analysis of IR spectra of CO adsorbed on the surface of
AgAuCuPdPt HEAs to obtain distinct clusters, and meticulously
analyzed the characteristics of each cluster—including CO
adsorption capacity and charge transfer computed by density
functional theory (DFT) calculations (Fig. 1). Our results revealed
notable differences in the catalytic performance among these
clusters. In particular, CO adsorption strength was closely linked
to the generation of C2+ products. Consequently, the category of
vibrational spectrum of a small molecule adsorbed on a new high-
entropy alloy can be determined based on the established clus-
tering model (Fig. S4†). The category information can be used to
infer the catalytic performance of the high-entropy alloy. This
process is implemented through an end-to-end model, which
predicts catalytic properties directly from the vibrational spectra,
thus eliminating the need for traditional, complex studies of the
reaction process and accelerating the screening and development
of high-performance catalysts. Furthermore, extending this clus-
tering model to other adsorbed molecules yielded comparable
outcomes, suggesting a strong correlation between the spectral
data and the catalytic properties of these HEAs.
Results and discussion

Initially, we constructed a theoretical database of IR spectra and
catalytic properties for AgAuCuPdPt HEAs with adsorbed CO,
Fig. 1 Protocol for using clustering analysis to estimate the catalytic perfo
construct various CO adsorption configurations of AgAuCuPdPt HEAs
perform CO IR spectroscopic DFT calculations for each configuration; n
catalytic characteristics of each cluster; finally, transfer the clustering m

© 2025 The Author(s). Published by the Royal Society of Chemistry
for exploring the intrinsic correlation between CO IR spectra
and the CO adsorption process. To obtain additional high-
entropy structures, the Monte Carlo method22 was applied to
randomly generate 4688 congurations of AgAuCuPdPt HEAs
with various ratios and atomic structures. In this approach, we
rst performed DFT structural optimization to obtain catalytic
properties including CO adsorption Gibbs free energy and
charge transfer for each periodic HEA (Fig. S5†). Since the metal
atoms that interacted strongly with COweremainly located near
the adsorption site, we extracted surface metal atoms within 5 Å
of the CO molecule for spectral descriptor calculations,23 where
the coordinates of these metal atoms were xed (Fig. S6†).
Therefore, despite the geometric structure of the local cluster is
xed, metal atoms beyond the 5 Å range inuence the coordi-
nates of these xed atoms. The effect of this broader spatial
information can also be reected to a certain extent in the IR
spectra of CO molecules. Furthermore, the number of metal
atoms within the 5 Å range typically ranges from 7 to 12,
resulting in a combinatorial space of at least 57 = 78 125
possibilities. This makes the combinatorial space of spectral
sampling extremely large, encompassing a vast number of
possible atomic arrangements, and consequently demon-
strating the diversity and intricacy inherent to HEAs. More
importantly, these metal atoms exhibit signicant interactions
with the adsorbed molecules, typically representing the most
active sites in catalytic reactions. The relative positions and
interactions of these metal atoms can exert a substantial
inuence on the spectral results. To validate this hypothesis,
benchmark tests were conducted on the CO adsorption struc-
tures of four typical HEAs. Specically, a 5 × 5 bilayer HEA
metal atom cluster was selected, where the distance between the
CO molecule and the farthest metal atom exceeded 5 Å
(Fig. S7†). Subsequently, we calculated the CO IR spectra of
rmance of AgAuCuPdPt HEAs using spectroscopic descriptors. Initially,
with different compositions and spatial arrangements; subsequently,
ext, utilize clustering model analysis to analyze the IR spectra and the
odel to NO and O2 adsorption systems.

Chem. Sci., 2025, 16, 4646–4653 | 4647
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these structures, with the resulting indicating six distinct
vibrational modes, including the CO wagging modes, the HEA–
C–O bending modes, the HEA–CO stretching mode, and the
C–O stretching mode (Fig. S8†). These spectra were then
compared with those obtained from previously smaller single-
layer HEA clusters (Fig. S9†). The computational results indi-
cated that the spectra from both methods were highly similar,
with Spearman correlation coefficients exceeding 0.91. In
particular, the slab thickness has a negligible impact on the
frequency, with the frequencies of the characteristic peaks
exhibiting near-complete overlap. The inuence of atoms
beyond a range of 5 Å on the CO spectra is limited. An analysis
was also conducted to determine the impact of atomic varia-
tions within the 5 Å range on the CO spectra. This analysis
involved the comparison of spectra under different conditions,
including varying metal types (Fig. S10†), identical metal types
but different atomic arrangements (Fig. S11†), and selecting
a single spectrum from each cluster to compare its similarity
with the remaining spectra in the dataset (Fig. S12†). The
resulting Spearman correlation coefficients or their averages
were below 0.8, indicating that changes in atoms within the 5 Å
range signicantly affect the vibrational modes of CO.

