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Hydrogen (H2) is a clean energy carrier with significant potential for power and heat generation, offering

a pathway to reduce emissions from fossil fuels. Over the years, various feedstocks have been explored

for H2 production, addressing the storage challenges associated with hydrogen. Methanol (MeOH) has

emerged as one of the most efficient hydrogen storage medium. Among the different MeOH conversion

processes, steam reforming stands out for its high hydrogen selectivity. This review focuses on recent

catalyst development, in particular MSR reactor design and configuration, an area that has received

comparatively limited attention in previous studies. Innovative reactor configurations, such as membrane

and small-scale reactors, address the limitations of traditional packed-bed units, including pressure drop,

heat and mass transfer resistances, and scalability challenges. By systematically analysing various reactor

configurations, we address a critical gap in existing reviews and deliver innovative strategies for process

optimisation. Additionally, the integration of methanol steam reforming with fuel cell systems presents

a promising solution for reducing emissions in the transport sector. The review also discusses the

relevant understanding on reaction mechanisms involved, followed by both the challenges and future

prospects, emphasizing the importance of evaluating not only the environmental impact of these

emerging technologies but also their manufacturing and operational costs.
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1. Introduction

The escalating environmental crisis, driven primarily by human
activities and the extensive exploitation of fossil fuels for
transportation, energy, and industrial purposes, necessitates
urgent transitions to sustainable energy solutions. Hydrogen
(H2) has emerged as one of the most promising alternatives,
offering a clean energy carrier capable of replacing fossil fuels
through its conversion into power or heat.1 The application of
H2 in fuel cell technology demonstrates comparable perfor-
mance to traditional fossil-fuel-based systems, making it an
attractive option for various applications, including vehicles
George Manos
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and heating systems. However, challenges related to its
production cost, storage and transportation, persist, hindering
the widespread adoption of H2 technologies.2

Integrating H2 into energy strategies is both crucial and
necessary, particularly in the context of decarbonization efforts
within the transportation and industrial sectors.3 One of the
primary challenges associated with H2 is its low volumetric
energy density, which complicates storage and increases costs.
To address these issues, various storage methods have been
explored, including liquid hydrogen, compressed hydrogen,
and chemical storage using materials such as ammonia, metal
hydrates, synthetic hydrocarbons, carbohydrates, formic acid,
and liquid organic hydrogen carriers (LOHCs).4,5 Among these,
methanol (MeOH) has garnered signicant attention as an
effective liquid H2 carrier due to its high H2 conversion effi-
ciency.6 MeOH is a preferred H2 carrier as it also has the same
H/C ratio as methane and is a liquid under standard environ-
mental conditions. Additionally, its conversion to H2 occurs at
lower temperatures, requiring less energy than fuels with C–C
bonds, and it produces lower levels of CO due to milder oper-
ating conditions.7

Methanol Steam Reforming (MSR) stands out as a mature
and economically feasible technology for H2 production.
Industrially, MeOH is converted to H2 through reforming, with
steam reforming being the most established process. Among
the various reforming methods—MSR, methanol partial oxida-
tion (POX), and methanol autothermal reforming (ATR), MSR is
preferred due to its better H2 to CO ratio.8 Furthermore, other
H2 carriers such as formic acid, ammonia and hydrous hydra-
zine also show signicant promise. Formic acid can be
decomposed into H2 under mild conditions.9 In this liquid
organic hydrogen carrier (LOHC) system, CO2 is utilized in the
Junwang Tang
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formation of formic acid, making it a safer andmore convenient
H2 carrier to handle.10 Ammonia is also regarded as an excellent
H2 carrier molecule as it possesses a high H2 content of around
18 wt% and a large energy density of up to 3000 W h kg−1.
Hydrous hydrazine, with a high H2 content of 8 wt%, can also be
decomposed to produce H2 and nitrogen (N2) by a carbon-free
process. However, an undesired side reaction can generate
ammonia, which affects the selectivity towards H2 and the
overall efficiency of the process.11,12

Despite the extensive research on catalyst development for
methanol reforming, the studies have primarily concentrated
on catalyst-related aspects, with less attention given to innova-
tive reactor technologies and whole chemical processes.8,13–19

This review aims to ll this gap by providing an up-to-date
overview of various reactor units used in MSR, detailing their
operational parameters and highlighting the benets of
membrane and microreactor systems besides a discussion on
new catalyst development and mechanistic results. Addition-
ally, this review examines the integration of the MSR reaction
with Proton Exchange Membrane Fuel Cells (PEMFCs),
extending beyond catalyst-related topics to include mechanistic
insights.
Fig. 1 H2 yields of different ratios of Ni–Cu catalysts.23 Reproduced
from ref. 23 with permission from Elsevier, Copyright 2015.
2. Thermostatic materials

Due to the rise of environmental issues, the evaluation of
existing energy processes and operations is a crucial factor
concerning the research community. Among the products of the
reaction, small amounts of CO are required for PEMFC appli-
cations. Emphasis should be placed on catalyst design to ach-
ieve high selectivity toward H2, making the produced CO
negligible.13 The two side reactions that occur during the MSR
are the MeOH decomposition and the water gas shi (WGS)
reaction, which occurs when the steam/MeOH ratio is low. In
contrast to MeOH POX, MSR is an endothermic reaction that
yields high H2 and is widely preferred.14

In recent years, efforts have been made to improve the
performance of conventional catalysts regarding the MSR
reaction since Cu-based catalysts suffer from poor stability,
sintering and carbon deposition, with the latter two being the
Table 1 Thermostatic materials investigated for MSR

Catalyst
Pressure
(bar)

Temperature
(°C) S/C ratio

MeO
onve

10% Ni–Cu/Al2O3 — 250 2 100.0
Ni0.2–Cu0.8/ZrO2 1 325 — —
Cu–Ni/TiO2/monolith 1 300 2 92.6
CuZrAl0.4 1 270 1.5 96.0
CuZnZrAl(Co–Am) 1 270 1.2 100.0
ZrO2-0.1/Cu 1 300 1 90.0
Cu/ZnO/Al2O3–5Mg 1 200 1 68.0
CuCe–MC (IMP) — 250 3 68.0
5% Cu/CeO2 — 340 — 76.0
5% Cu/Sm2O3 — 340 — 76.0
2% Pt/a-MoC 60 190 — —
15Pt/15In2O3/CeO2 1 350 1.4 99.9

3812 | Chem. Sci., 2025, 16, 3810–3831
most frequent issues. Improving preparation methods, adding
promoters and optimising support materials could signicantly
enhance the stability of such catalysts.20 Moreover, the intro-
duction of nanoparticles or porous materials can further
improve conventional catalysts.21 Many catalysts have been
suggested for H2 production showing long-term stability under
high temperature conditions over a suitable support. Table 1
summarises the key features regarding the investigated
catalysts.

Noble metals, such as Rh and Pd, were found to be advan-
tageous by achieving high H2 yields and good stability, although
their high cost hinders their application to different commer-
cial systems.33 Ni-based catalysts, due to their low cost, are
preferred for the MSR reaction, and their combination with Cu
can signicantly reduce CO formation. In a recent study, a Ni–
Cu/Al2O3 catalyst was investigated, showing that by increasing
the Ni content and catalyst loading almost 100% MeOH
conversion was achieved, but at the same time the increase of
the Ni content enhanced the MSR performance and RWGS
reaction leading to higher CO concentrations.22

Bimetallic Ni–Cu catalysts supported on ZrO2 were examined
by Lytkina et al.,23 with different ratios of nickel and copper and
annealing temperature. Fig. 1 displays the H2 yields of the
investigated catalysts with temperature gradient. Maximum H2

production was achieved at a lower annealing temperature (350
°C), where the sample was primarily represented by non-
H c
rsion (%)

CO selectivity
(%)

H2 selectivity
(%)

H2 yield
(mol/molMeOH) Ref.

— 2.66 22
— 2.00 23

9.6 92.7 — 24
— — 25

0.3 — — 26
— — — 27
— — — 28
17.0 >95.0 — 29
1.1 — — 30
0.9 — — 30
<0.1 — — 31
2.9 74 — 32

© 2025 The Author(s). Published by the Royal Society of Chemistry
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crystallised mass. MeOH-involved H2 production hardly
occurred on pure Zr. Conversely, with calcined catalysts at 350 °
C, a higher H2 yield could be obtained. However, the most active
samples were the ones where the tetragonal ZrO2 was coated
with an amorphous shell. Also, the conversion of MeOH on Cu-
rich catalysts was more selective in the H2 production. The
difference between the Cu-rich and Ni-rich catalysts in selec-
tivity was due to the character of the predominant metal,
showing itself in a change of Fermi level, as well as in chemical
properties.

Tahay et al.24 studied the MeOH-involved H2 production
process utilising a micro-structured monolith in conjunction
with a synthesised nanostructure of TiO2. The surface of the
monolith/TiO2 was coated with Cu, Cu/Ni, Ru and Pt metals.
The monolith structure signicantly improved the mass trans-
fer of reactants and products, and, in synergy with the high
surface area, porosity, pore size, and stability of the nano-
structured TiO2 lm, the MeOH conversion was found to reach
99% with low CO selectivity (5%). Among the investigated
catalysts, the Ru catalyst exhibited the highest conversion and
selectivity. However, due to economic considerations, the Cu–Ni
catalyst presents an excellent alternative, achieving a 93%
conversion rate. Furthermore, similar to previous studies, the
MeOH conversion and H2 selectivity of the Cu–Ni catalyst were
superior to those of the pure Cu catalyst, attributed to the role of
Ni.

The primary challenge with commercial catalysts is deacti-
vation, where various cocatalysts or promoters play a crucial
role in enhancing the reforming stability and activity.34 For
example, acidic or alkaline cocatalysts can further convert
undesired products into valuable or less harmful ones, thereby
improving the catalytic performance. Although highly dispersed
Cu-based catalysts have been reported to achieve high activity
with reduced CO formation, there is no consensus on the
promotion mechanism.35,36 Moreover, the inclusion of a second
promoter, along with diverse supports, may inuence both
activity and selectivity. There has been sustained interest in
supports and promoters, with certain materials, such as ZnO,
CeO2, Al2O3 and ZrO2, showing dual functionality by improving
catalyst activity and stability through modications in disper-
sion and interactions with the support material.37 It is widely
recognized that isolated metal atoms exhibit exceptional
performance in various reaction systems. However, the absence
of ensemble sites limits their ability to facilitate the reaction of
large molecules and certain multistep processes. Consequently,
the “ensemble effects” between single metal atoms and neigh-
bouring oxygen vacancies can enhance and promote the cata-
lytic activity for reactions involving large molecules.38 The
catalytic activity of Cu-based catalysts has been found to
improve with both ZrO2 and ZnO promoters, which could
enhance the surface area, stabilise Cu crystal size, prevent
agglomeration of Cu particles during reduction and reaction
processes, and stabilise Cu+ species on the catalyst surface.39

For instance, Pd/ZrO2 provided the best activity for H2 genera-
tion, but Pd/ZnO gives a high CO2 selectivity (97%).40 Different
synthesis approaches impart distinct properties to catalytic
materials. For instance, the sol–gel auto-combustion method
© 2025 The Author(s). Published by the Royal Society of Chemistry
used in the synthesis of Cu/ZrO2 catalysts has been found to
achieve higher CO2 selectivity, activity, and stability compared
to catalysts prepared through impregnation and co-
precipitation methods.41

Mateos-Pedrero et al.25 investigated the performance of
a newly synthesised catalyst, Cu over a ZrAl support. The new
catalyst aims to improve the catalytic performance and promote
non-CO generation. The major drawbacks of the most conven-
tional Cu-based catalysts are the absence of lifelong stability
and hence the activity loss and the formation of CO. The
investigation showed that the composition of the support has
a huge effect not only on the catalyst performance but also on
the physicochemical characteristics of the CuZrAl catalyst.
Moreover, the inclusion of zirconia and its content in the sup-
ported catalyst yielded interesting results. A high zirconia
content led to lower activity due to zirconia segregation, as Zr
has a low surface area. Conversely, at a low zirconia content,
ZrAl samples exhibited a homogeneous composition with high
dispersion of Zr and Al species. This improved dispersion and
reducibility of the catalyst proved advantageous for catalytic
performance.

Li et al.26 synthesised different CuZnZrAl catalysts via the
coprecipitation-ammonia method as well as investigated the
inuence of Y and Ce promoters. The results revealed that this
preparation method enhanced the dispersion of each compo-
nent in the catalyst, leading to smaller crystal sizes and larger
surface areas. The addition of promoters, particularly Ce,
improved the catalyst's stability, achieving 100% conversion at
270 °C with a CO selectivity of just 0.3%. Furthermore, aer 20
cycles, the conversion remained as high as 98%.

Xu et al.27 developed an inverse ZrO2/Cu catalyst through an
oxalate sol–gel co-precipitation followed by calcination/H2-
reduction treatment. The catalyst consisted of highly dispersed
t-ZrO2 nanofragments with size between 3 and 4 nm over the Cu
substrate with particles of around 20 nm size. The inverse
catalyst showed exceptional stability in terms of long-term
catalytic performance with zero CO production and a high
yield of 190 mmolH2

gcat
−1 h−1 at 200 °C. Both DFT calculations

and experimental results demonstrated that the highly reactive
interface of –OH groups resulting from the formation of
a ZrO(OH)–(Cu+/Cu) interfacial structure during the reaction
can convert HCHO* to H2 and CO2 with HCOOH* as an
intermediate.

Cheng et al.28 used the base of an industrial Cu/ZnO/Al2O3

catalyst to enhance the Cu–ZnO synergy. CuZnAl–xMg catalysts
were synthesised with different Mg loadings, and the addition
of a Mg dopant was found to promote the catalytic activity,
reaching the greatest space time yield of H2 of 172mmol g−1 h−1

at 5% Mg content, attributed to the high surface area of Cu and
abundant Cu+ species. Characterisation techniques revealed
a decrease in the particle size and an increase in the surface area
with higher Mg loadings. XRD patterns indicated that up to 5%
Mg, the crystal size of ZnO and Cu was reduced, enhancing the
catalytic performance. However, when the Mg composition was
increased to 7%, the crystal size of ZnO and Cu enlarged, sug-
gesting that the positive effect of Mg may be weakened in the
presence of excess Mg.
Chem. Sci., 2025, 16, 3810–3831 | 3813
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Li et al.42 aimed to expose a commercial Cu/ZnO/Al2O3

catalyst to a mixture of H2, H2O, and CH3OH at atmospheric
pressure and 300 °C to accelerate the migration of ZnOx species
onto the surface of Cu metal through an adsorbate-induced
strong metal–support interaction. The results demonstrated
that such morphological modications could enhance the
stability by approximately 70%. Moreover, the catalytic activity
was improved, and the MSR reaction was promoted.

The inuence of Ce and Zn on a Cu-based mesoporous
carbon (MC) catalyst was studied by Bepari et al.29 These cata-
lysts are widely used for their large pore volume, well-structured
porosity, and chemical inertness. The addition of Cu to the MC
increased the pore volume due to the formation of Cu nano-
particles on the support surface, while the addition of Zn and Ce
further increased the pore diameter in nearly all catalysts.
Catalytic testing, conducted between 200 and 350 °C using a wet
impregnation method for CuCe on MC, demonstrated the best
conversion rate among the catalysts, achieving 68% at 250 °C. In
terms of conversion, the addition of Ce using both the one-pot
and wet impregnation methods resulted in higher performance
compared to CuZn on MC prepared by the one-pot method. H2

selectivity was high (>90%) for all catalysts, and the addition of
Ce effectively inhibited carbon deposition.

Liu et al. made an attempt to synthesise more feasible
catalysts and for the rst time investigated Cu-based catalysts
on different supports, including La2O3, Pr6O11, Sm2O3, Y2O3

and CeO2.30 Five different rare earth oxide (REO) supports were
used to study the Cu/CuO–support interaction, revealing that
the La2O3 support had a negative impact on the reaction, while
all the other cubic-phase catalysts were successfully syn-
thesised. Regarding MSR reaction performance, among the ve
synthesised catalysts, the 5% Cu/CeO2 catalyst showed the best
production performance, closely followed by the 5% Cu/Sm2O3

catalyst (Fig. 2). It was found that the quantities of surface basic
sites, the active O2

− species, the Cu+ content/percentage and the
active Cu surface area positively affected the reaction perfor-
mance. Moreover, the MeOH adsorbing/SR in situ DRIFTS
results revealed that in the case of Cu/CeO2 catalyst the m-
HCOO* reactive monodentate intermediate was formed, while
in the case of Cu/Y2O3 it was absent, making it the worst per-
forming catalyst.