Generally, the vibrational modes of CO are typically closely
related to their short-range interactions at adsorption sites.
However, it is imperative to comprehensively understand the
sensitivity of the changes in CO vibrational modes to the
surrounding environment of HEAs, the effects of metal atoms
with long-range interactions on the vibrational modes of CO
must be considered. A comparison was made between the
adsorption spectra of CO in HEAs with identical active sites but
different surrounding atomic compositions. The results
demonstrated signicant alterations in the vibrational modes
(Fig. S13†). This phenomenon indicates that the vibrational
modes of CO can still capture not only the short-range inter-
actions at adsorption sites but also the relatively long-range
environmental inuences, reecting the structural diversity of
HEAs. Subsequently, the XGBoost algorithm24 was applied to
assess the signicance of vibrational modes in the CO IR
spectra (Fig. S14†).25 The results indicated that the two lowest-
frequency vibrational modes only slightly correlated with the
clustering results. Thus, we focused on the other four vibra-
tional modes as key features for characterizing the infrared
signals of CO adsorption.

Aer dening the spectroscopic feature descriptors, we
extracted them from the spectral data. Subsequently, we applied
the Gaussian mixture model26 to them for feature clustering,
resulting in four distinct clusters. To visualize the clustering
results, we employed the t-SNE method27 to reduce data
dimensionality. Unlike conventional linear dimensionality
reduction techniques, such as Principal Component Analysis
(PCA), the t-SNE method is adept at managing complex
nonlinear relationships present in high-dimensional data. The
comparison of the results obtained from two-dimensional (2D)
and three-dimensional (3D) representations following t-SNE
dimensionality reduction (Fig. S15†) indicates that the projec-
tions of latent dimension 1 and latent dimension 2 onto the 3D
plane closely resemble the 2D visualization. The 2D
4648 | Chem. Sci., 2025, 16, 4646–4653
visualization offers a more intuitive comprehension of the high-
dimensional spectra. As shown in Fig. 2a, the four clusters are
spatially separated, indicating signicant clustering effects. To
gain a deeper understanding of the signicance of each cluster,
we performed a comprehensive assessment of CO adsorption
Gibbs free energy and charge transfer for each cluster (Fig. 2b
and c). The results demonstrates that AgAuCuPdPt HEAs in
cluster 1 exhibited the strongest CO adsorption capacity,
coupled with the greatest charge transfer fromHEA to CO. HEAs
in cluster 2 also exhibited a strong CO adsorption capacity, but
with charge being transferred from CO to HEA. In contrast,
cluster 3 showed variable CO adsorption performance with
a wide range of Gibbs free energies and degrees of charge
transfer, revealing the presence of varying adsorption sites.
Cluster 4 had the weakest CO adsorption Gibbs free energy,
suggesting a limited CO adsorption capacity.