A Pd–Zn alloy was studied for thermocatalytic MeOH-
involved H2 production, and it was found that the catalyst
underwent pre-reduction before the reaction would facilitate
the catalyst activity. The mechanistic investigation revealed that
Fig. 2 Catalytic MSR reaction tests. (a) MeOH conversion and (b) H2

yield at 340 °C.30 Reproduced from ref. 30 with permission from
Elsevier, Copyright 2023 Elsevier Ltd. All rights reserved.

3814 | Chem. Sci., 2025, 16, 3810–3831
the formed HCHO underwent decomposition into CO and H2

on metallic Pd, whereas HCHO present on the Pd–Zn alloy was
transformed into CO2 and H2 through the interaction with
H2O.43 Additionally, Ru was reported to enhance the activity of
thermocatalytic methanol-involved H2 production by
promoting the dispersion of Pd particles. Characterisation
results indicated that the promotion of CO desorption from Pd
sites by Ru was the key factor for the observed activity
enhancement.44 Moreover, Au served as an efficient cocatalyst in
CeO2 catalysed MeOH-involved H2 production at low tempera-
tures (<250 °C), where strong bonded Au–O–Ce species were the
main active species.45 A single-atom system was also reported,
in which Au and Pt were anchored on the lattice-O of ZnO.46

Density functional theory (DFT) calculations suggested that the
efficient catalysis of Pt1 and Au1 originated from the strong
binding energy of the intermediates, reducing the reaction
barrier height and maximising active atom utilisation.

Lin et al.31 mentioned that Pt atomically dispersed on a-
molybdenum carbide (a-MoC) enables low-temperature, base-
free H2 generation, with remarkable H2 production activity in
an aqueous phase system (Fig. 3a and b). Numerous studies
have demonstrated H2 generation through methanol-involved
aqueous phase reforming over Pt- and Ru-based noble metal
catalysts. The exceptional H2 production was attributed to the
strong ability of a-MoC to promote water dissociation and the
synergistic effect between Pt and a-MoC, which effectively
activated methanol and facilitated its reforming.

In a recent study of Lin et al.,47 the MeOH-involved H2

production was investigated using a newly discovered catalyst,
Ni/a-MoC, where catalyst's production rate was 6 times greater
than that of a conventional noble metal Pt/Al2O3 catalyst (Fig. 3c
and d). The synergistic effect of CO reforming and C–H bond
dissociation over the atomically dispersed Ni, as well as the
Fig. 3 (a) Coordination numbers as a function of Pt loadings in Pt/a-
MoC catalysts. (b) MeOH-involved H2 production activity on 0.2% Pt/
a-MoC,31 (c) average catalytic activity of Ni/a-MoC with different Ni
loadings and (d) MeOH-involved H2 production activity on 2% Ni/a-
MoC.47 TTN: total turnover number. (a) and (b) Reproduced from ref. 31
with permission from Spring Nature, Copyright 2017. (c) and (d)
Reproduced from ref. 47 with permission from American Chemical
Society, Copyright 2021.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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highly efficient O–H activation over a-MoC, were the main
reasons for effective catalytic performance. The key factor for
highly active Ni-based catalysts relies on the high surface area
with adequate Ni dispersion along with the small particle size.48

Modragón-Galicia et al.49 conducted a systematic investiga-
tion of the heterogeneous MSR reaction using three different
catalytic materials: Pt/ZnO, Pd/ZnO, and PtPd/ZnO. X-ray
diffraction (XRD) studies and proles presenting crystallo-
graphic details revealed that the intermetallic PtZn phase on the
Pt/ZnO catalyst was more stable compared to the PdZn phase on
the Pd/ZnO catalyst. Additionally, platinum within the PtZn
structure was found to be stabilized in the bimetallic PtPd/ZnO
catalyst. Superior performance was demonstrated by measuring
the catalytic reactivity of the Pt/ZnO-rod catalyst.

A Pt-based catalyst was investigated by Shanmugam et al.32

on the MSR. The study examined the inuence of various metal
supports (CeO2, Al2O3, and ZrO2) and the presence of In2O3 as
a co-support, which yielded signicant results. The addition of
the co-support facilitated the formation of metallic Pt nano-
particles with high concentration, improved dispersion, and
controlled particle size on the surface. The activity and stability
of these catalysts were enhanced, with a notable reduction in
CO formation. Among the catalysts, the Pt/In2O3/CeO2 catalyst
exhibited excellent performance in MSR, demonstrating
stability for 100 hours with the lowest CO formation. Addi-
tionally, single-atom Pt1 deposited on CeO2 offered signicantly
higher H2 activity, which was 40 times greater than that of
2.5 nm Pt/CeO2.50

Recently, low-temperature MeOH-involved H2 production
was reported,51 where the synergy of Pt single atoms and Lewis
pairs allowed porous CeO2 to realise efficient H2 generation at
120 °C, and a very low CO (0.027%) was observed. The catalyst
design played a crucial role in the activation of both MeOH and
H2O, resulting in high H2 production at lower temperatures –

a challenging feat for single active-site catalysts. The construc-
tion of dual active-site catalysts suggests that a metal active site
with high capability for methanol activation can exhibit low
water dissociation, while water activation was promoted on
reducible metal oxides through interaction with the O atom at
a Lewis acidic centre, followed by transfer of one H atom to the
adjacent Lewis basic centre. The Pt1/PN–CeO2 catalysts exhibi-
ted at 135 °C a H2 generation rate of 199 molH2

molPt
−1 h−1,

which was a lot higher than those of Pt/Al2O3 (2.6 molH2
molPt

−1

h−1), Pt/TiO2 (3.8 molH2
molPt

−1 h−1) and Pt/C (0.7 molH2

molPt
−1 h−1) catalysts under the same conditions. The conven-

tional metal-based catalysts utilised at the industrial level for
the MSR reaction cannot operate at low temperatures such as
100–165 °C where the dual active site catalysts operate, since the
temperature according to the Arrhenius expression0
@k ¼ Ae

�Ea
RT

1
A is directly related to the reaction rate for H2

production. The development of such materials not only
improves the energy efficiency of industries but also contributes
positively to addressing the environmental crisis.

Zhang et al.52 conducted a morphological investigation
evaluating different shapes of CeO2, including rods (r), cubes
© 2025 The Author(s). Published by the Royal Society of Chemistry
(c), and irregular (w) forms, on a Pd/In2O3/CeO2 catalyst
prepared through the impregnation method. Catalytic perfor-
mance results demonstrated that the Pd/In2O3/CeO2-r catalyst
exhibited the best performance, achieving nearly 96%methanol
(MeOH) conversion at 375 °C. Although the primary products
were H2 and CO2, minor amounts of CO, methane, and
dimethyl ether were also detected. CO selectivity was approxi-
mately 1.3%, while the selectivity of other undesired products
remained very low, at parts-per-million (ppm) levels. Scanning
Electron Microscopy (SEM) and High-Resolution Transmission
Electron Microscopy (HR-TEM) characterization revealed that
the shape of the CeO2 support affects the exposure of different
crystalline surfaces, thereby inuencing the catalytic activity.
Specically, in the rod-shaped morphology, the preferential
exposure of the Ce (110) crystal facet provides abundant active
Pd⁰ species, active oxygen vacancies, and surface oxygen. These
features assist in the activation of MeOH and H2O during the
catalytic cycle, thereby promoting the formation of CO2 and H2.
Lastly, the stability of the Pd/In2O3/CeO2-r catalyst was high-
lighted, along with its potential for utilization in PEMFC
systems.

Thermocatalytic MSR is a widely used industrial technology
for H2 production, requiring high energy input due to the
elevated operating temperatures. Efforts have been made to
industrialise low-temperature MSR, attracting attention and
nding applications in various areas. Research has primarily
focused on catalyst development to improve the performance,
selectivity, and stability. In addition to catalyst synthesis, other
factors such as reactor design also inuence the overall reaction
performance and are discussed comprehensively below.

3. Reaction mechanism

The rst attempt to explore the mechanism of surface reaction
of different Cu-based catalysts was about three decades ago. The
development of computational studies and hence the emphasis
that has been given to the Cu-based surface reactions via DFT
calculations are conducive to the better comprehension of the
reaction mechanism while predicting catalyst surface pathways,
reaction barriers and reaction energies for the MSR reaction.53

There are extensive studies on the reaction kinetics of Cu
catalysts as well as noble metal catalysts,54–56 while recently we
more oen came across Ni-based catalyst investigations.

Bossola et al.57 designed a Cu-based catalyst on zirconia with
the addition of silica to zirconia in order to improve the elec-
tronic and morphological properties of the Cu nanoparticles. A
sequence of characterisation techniques were performed to
address the improved activity, with the suggested mechanism
proposing that MeOH is adsorbed on Cu, which then goes
through the dehydrogenation process via the formate pathway.
The metallic part of the nanoparticles contributes to the H2

production on the same site. Signicant enhancement in the H2

production was obtained for Cu/ZrO2–SiO2, which was four
times greater than that of the silica-free catalyst.

Reyna-Alvarato et al.58 theoretically studied the MSR reaction
mechanism using different catalysts, such as CeO2 and Ni/CeO2,
showing similar results as Zuo et al.59 Their theoretical
Chem. Sci., 2025, 16, 3810–3831 | 3815
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Fig. 4 (a) Schematic of the suggested theoretical catalytic mechanism
of CeO2 and Ni/CeO2 in MeOH-involved H2 production,58 (b) the
ruthenium-catalysed production mechanism of H2 production from
MeOH-involved H2 production,62 and (c) the overall process via Pt/
NiAl2O4.63 (a) Reproduced from ref. 58 with permission from Elsevier,
Copyright 2021 Elsevier B.V. All rights reserved. (b) Reproduced from
ref. 62 with permission from American Chemical Society, Copyright
2014. (c) Reproduced from ref. 63 with permission from American
Chemical Society, Copyright 2023.
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mechanism suggests that the reaction consists of 5 steps
(Fig. 4a). Initially, the H2O molecule is adsorbed over the cata-
lyst surface which forms one hydroxyl group (OH) and one
adsorbed hydrogen (H), and MeOH then reacts with the atomic
H2 forming a methoxy species (–CH3O) at the catalytic surface.
In the third step, another molecule of H2 is released, forming
one formaldehyde molecule (–CH2O), which is considered as
the intermediate reaction. The new formate is a result of the
reaction between the H2 molecule of the hydroxyl group and
another H2 molecule of the methoxy group. Consequently, a H2

molecule is released with the subsequent decomposition of one
formaldehyde molecule into H2 and O–C, where the former is
surface attached. Lastly, a third H2 molecule and the remaining
CO2 molecule are released.

Fajin and Cordeiro60 studied the MSR over Ni–Cu surfaces
using DFT calculations to understand all the possible reaction
routes, especially the ones achieving direct CO2 formation from
MeOH. The decomposition on the surface followed by the WGS
reaction, which directly transformed the obtained CO to CO2

and H2, the direct conversion of MeOH into CO2 and H2 and
possible methane and coke formation are the catalytic reaction
routes that were considered in their work. The disruption of the
O–H bond or one of the C–H bonds of MeOH starts its
decomposition with further rupture of the remaining bonds to
follow. The direct formation of CO2 and H2, is a pathway affil-
iated to the presence of combined phases in the catalyst.
Formaldehyde can be obtained during the MeOH decomposi-
tion reaction with a co-adsorbed hydroxyl, and the attained
compound (CH2OOH) is converted on the surface until the
generation of CO2. Furthermore, the catalyst blocks the gener-
ation of methane or coke, while the desorption of CO is not to
be expected.

A single Ni-embedded model (NiCu (111)) and a single Ni-
adsorbed model (A-NiCu (111)) were developed by Tang
et al.,61 wherein DFT calculations were performed to assess their
adsorption capacities and mechanistic investigation was
3816 | Chem. Sci., 2025, 16, 3810–3831
carried out. Both the considered bimetallic surfaces were found
to have enhanced stability compared to the pure Cu (111), and
the introduction of Ni also improved the adsorption perfor-
mance. Additional investigations were conducted on adsorption
enhancement, showing that the A-NiCu (111) surface has
a stronger adsorption promoting effect. Regarding the reaction
mechanism, three major procedures were taken into account
during the MSR (MeOH dehydrogenation, water decomposition
and RWGS reaction), while several intermediate reactions were
considered indicating that the rate-determined step is the
methoxy dehydrogenation. Moreover, the lower activation
energy of the NiCu (111) surface during the CO conversion
process plays a signicant role in inhibiting coke deposition.

The reaction mechanism of MSR using Ru-based catalysts
was investigated by Yang et al.,62 wherein a DFT study was
applied to reveal the catalytic cycles for the release of H2 and
CO2. Three catalytic cycles participate in the reaction mecha-
nism consisting of the MeOH to formaldehyde dehydrogena-
tion, the formaldehyde coupling and the hydroxide to formic
acid conversion as well as the formic acid dehydrogenation to
CO2. Fig. 4b shows the overall mechanism of the MSR reaction.
The reaction begins with a hydroxyl proton transfer from
amolecule of MeOH to the ligand N2 of the catalyst and then the
C–H bond splits with ease transferring the hydride to the metal
centre of the catalyst for the formation of formaldehyde. The
latter generates an anion that is a bit more stable with the
hydroxide anion, which could be regarded as originating from
the solvent or formed from the cleavage of H2O. Then, the
formation of formic acid through the disruption of a C–H bond
happens for the transfer of a methylene hydride in the
H2COOH

− anion to Ru. Due to the acidity of formic acid, it is
not possible to discover the transition state for the rupture of
the O–H bond in formic acid. Aer every catalytic cycle,
a molecule of H2 is released through a self-promoted mecha-
nism that features an extra MeOH or H2O molecule acting as
a bridge for the transfer of a proton from the ligand nitrogen to
the metal hydride. Recently, steady-state isotopic transient
kinetic analysis (SSITKA) was utilised to study the detailed
process involving methoxyl and CO species adsorbed on Pt/
NiAl2O4.63 From Fig. 4c, C–H bond cleavage occurs within
methoxyl adsorbed on interface sites, and O–H bond rupture is
observed within oxygen-lled surface vacancies, respectively.

Xue et al.64 aimed to investigate the gliding arc MSR (GA-
MSR) reaction mechanism combining experimental data and
plasma kinetic simulations at different MeOH concentrations.
First, the H, OH and CH3 were considered as the main reactive
species as their concentrations increased due to their fast
formation in the inside arc stage, while they were consumed up
in the outside arc step during the thermochemical process. The
main steps considered were the MeOH decomposition and
dehydrogenation. The increase of MeOH concentration
demonstrated an enhancement solely on the concentrations of
H and CH3, suggesting that at low MeOH concentrations CO2 is
produced and at higher MeOH concentrations hydrocarbons
are produced.

Almithn and Alhulaybi65 performed a mechanistic investi-
gation using DFT calculations for Ni2P. It was revealed that
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Reactor set-ups utilised for the MSR

Reactor Design characteristics Conditions
MeOH conversion
(%)

H2 yield
(%) Ref.

Continuous
ow

Isothermal tubular packed bed
reactor with an internal diameter of
1 mm and a length of 16 cm

230 °C, 0.86 bar, S/C= 1.1, and
W/F = 35 kgs g

−1 mol−1
100.0 — 76

Continuous
ow

Isothermal tubular coated wall
reactor with an internal diameter of
4.1 mm and a length of 16 cm

230 °C, 0.86 bar, S/C= 1.1, and
W/F = 40 kgs g

−1 mol−1
94.0 — 76

Continuous
ow

Isothermal packed bed reactor with
an internal diameter of 1.5 mm and
a catalyst size of 150 mm

230 °C, 1 bar, S/C = 1.1, and
mcat/Vin = 2 [mg (mL−1 min−1)]

60.0 — 78

Continuous
ow

Isothermal coated wall reactor with
an internal diameter of 1.5 mm a and
catalyst size of 150 mm

230 °C, 1 bar, S/C = 1.1, and
mcat/Vin = 2 [mg (mL−1 min−1)]

65.0 — 78

Continuous
ow

Counter-ow tubular packed bed
reactor with 8 internal heating tubes
with an internal diameter of 12 mm
and a length of 25 mm

Tin = 240 °C, 1 bar, and 8
heating tubes

94.5 61.7 79

Continuous
ow

Tubular xed-bed reactor with
simultaneous internal and external
heating

Tin = 250 °C, 1 bar, S/C = 1.5,
and v = 0.2 m s−1

100.0 62.8 80

Continuous
ow

Non-isothermal multitubular packed
bed reactor with a length of 0.5 m and
thermal air passing through the shell
side