We analyzed the distribution of the four vibrational
frequencies and intensities utilized in each cluster (Fig. S16†).
As illustrated in the gure, the overlap of intensities within the
clusters is considerable, suggesting that intensity is not the
primary factor differentiating the clusters. In contrast, the
boundaries of the frequencies are much more distinct, partic-
ularly for the rst and fourth clusters, where the intervals
between each frequency are the widest. This indicates that the
adsorption structures and catalytic performance of these
substances differ the most and the distribution of frequencies
plays a pivotal role in the clustering of the data. Our analysis
was therefore focused on the CO adsorption frequency, espe-
cially the prominent stretching vibration peaks located in the
high-frequency IR region.28 Notably, this peak occurred at the
lowest frequency in cluster 1 HEAs, while in cluster 4 HEAs, it
occurred at the highest (Fig. 2d). This result underscores the
direct correlation between CO adsorption strength and shi in
the vibration peak. Subsequently, the projected density of states
(PDOS) of the adsorption structure was calculated using DFT to
comprehensively analyze the adsorption behavior and elec-
tronic structure characteristics of CO on the HEA surface
(Fig. S17†). As illustrated in the gure, the charge density of
HEAs is much higher than that of CO. There is an overlap
between the orbitals of the high-entropy alloy and themolecular
orbitals of CO, indicating an interaction between the CO
molecule and the HEA. Specically, the metallic properties of
HEAs exert a considerable inuence on the electronic structure
of the adsorbed CO, resulting in a modication of the strength
of the C–O bond and, consequently, the vibrational frequency.
In particular, if the adsorbed metal site exerts a strong electron-
donating effect, the C–O bond will undergo elongation and
weakening due to the intense electron lling, resulting in
a notable decrease in the C–O vibrational frequency. Conversely,
if the electron-donating effect of the adsorbed metal site is
weak, the C–O bond will retain a vibrational frequency that is
similar to that of a free CO molecule. Furthermore, we con-
ducted an analysis of the factors contributing to the alterations
in other vibrationmodes. HEA–C–O bending vibration (modes 3
and 4) reect changes in geometric and surface electronic
structures during the adsorption of CO (Fig. S16a and b†). In
cluster 1, the interaction between the CO p orbitals and the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Clustering results of CO IR spectra and analysis of the characteristics of each cluster. (a) Separation of descriptors into four clusters using
the t-SNE method. (b and c) Box plots depict the changes in CO adsorption Gibbs free energy and charge transfer for each cluster. (d) Distri-
butions of CO stretching vibration peak frequencies of the four clusters. (e and f) Distribution of bridge and hollow CO adsorption sites on cluster
1 AgAuCuPdPt HEAs.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/6
/2

02
6 

9:
22

:0
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
metal orbitals causes a redistribution of the electron density
within the CO molecule. This redistribution strengthens the
interaction between the C–O bond and the surface metal atoms,
thereby increasing the vibrational frequency. In the stretching
vibration of HEA–CO (mode 5), the focus is on the covalent
interactions between the CO molecule and the HEA surface
(Fig. S16c†). In cluster 1, strong adsorption and electron
donation from the surface metal atoms to CO enhance the
chemical bonding between the alloy and CO, resulting in an
increased vibrational frequency. In contrast, the cluster 4
demonstrates weaker interactions, leading to a reduced vibra-
tional frequency. This demonstrates that spectral analysis is
able to precisely dene structural properties, enabled by its high
degree of sensitivity to variations in the data achieved by the
clustering method. This sensitivity is crucial for discerning
subtle differences in the catalytic performance of the HEAs,
thereby providing a comprehensive depiction of an alloy's
© 2025 The Author(s). Published by the Royal Society of Chemistry
interaction with CO at a molecular level. The connection
between the spectra and the catalytic properties also enhances
the interpretability of the clustering results.

We further analyzed the adsorption environments in the
clusters, particularly noting the structural features unique to
cluster 1. This cluster was characterized by two primary
adsorption modes: hollow adsorption, identied in 1289
instances, and bridge adsorptions, observed in 181 cases
(Fig. S18†). Fig. 2e and f illustrates the distribution of these two
adsorption sites. Bridge adsorption sites were predominantly
concentrated on Pd and Pt atoms, while the atoms creating
hollow adsorption sites were more diverse, covering atoms of all
ve metals observed, with Pd, Cu, Au, and Pt being more
abundant (Fig. S19†). The presence of these active sites
enhances the adsorption of CO on the alloy surface, while also
promoting the ow of electrons to CO, strengthening the
connection between HEAs and C, weakening the C–O bond and
Chem. Sci., 2025, 16, 4646–4653 | 4649
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Fig. 3 Validation calculations of AgAuCuPdPt high-entropy cluster 1
alloy structures that demonstrate high selectivity and activity for C2+