Tthermal air = 400 °C,
TMeOH = 160 °C, and 1 bar

95.0 65.0 82

Membrane Packed bed reactor with Pd
membrane for a H2 purity of >99.99%

280 °C, 1 bar, S/C = 1.2,
and Q = 1 g min−1

97.0 91.1 83

Membrane Fixed bed reactor with Pd membrane
for a H2 purity of >99%

280 °C, 1 bar, S/C = 1.2,
and V = 0.5 mL min−1

70.3 74.4 84

Membrane Isothermal membrane reactor with
a silica membrane (4 mm thickness
and 5 cm active length)

300 °C, 1.5 bar, S/C = 1,
and GHSV = 6000 h−1

85.0 85.0 85

Membrane Isothermal membrane reactor with
a Pd–Ag membrane (50 mm thickness
and 5 cm active length)

280 °C, 2 bar, S/C = 1,
and GHSV = 1800 h−1

100.0 100.0 85

Membrane Isothermal membrane reactor with
a silica membrane of 4 mm thickness

240 °C, 10 bar, S/C = 3,
and GHSV = 6000 h−1

95.0 96.0 86

Membrane Non-isothermal membrane reactor
with 4 membranes of 3 in. height and
1/8 in. diameter dead-end tubes
coated with a 30 mm thick Pd–Ag
active layer

450 °C, 6 bar, S/C = 1, and
V = 0.02 mL min−1

98.0 — 87

Membrane Non-isothermal membrane reactor
with a Pd–Ag membrane consisting of
600 ceramic support tubes

300 °C, 2 bar, S/C = 1,
and sweep ratio = 1

94.0 93.8 88

Microreactor Non-isothermal circle-triangle cross-
sectional microreactor

Tin = 100 °C, 10 bar, and
S/C = 1.2

98.6 — 89

Microreactor Isothermal multichannel
microreactor with 16 parallel mini
channels

275 °C, 1 bar, S/C = 1.3, and
WHSV = 0.67 h−1

89.7 — 90

Microreactor Non-isothermal microreactor with
parallel microchannels and the
catalyst coated on the reactor's wall

500 °C, 1 bar, S/C = 10, and
GHSV = 24 000 mL (g−1 h−1)

97.0 — 91

Microreactor Isothermal microreactor based on 5
stacked wave sheets and copper foam

280 °C, 1 bar, and S/C = 1.5 65.0 — 92

Microreactor Non-isothermal multilevel series
scaled-up microreactor with 5 parallel
MeOH combustion chambers

320 °C, 1 bar, and S/C = 1.3 92.5 — 93

Microreactor Microreactor with a Ti porous
membrane of 25 mm diameter and 1
mm thickness

360 °C, 1 bar, S/C = 8.8, and
WHSV = 9.28 h−1

63.0 — 94

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2025, 16, 3810–3831 | 3817
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compared to other transition metals such as Pt, Pd and Co that
convert MeOH to CO, on Ni2P, the MSR reaction may compete
withMeOH decomposition. The presentedmechanism suggests
that formaldehyde (CH2O*) reacts with the co-adsorbed OH* to
produce CH2OOH*, which is then dehydrogenated to form CO2.
It was also reported that the exceptional selectivity and the coke
formation resistance of Ni2P could potentially be considered as
a possible alternative solution for Cu-based catalysts.
Fig. 5 Schematic representation of the reforming reactor: (a) packed
bed and (b) coated-wall packed bed microreactors.78 Reproduced
from ref. 78 with permission from the Royal Society of Chemistry.
4. Main experimental setups and
reactors

The reactor congurations play a vital role in the performance
of the MSR reaction and more specically to the conversion of
the reaction. The conventional reactor unit that is more
frequently utilised for the MeOH-involved H2 production in
thermocatalysis is the packed bed reactor. However, during
recent years, efforts were made to develop other reactor designs
such asmembrane reactors (MR) andmicro-reactors to enhance
the H2 production.66 The smaller reactor units require better
design deployment compared to the conventional units to avoid
large pressure drops.67 According to Iulianelli et al.,68 most of
the time, the MSR reactors and MR are tubular in order to
compete with the better performance of more complex designs
that have higher manufacturing costs. Table 2 summarises
different reactor congurations utilised for MSR.
4.1. Packed bed reactors

A packed bed reactor loaded with solid catalytic particles is
considered a simple system with low cost of manufacturing and
operation. At the industrial level, they are preferred due to their
easier design and construction, but at the same time there is
a high pressure drop over the reactor.69 However, proper opti-
misation of operating conditions of packed bed reactors can
signicantly improve the H2 efficiency at the outlet. There have
been many studies, recently, focusing of the packed bed reactor
units conducting either experimental or theoretical
investigations.70–75

Karim et al.76 compared an isothermal packed bed reactor
and a coated-wall reactor, where the catalyst bed is a layer in
contact with the wall of the reactor. Generally, the benets of
this reactor conguration vary. Some of the advantages are low-
pressure drop, better heat and mass transfer and the lowest
amount of catalyst to operate.77 In the packed bed reactor, it was
found that between 1 and 4.1 mm internal diameter the heat
transfer is limited and temperature gradients of up to 40 K
could exist in the reactor bed. In contrast, the coated-wall
reactor was free from any heat or mass limitations with lower
pressure drop over the reactor and higher catalytic activity. The
fact that MeOH can be reformed at low temperatures between
200 and 250 °C makes it even more attractive for large-scale
applications.76

Hafeez et al.78 carried out a similar theoretical study
comparing the isothermal packed bed and coated wall micro-
reactors using a CuO/ZnO/Al2O3 catalyst (BASF F3-01), which is
shown in Fig. 5a and b. Bothmicroreactors appeared to have the
3818 | Chem. Sci., 2025, 16, 3810–3831
similar performance at same temperatures due to the smaller
scale of reformers. The coated wall reactor was expected to
obtain higher conversion rates at a constant wall temperature in
each layer, but the difference between the results of the two
reactors was negligible due to the small size of reactors. The test
regarding the robustness of themodel by a comparison between
2D and 3D modelling congurations conrmed the model val-
idity. Case studies such as the effect of residence time,
temperature, steam to MeOH ratio, and thickness of catalyst
coating on MeOH conversion were performed. More studies
occurred, revealing that the bigger pellet sizes of catalyst led to
the appearance of internal mass transfer resistance, followed by
a reduction in MeOH conversion.

A numerical investigation was conducted by Kusumastuti
et al.79 using a heating counter-ow tubular packed bed reactor.
The tube design is extensively discussed in the literature for its
straightforward construction. Three different congurations
were assessed for their MSR reaction performance (straight
tube, divergent tube and convergent tube), showing that the
divergent design achieved the higher MeOH conversion (around
68%). Also, it highlighted the positive effect of internal heating
with a waste heat source due to the endothermic reaction which
dominates, enhancing the MeOH conversion. The number of
heating tubes was another parameter that was investigated
varying from 4 to 6 and to 8. The results demonstrated that
a higher heating tube number tends to increase the conversion
rate as improved heat transfer is accomplished. Additional
studies were done to optimise the reactor design such as the
position of the heating tube, the reformer angle and the inlet
temperature, revealing that the best performance (almost 95%
MeOH conversion) was obtained using the divergent shape with
8 heating tubes, a hot air inlet velocity of 0.5 m s−1, a heating
tube position of 3.5 mm and a reformer angle of 5° with an inlet
temperature of 513 K.

Another limitation that constitutes an obstacle for fuel cell
applications and a frequent difficulty to be overcome in packed
bed reactors is the irregular temperature distribution. A tubular
xed bed reactor with simultaneous external and internal
heating was investigated by Zhang et al.80 to enhance the
temperature distribution and hence the conversion of MeOH. A
3D validated model was utilised to simulate a tubular xed bed
reactor, a tubular xed bed reactor with an inner heating pipe
and a tubular xed bed reactor with helical ns around the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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heating pipe. It reported the signicant contribution of the
heating pipe in the MeOH conversion and H2 production.
Moreover, the addition of helical ns enhanced the convective
heat transfer and ow path of reactants, achieving better
performance of the reaction with an increase in the conversion
of around 8.5%. It also examined the impact of geometric
parameters, such as the pitch, height and width of helical ns,
temperature, S/C molar ratio and inlet ow velocity, on the
reaction performance. The optimum operating parameters
showed almost 100% MeOH conversion.