products of the CO2RR. (a) Free energy diagram for the production of
CH3OH and C2H4 on the hollow site composed of AuCuPd metal
atoms in cluster 1. (b) Free energy diagram for the production of
CH3OH and C2H4 on the bridge site composed of PdPt metal atoms in
cluster 1. (c) Comparison of the free energy barriers of the RDS for the
production of CH3OH or C2H4 in all clusters.
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causing a decrease in the stretching vibration frequency of CO.
In clusters 2 and 4, the top adsorption mode was exclusively
observed; this mode reduced adsorption energies and encour-
aged CO molecules to release electrons, which leads to an
increase in the C–O vibration frequency. The experimental
spectra of CO align with the theoretical spectra, showing that
the stretching vibration frequency of the C–O bond decreases in
bridge adsorption compared to linear adsorption, which results
in a redshi.29,30 In cluster 2, the adsorption sites were primarily
at Pd and Pt (Fig. S20†), while Ag and Au acted as the key
adsorption sites in cluster 4 (Fig. S21†). In Fig. 2a, cluster 2 data
appear in the lower right (violet points), while cluster 4 data are
positioned in the lower le (orange points). The clean separa-
tion of these distributions distinctly validates the prociency of
the clustering technique in identifying and differentiating
between diverse adsorption environments. Cluster 3 emerged as
themost varied, with amix of three adsorptionmodes including
3 top adsorptions, 555 bridge adsorptions, and 589 hollow
adsorptions (Fig. S22–S24†). This cluster incorporated all ve
metals, with Cu being the predominant element, followed by
Au, Pd, Ag, and Pt in descending order of abundance (Fig. S25†).
The unique feature of this cluster displayed the broadest range
of data distribution and energy adsorption variation. In addi-
tion, a comparative analysis of the PDOS under varying
adsorption sites and modes was conducted, as illustrated in
Fig. S26.† The investigation revealed that the charges of Pd and
Pt exhibit enhanced concentration and intensity in the vicinity
of the Fermi level and the coupling peaks of the PDOS of CO
near the Fermi level are more pronounced, suggesting a robust
adsorption interaction of CO at these metal sites. Conversely,
the PDOS of Ag and Au near the Fermi level exhibits a paucity of
peaks, with a signicant reduction or near absence of coupling
peaks in the CO PDOS, indicative of weaker CO adsorption at
these sites. Then we constructed a distribution plot for the
structures and adsorption energies of each adsorption site
within each cluster (Fig. S27†), which also indicated the
strength of adsorption is closely related to the metal composi-
tion of the adsorption sites. As the content of Pd and Pt at the
adsorption sites increases, the adsorption becomes stronger;
conversely, an increase in Ag and Au content weakens the
adsorption. The variety of adsorption modes and their distri-
bution across different metal compositions not only reect the
unique catalytic potentials of each cluster, but also highlight
the intricate interplay of structural and electronic factors in
determining catalytic efficacy.

When adsorption of CO is enhanced, the CO residence time
on the catalyst is prolonged, thus increasing the possibility of
C–C coupling and facilitating the generation of C2+

products.31–33 Additionally, experimental evidence suggests
a correlation between the C–O stretching vibration frequency
and catalytic performance. The strong interaction between CO
and the catalyst weakens the C–O stretching vibrations and
reduces the energy barrier associated with coupling.34,35 The
HEAs in cluster 1 exhibited the strongest adsorption capacity for
CO and the weakest C–O stretching vibrations, making them
the most likely candidates for the production of C2+ products.
To conrm this hypothesis, we randomly selected two
4650 | Chem. Sci., 2025, 16, 4646–4653
structures from cluster 1 with distinct adsorption sites
composed of AuCuPd or PdPt, and computed the entire process
of creating C2H4 and CH3OH (Fig. 3a and b). The outcome
revealed that generating CH3OH had a considerably higher
energy barrier than producing C2H4. This suggested that cluster
1 catalysts have a pronounced preference for generating C2+

products. The lower energy barrier for C2H4 formation under-
lines the nuanced catalytic behavior of these alloys, indicating
a potential for tailored catalysis of the CO2RR. For the remain-
ing clusters, we also randomly selected several structures and
analyzed their catalytic behavior. In cluster 2, two structures
with Pd and Pt adsorption sites for CO were examined, and both
predominantly favored the production of C2H4 compared to the
generation of CH3OH (Fig. S28 and S29†). In cluster 3, although
the hollow sites composed of AgAuAu or AuCuPd were slightly
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Clustering of O2 and NO IR spectra and analysis of the characteristics of each cluster. (a and b) Box plots depict the changes in O2

adsorption Gibbs free energy and charge transfer for each cluster. (c) Distribution of O2 stretching vibration peak frequencies for the four
clusters. (d and e) Box plots depict the change in NO adsorption Gibbs free energy and charge transfer for each cluster. (f) Distribution of NO
stretching vibration peak frequencies for the four clusters.
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more likely to generate C2H4 products, the tendency was not
obvious (Fig. S30 and S31†). As for cluster 4, the Ag or Au sites
within the high-entropy alloy catalysts were entirely favorable
for producing CH3OH (Fig. S32 and S33†). Most notably, cluster
1 exhibited the lowest free energy barrier of the rate-
determining-step (RDS) for producing C2H4 compared to
other clusters, indicating its enhanced catalytic activity for
generating C2+ products (Fig. 3c). These ndings highlight the
unique catalytic performance of each cluster and demonstrate
that cluster 1 exhibits high selectivity and activity for C2+

products. This insight into the specic catalytic behavior of
cluster 1 opens up new avenues for the development of
specialized high-entropy catalysts.