A 3D numerical model of tubular packed bed reactor
comprising several cylindrical tubes was utilised by Wang
et al.81 for the MSR reaction. Effects of various parameters such
as S/C molar ratio, inlet temperature, reactant mass ow rate,
catalyst particle size and porosity were investigated for assess-
ing the performance of the MSR reaction. The optimised
conditions were determined as a temperature of 280 °C, S/C
ratio of 2, inlet gas velocity of 0.065 m s−1 and catalyst
particle size and porosity of 1 mm and 40%, respectively. The
catalyst was located in different sections in order to avoid the
formation of hot-spot areas inside the reactor in a large extent,
especially in a segmented reactor conguration where the
temperature inhomogeneity was reduced by almost 70% as well
as the CO concentration by over 30%.

Zhu et al.82 examined theMSR reaction using a Cu/ZnO/Al2O3

catalyst in a non-isothermal multi-tubular packed-bed reactor
with heating tubes operating as a heat exchanger as well. A
comprehensive pseudo-homogeneous model was developed,
and the validation was conducted following a previous study of
Zhu et al.95 Two different ow set-ups have been investigated. A
co-current design in which the reactant and air ow are in the
same direction and a counter-current design where both ows
are directed in opposite directions. The results demonstrated
that both reactors showed high MeOH conversion over 95%,
while the co-current design achieved the lowest CO concentra-
tion at the outlet of the reactor (0.34%). Additional investiga-
tions were carried out for the same catalyst mass by increasing
the tube number while decreasing their diameter. An
improvement in the MeOH conversion rate was obtained, but at
the same time the amount of CO generated was increased.

In order to nd applications, the MSR technology should be
subject to an economic evaluation for its efficiency and feasi-
bility. Choi and Stenger96 performed an economic evaluation of
an optimized system with the optimized reactor size and oper-
ating conditions, using economic prot as the objective func-
tion. Here, prot is dened as the difference between H2

revenue and the xed and operating costs of production. H2

revenue is affected by H2 purity, while reactor and energy costs
are also important factors. MATLAB soware was utilized for
the analysis, where the prot function was maximized by
minimizing the difference between cost and revenue through
the optimized process.

A technoeconomic analysis by Rahatade and Mali97 was re-
ported for the rst time, considering the integration of heat and
steam reforming processes of methanol (MeOH) and dimethyl
ether (DME). A xed-bed reactor was utilized in the simulations
at a temperature of 250 °C and a pressure of 20 bar. The
© 2025 The Author(s). Published by the Royal Society of Chemistry
economic analysis was conducted by estimating the Total
Annual Cost (TAC) of the process, which includes both the xed
capital investment (FCI) and working capital investment (WCI).
The results indicated that the utilization of MeOH was cheaper
than DME, as fewer utilities were involved. Moreover, heat
integration was found to be more benecial than a non-heat-
integrated system, resulting in a reduction in TAC of up to
$1610, while H2 production was approximately $10 300 cheaper
than that from DME.

The majority of publications focused on kinetics, thermo-
dynamics, modelling and simulation studies, as well as on
evaluating the performance of different reactor designs.
However, the technoeconomic analysis of different congura-
tions for the MSR reaction is limited in the literature.
4.2. Membrane reactors

The recent development of PEMFCs as an alternative energy
conversion technique aimed to eliminate greenhouse emissions
and furthermore environmental pollution that originated from
the conventional energy sources.98 This technology demands
high clarity of H2, which can be achieved by membrane reactors
(MRs). A membrane plays a vital role in the removal or addition
of chemical species in a reaction system while also contributing
to better interactions between the catalyst and reactants without
conducting any separation process.99 These reactors can achieve
higher conversions or the same conversion under milder
conditions than conventional reactor systems. Moreover, high-
purity H2 production is achieved in a sole unit. The high cost,
low chemical resistance in the case of dense Pd-MRs, not high
purity H2 production and perm-selectivity in the case of
composite Pd-based MRs and the contamination of H2S and CO
are some of the drawbacks of MRs.100

Since Pd-MRs are the most studied ones, Shi et al.83 devel-
oped a Pd membrane reaction system for pure H2 production.
The double-functioned system allowed the low-temperature
MSR reaction and the high-temperature purication conduct-
ed under isothermal conditions. Experimental results with
optimisation revealed that high H2 purity (above 99.99%) was
achieved for a MeOH ow rate between 1 and 2 g min−1 and
pressure of 1.5–6 bar. Successful separation was achieved
with ppm levels of CO concentration and furthermore showed
potential to provide up to 500 W, nding application to power
mobile devices and small range-extended vehicles.

A high H2 purication process was designed by Wang et al.84

for the production of pure H2 from the MSR reaction using the
CuCe/Al2O3 catalyst and a Pd membrane supported on porous
ceramic. Fig. 6a illustrates the schematic diagram of the H2

integrated MR. Characterisation techniques revealed the
exceptional catalyst properties of high catalytic activity and
stability. The H2-purication integrated reactor was operated at
temperatures between 360 and 400 °C, showing an increase in
the H2 generation, while MSR was conducted in a wide
temperature range between 220 and 400 °C. At 400 °C the H2

concentration reached amaximum of almost 99.4%, and the CO
concentration was found to be around 0.07 vol%. It was re-
ported that the further increase of temperature over 400 °C,
Chem. Sci., 2025, 16, 3810–3831 | 3819
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Fig. 6 Schematic representations of MRs with the (a) ceramic sup-
ported Pd membrane,84 (b) Pd–Ag metallic active layer,87 and (c) Pd–
Cu alloy membrane.101 (a) Reproduced from ref. 84 with permission
from Elsevier, Copyright 2023. (b) Reproduced from ref. 87 with
permission from Elsevier, Copyright 2022. (c) Reproduced from ref.
101 with permission from Pleiades Publishing Ltd, Copyright 2020.

Chemical Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 1
/2

6/
20

26
 1

1:
19

:5
4 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
could lead to intermetallic diffusion between the Pd membrane
and stainless-steel support, thereby decreasing the H2 per-
meance. In this study, the integrated reactor showed an
exceptional stability performance for over 720 min with a high
H2 concentration of above 99%.

Ghasemzadeh et al.85 investigated and evaluated the appli-
cation of silica and Pd–Ag MRs in the MSR reaction. The CFD
results show that bothMRs have rather better performance than
the conventional reactor, with the silica MR being the best
choice. Also, it is evident that there are lower CO levels at the
reactor effluent for the silica membrane as it is more permeable
to H2, which emphasises the shi effect of the reaction, allow-
ing higher MeOH conversion and a higher yield. Under
isothermal conditions of 513 K and 5 bar, which was considered
the optimum pressure for operation, the H2 yield was around
95%, while the temperature effect showed an increase in the H2

yield from 74 to 89% for temperatures between 493 and 573 K.
Moreover, an increase in CO selectivity up to 2% was noted for
the maximum operated temperature.

Further studies were performed by Ghasemzadeh et al.86 to
assess the performance of different silica isothermal MR
congurations. The examined congurations included a co-
current ow design, a counter-current ow design and
a counter-current ow design including the WGS reaction in the
permeate side. All the investigated designs were found to
outperform the conventional packed bed reactor. The H2 purity
was one of the goals of this work, and it was analysed in the
retentate and permeate streams of all the MR congurations.
The counter-current ow design with the WGS reaction in the
permeate side showed a better H2 permeation driving force
compared to the other two congurations as well as a lower CO
selectivity.

Cifuentes et al.87 studied the same reaction in a non-
isothermal catalytic MR using Pd–Ag metallic membranes and
a PdZn/ZnAl2O4/Al2O3 catalyst (Fig. 6b). The MR design was
compared with a convectional packed bed reactor, whereas a 3D
CFD non-isothermal model was designed and validated using
3820 | Chem. Sci., 2025, 16, 3810–3831
experimental results including the mass transfer resistances.
The experimental results demonstrated an exceptional H2

recovery of 85% at a temperature of 430 °C and an absolute
pressure of 6 bar. Additionally, different operating conditions
were evaluated to overcome the heat and mass transfer issues
occurring in the reactor.

A study including a Ni–Cu catalyst was performed in
a conventional reactor and MR by Mironova et al.101 It revealed
that the H2 yield in the membrane is higher, and also the Pd–Cu
alloy membrane exhibits high H2 permeability. The schematic
representation of the MR is presented in Fig. 6c. Additionally,
the membrane provides a high-purity H2 production (>97%), as
a stream of pure H2 is collected in the permeate zone. An
experimental investigation for the permeability of the
membrane was conducted, showing that the increase of
temperature signicantly improved the H2 recovery rate up to
60%, while the heating from 300 to 400 °C showed great
improvement in the H2 ux across the membrane. During the
cooling period, the H2 ux across the membrane was found to
be beyond that observed during the heating period for the same
temperatures, attributed to the inhibition of phase transition
from a to b upon modication of the Pd–Cu alloy, and thus the
phase ratio varied with the increase or decrease of temperature.

Saidi88 evaluated the performance of a Pd–Ag catalytic
membrane for pure H2 production using a commercial Cu/ZnO/
Al2O3 catalyst. A 2D non-isothermal model was designed
incorporating all the heat and mass transfer phenomena taking
place in the MR, with the simulated results to be in a good
agreement with the experimental ones. The effects of pressure,
temperature, sweep ratio, and steam ratio on MeOH conversion
and H2 recovery were also examined. The results revealed that
the H2 recovery is enhanced with the temperature and pressure
along the reactor length. The selective H2 removal shis the
reaction equilibrium towards the H2 formation, hence
enhancing the conversion of the reaction. The model showed
that at 2 bar, 573 K, and a sweep ratio of 1, the maximum H2

yield improved from 64% to 100% by increasing the steam ratio
from 1 to 4.

The Pd membranes might be considered one of the most
expensive membranes, but compared to other materials of
lower cost, such as polymer membranes, they offer excellent H2

recovery and purity over 99% in most of the cases. At the same
time, they suffer from embrittlement effects and low thermal
and chemical resistances. However, their integration with
metals could potentially improve their performance.102 MRs
have a great opportunity for industrial applications as they offer
a better solution for high MeOH conversion and high-purity H2

production compared to packed bed reactors as well as the
simultaneous production and separation of reactants and
products. Moreover, their lower mechanical and chemical
stability and high cost could affect their industrialisation.

MRs are considered appropriate for MSR reaction systems as
a plethora of investigations regarding the exceptional reactor's
performance and H2 yield exist in the literature. Nevertheless,
the focus of the most publications was to evaluate the perfor-
mance of new catalytic materials and reactor designs as well as
mechanistic and thermodynamic investigations. Therefore, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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techno-economic analysis of the MSR reaction, studying the
economic aspects of different scale systems, is limited.103 Byun
et al.104 conducted a techno-economic analysis to assess the
technical and economic feasibility of a packed bed reactor with
membrane lters compared to a conventional membrane
reactor. Aspen HYSYS soware was utilized to investigate the
impact of several techno-economic parameters. The analysis
employed itemized cost estimation, where a unit's H2 produc-
tion cost was calculated by dividing the total cost—dened as
the sum of annualized capital cost ($ per year) and operating
cost ($ per year)—by the total H2 production rate (kg per year). It
was found that temperature had a signicant inuence on the
reactor performance. The effect of H2 permeance showed
similar results to the temperature effect, where lower unit H2

production costs could be obtained with higher H2 permeance.
Moreover, it highlighted that a higher number of packed bed
reactors and membrane lters do not necessarily assure
cheaper H2 production costs at high temperatures where almost
100% of MeOH is converted.

A similar study was carried out by Kim et al.,105 who designed
a reactor in Aspen HYSYS soware to evaluate the technical and
economic feasibility of an MR for ultra-pure H2 production. A
unit H2 production cost was calculated by dividing the annual
cost ($ per year) by the annual H2 production yield (kg H2 per
year), comparing the MR with a conventional packed bed
reactor based on process simulation results. The total annual
costs for a packed bed reactor and the MR were $93 401 per year
and $72 305 per year, respectively, with the capital cost of
a membrane module being $5105. Furthermore, the capital
expenditure (CAPEX) results demonstrated that CAPEX
accounts for 3% in theMR, in contrast to 17% in the packed bed
reactor, mainly due to the elimination of the pressure swing
adsorption system in the MR. Itemized cost estimations
revealed a unit H2 production cost of $9.37 per kg H2 for the
packed bed reactor and $7.24 per kg H2 for the MR, respectively,
showing approximately a 23% cost reduction in the MR.
4.3. Microreactors

The design of micro-reformers to convert hydrocarbon fuel to
H2 has gained the interest of many scientists. Microchannel
reactors provide a powerful tool for process intensication and
microscale processing. These reactors are ideal for fast, high
exothermic reactions, and they show superior heat and mass
transfer rates.106 The structure and the design of microreactors
affect their performance and hence the conversion of
MeOH.107,108 However, despite their advantages, microreactors
face challenges that limit their broader application. Their rigid
structure reduces exibility, making it difficult for them to
adapt to dynamic environments or t into limited spaces.109

Nevertheless, numerous studies in the literature highlight the
exceptional performance of microreactors, which oen
surpasses that of conventional reaction units.110–114

Lu et al.115 investigated three types of microreactors to
enhance the direct microchannel performance. Using numer-
ical simulations, the results showed that the sinusoidal micro-
channel with dimples (SMD) is the optimal structure. In
© 2025 The Author(s). Published by the Royal Society of Chemistry
addition, the effects of reaction temperature, MeOH-feeding
ux, and steam/MeOH mole ratio on microreactor's perfor-
mance were examined, while different structures were investi-
gated experimentally for the validation of the results. The SMD
microreactor not only showed the best overall performance but
also demonstrated signicant improvements in heat and mass
transfer, along with a high hydrogen production capacity.

A theoretical work focusing on the channel structures of
microreactors was conducted by Liu et al.89 to address issues
related to mass and heat transfer phenomena and improve the
H2 yield. Five different channel structures were investigated,
involving circle–triangle, circle–square, square–circle, square–
square and triangle–circle designs (Table 3). Among these, the
circle-triangle design exhibited the best performance, achieving
methanol conversion rates above 98% and hydrogen selectivity
exceeding 88%. The superior performance of the circle–triangle
conguration was attributed to its larger coating area, which
improved methanol conversion, and its enhanced its mass
transfer rates, resulting from a more efficient velocity ow
distribution compared to other channel designs.

Zhuang et al.90 created a theoretical model to study the MSR
reaction in an isothermal multichannel reactor. A commercial
CuO/ZnO/Al2O3 catalyst was utilised in the investigation of
sixteen parallel mini-channels. The 3D model accounted for
heat and mass transfer within the reactor, providing accurate
predictions for species consumption and generation, which
were validated through experimental comparisons. The results
showed minimal temperature differences (around 2.5 K),
demonstrating uniform temperature and uid velocity distri-
bution across the sixteen parallel mini-channels, indicating the
excellent performance of the micro-reactor.

Sarafraz et al.91 performed theMeOH-involved H2 production
in a non-isothermal microreactor with parallel channels using
a Cu–SiO2 catalyst coated on the wall surface. The experiments
occurred at operating temperatures of 250–400 °C, reactant ow
rates between 0.1 and 0.9 L min−1, catalyst loadings of 0.25–
1.25 g and a heat ux value of 500 kWm−2. However, the reactor
has an operating tolerance up to 600 °C. An increase of reac-
tants’ gas hourly space velocity (GHSV) causes a reduction in
conversion, which is due to the lower residence time, the
suppression in diffusion of reactants into the pores of the
catalyst and also the temperature of the average lm. TheMeOH
conversion can reach 97% at 400 °C at a GHSV of 24 000 mol g−1

h−1 and a MeOH/water ratio of 1.
Wu et al.92 suggested an isothermal microreactor with

stacked wave sheets and copper foam for highly efficient H2

generation from MSR. A fractal body-centred cubic model was
used to study the ow characteristics and reaction performance
of the copper foam with a coated catalyst layer. Experimental
and theoretical results revealed that the reformate ow rate
increased with the increase of the number of microreactor
layers and the ow rate of MeOH. Both studies showed good
agreement with only 7% differences in MeOH conversion. It was
also observed that the stacked wave sheets and copper foam
show a uniform reactant ow and improved H2 generation.

A scaled-up amplied non-isothermal microreactor was
designed by Wu et al.93 to enhance the production of H2.
Chem. Sci., 2025, 16, 3810–3831 | 3821
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Table 3 Five different channel structures.89 Reproduced from ref. 89 with permission from Elsevier, Copyright 2024

Channel type Overall shape Cross-sectional shape Catalytic coatings Combustion channel

Circle–triangle

Circle–square

Triangle–circle

Square–circle

Square–square
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Experimental and theoretical studies were conducted, where 5
MSR plates were used along with 5 MeOH combustion cham-
pers to improve the distribution of temperature. The velocity
distribution within the microchannels and Cu foam showed
better homogeneity in the rst case. The microchannels and Cu
foam combination resulted in better mixing of reactants. In
addition, as the reforming chambers are uniformly designed,
the ow velocity is symmetrically distributed. The results from
MeOH combustion and MSR reaction showed that the micro-
reactor was heated from 18.5 to 310 °C within 1618 seconds.
Optimal operating conditions resulted in methanol conversion
rates above 88%.