To assess the transferability and versatility of the spectral-
based clustering model, we extended our analysis to other
diatomic molecules (Fig. S34 and S35†) and aimed to determine
if these small molecules exhibit comparable characteristics in
our clustering framework. We constructed more limited data for
O2 and NO, calculating the spectral and catalytic performance of
359 AgAuCuPdPt HEAs adsorbing O2 and 300 AgAuCuPdPt HEAs
adsorbing NO. Remarkably, when applying the same clustering
model used for CO, we observed analogous clustering outcomes
(Fig. S36 and S37†). From the IR spectra of CO, O2, and NO
molecules adsorbed on the high-entropy alloy surface (Fig. S38†),
it can be observed that these small molecules exhibit similar
bending vibrational modes in the low-frequency region and
similar stretching vibration peaks in the high-frequency region.
These commonalities facilitate comprehension of the adsorption
behavior and vibrational characteristics of diverse small mole-
cules on high-entropy alloy surfaces. We noted that in both
adsorbing O2 and NO scenarios, the interaction strength between
the high-entropy alloy surface and the small molecule adsorbate
© 2025 The Author(s). Published by the Royal Society of Chemistry
is most pronounced in cluster 1, diminishing progressively in the
other three clusters (Fig. 4a and d). Furthermore, our analysis
revealed a persistent correlation between the degree of charge
transfer from the small molecule to the high-entropy alloy and
the frequency of the stretching vibrational peak. Specically,
greater charge transfer from HEA to O2 or NO correlated with
lower frequency vibrational peaks, suggesting that the spectral
data reliably reects the adsorption state of the small molecules
on the HEAs (Fig. 4b, c, e and f). A further analysis of the metal
composition at the adsorption sites for CO, O2, and NO in each
cluster (Fig. S39†) revealed that the overall metal composition is
quite similar. The rst cluster exhibits elevated concentrations of
Cu, Pd, and Pt, whereas the fourth cluster displays augmented
levels of Ag and Au. The alterations in metal composition at the
adsorption sites were corroborated by IR spectroscopy, wherein
the vibrational characteristic peaks exhibited regular shis.
These trends align with our earlier ndings for CO adsorption,
illustrating the robustness of our clustering model. This simi-
larity in results across different molecules not only validates the
transference of the clustering model but also emphasizes its
versatility in categorizing various molecular adsorptions. The
consistent patterns we identied suggest that our model can
effectively discern and classify adsorption characteristics,
regardless of the specic molecule involved. This nding high-
lights the potential of ourmethodology to serve as a powerful tool
in the broader realm of molecular spectroscopic analysis.

Conclusions

This study conducts a signicant exploration into the catalytic
capabilities of AgAuCuPdPt HEAs through a spectra-based
clustering model. The interactions between these HEAs and
Chem. Sci., 2025, 16, 4646–4653 | 4651
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various adsorbed molecules were captured effectively by
computing and analyzing the IR spectra generated by vibra-
tional modes of the adsorbed species. Properties of these
systems were found to cluster, permitting us to elucidate
distinct catalytic properties of each cluster. Notably, the strong
CO adsorption characteristic of cluster 1 signicantly enhances
the likelihood of producing C2+ products. It is also interesting to
nd that HEAs can have similar catalytic selectivities even
though they possess different atomic structures, suggesting that
spectroscopic analysis is a better tool to describe material
properties. This study provides invaluable insights for the
design and development of efficient and specialized high-
entropy alloy catalysts. It also explores an entirely new path
towards establishing a spectroscopic encoding method for
chemical substances, as it is a spectra-based chemical theory
that does not depend on structural coordinates. This approach
could be expanded in the future to obtain more promising
catalysts by exploring other types of alloys and alternative
spectroscopic techniques, particularly those derived from
dynamic simulations that are more representative of real-world
environments.
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