Fan et al.94 developed a membrane microreactor for the
MeOH-involved H2 production using immobilised Cu/ZnO/
Al2O3 nanoparticles in the pores of the membrane. Character-
isation techniques veried that the nanoparticles were
successfully immobilised. A comparison with a conventional
packed bed reactor was conducted with the membrane micro-
reactor to show an exceptional performance (5000 mmol h−1 H2

yield) which was one order of magnitude higher than that of the
packed bed reactor. Additional investigations showed that there
is no concentration gradient, and hence the velocity is
uniformly distributed resulting in almost 100% H2 selectivity. It
predicted that by stacking ve membrane microreactor sheets,
methanol conversion could exceed 95%.

A numerical modelling study of the MSR reaction in
a heterogeneously catalysed microchannel SR reactor was con-
ducted by Chen and Yu.116 The main goal of the study was to
investigate the phenomena occurring within the microchannel
reactor during the reactions. The effects of various parameters
were evaluated to enhance the reactor's performance. The
3822 | Chem. Sci., 2025, 16, 3810–3831
results indicated that mass transfer resistance was present
despite the system's small scale, suggesting that design
improvements are necessary to eliminate external mass transfer
limitations. A maximum output power in excess of 70 W per
channel was achieved, and energy efficiencies of up to approx-
imately 70% were available. The operating limit line of MeOH
breakthrough was found to inuence the H2 yield, while an
optimum velocity, along with adjustments to the ow rate and
catalyst loading, was necessary to control and achieve high
MeOH conversions.

Zhuang et al.117 experimentally investigated the performance
of a novel isothermal multichannel micropacked bed reactor
with a bifurcation inlet manifold and a rectangular outlet
manifold. A commercial CuO/ZnO/Al2O3 catalyst was utilized to
assess the effects of different parameters on MeOH conversion,
H2 production, and CO concentration. The results demon-
strated that temperature had a more signicant impact on the
reaction's performance compared to the S/C ratio and weight
hourly space velocity (WHSV). Moreover, an improved MeOH
conversion rate was obtained by increasing the S/C ratio and
temperature while decreasing the WHSV and particle size. The
reactor was suggested to be suitable for Proton Exchange
Membrane Fuel Cell (PEMFC) applications for H2 production
under operating conditions of an S/C ratio of 1.3, a temperature
of 275 °C, a WHSV of 0.67 h−1, and a particle size between 150
and 200 mesh, achieving over 94% MeOH conversion and a CO
yield of less than 1%.

Membrane reactors and microreactors present a promising
alternative to conventional packed bed reactors for MSR,
offering high hydrogen purity and conversion rates under
milder conditions, as well as improved heat and mass transfer.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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However, cost remains a signicant barrier for membrane
reactors, despite their ability to integrate a reformer and
a separator into a single unit, which could potentially lead to
lower operating temperatures compared to conventional reac-
tors. As noted by Kim et al.,105 comprehensive studies that
combine both process simulation and economic analysis are
scarce in the literature. Therefore, greater emphasis should be
placed on the economic analysis of MRs to assess their
economic feasibility. Furthermore, the MSR reaction operates at
relatively low temperatures between 200 and 300 °C, as shown
in Table 2, making it a competitive and attractive candidate for
various applications. Additionally, strategies aimed at lowering
the activation barrier of the reaction could further reduce
operating temperatures, enhancing the viability of MSR
systems. More research on scaling up microreactors is required
to ensure that their advantages, such as uniform distribution,
are maintained in industrial applications. Optimizing reactor
designs for methanol reforming, especially for industrial uses,
is crucial as current investigations are limited.
5. Integration of the MSR reaction
and fuel cell systems

Recent trends in the literature show that the fuel cell technology
is a promising alternative for the elimination of emissions of
commercial vehicles. Challenges that must be overcome are
oen ascribed to the high manufacturing cost. In order to
compete the existing technologies and increase the demand,
different strategic decisions must be considered by the
manufacturing companies and the states.118 Fuel cell tech-
niques can be separated into 5 types, the PEMFCs, alkaline fuel
cells (AFCs), phosphoric acid fuel cells (PAFCs), molten
carbonate fuel cells (MCFCs) and solid oxide fuel cells (SOFCs).
Among the different kind of techniques, the most popular one
is the PEMFCs.119 Ideally, membranes used in PEMFC systems
should target the high conductivity of protons, low electronic
conductivity, low fuel permeability, low drag coefficient of
Fig. 7 PEMFC schematic illustration.121 Reproduced from ref. 121 with
permission from Elsevier, Copyright 2023.

© 2025 The Author(s). Published by the Royal Society of Chemistry
electroosmotic, good thermal/chemical stability and mechan-
ical properties.120 The PEMFC system structure consists of
bipolar plates, gas diffusion layers on both sides and a PEM in
the middle of the conguration. Fig. 7 illustrates the proton
formation and transportation from the anode to the cathode
through the PEM to react with O2, producing electrons and
hence water, electricity and heat.121

There are two categories of PEMFCs divided based on the
temperature level of operation, low-temperature PEMFCs (LT-
PEMFCs) and high-temperature PEMFCs (HT-PEMFCs), oper-
ating around 60–80 °C and 160–220 °C, respectively. Because of
the low CO tolerance of LT-PEMFCs, this system faces poisoning
issues at the catalyst anode simultaneously and thus the HT-
PEMFCs are more advantageous,122 offering emission free
conversions and simplied water and heat management and
cooling systems. However, HT-PEMFCs due to their high oper-
ating temperatures carry safety risks and technical challenges
and also incur high manufacturing costs.123 On the other hand,
the reforming LT-PEMFC systems have high power density and
proton conductivity as well as low heat loss, making it suitable
for portable small-scaled devices.124 According to Ribeirinha
et al.,125 the membrane composition plays a vital role in CO
tolerance since polybenzimidazole (PBI) membranes and
generally most of the PEMs can tolerate CO concentrations up
to 3000 ppm and can be straightaway fed with MeOH stream
without any purication process. It was also noted that the heat
recovery is important during the operation to maximise the
overall efficiency.126

An experimental and a theoretical investigation were per-
formed by Ribeirinha et al.,127 using an integrated HT-PEMFC
with a cellular membrane packed bed reactor. Fig. 8a illus-
trates the integrated system showing all the constituent parts.
The Pd–Ag membrane on the reaction unit was employed,
showing H2 permeability to suspend the poisoning of the anode
by MeOH. However, the Pd–Ag membrane deactivation due to
CO adsorption is less noticeable at lower temperatures. A 3D
non-isothermal model was designed successfully, and Ansys
Fluent soware was used to validate the experimental results.
The integrated designed conguration showed similar perfor-
mance to that of the HT-PEMFC system fed with pure H2.
Moreover, heat integration and heat efficiency were used from
the electrochemical reaction to the MSR reaction.

Liu et al.128 developed a model designing a tubular HT-
PEMFC integrated with a built-in packed bed reactor for the
MSR reaction. The model was designed using COMSOL Multi-
physics, including all the mass, heat and momentum equations
as well as the MSR reaction, WGS reaction and MeOH cracking
reaction, and was validated with experimental results showing
good agreement. The main goal of the work was to assess the
performance of the reaction and the thermal behaviour with
various operating parameters. The results demonstrated that
the reduction of voltage resulted in electrochemical heat
production affecting the temperature distribution. Moreover,
on the MeOH conversion, the voltage effect was studied for
external potentials between 0.4 and 0.9 V, revealing that above
0.75 V there is no difference in the MeOH conversion values
attributed to the low electrochemical heat production. For
Chem. Sci., 2025, 16, 3810–3831 | 3823
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Fig. 8 (a) Representation scheme of the cellular membrane packed bed reactor integratedwith a HT-PEMFC: (1) metal end-frame plates, (2) gold
coated reformer, (3) Pd–Ag membrane, (4) gasket, (5) MEA, (6) bipolar graphite plate and (7) current collector.127 (b) Flowsheet diagram of the
integrated fuel cell system130 and (c) schematic diagramof the HT-PEMFC system integratedwith anMSR reactor setup and anORC subsystem.131

(a) Reproduced from ref. 127 with permission from Elsevier, Copyright 2018, (b) reproduced from ref. 130 with permission from Elsevier,
Copyright 2023, and (c) reproduced from ref. 131 with permission from Elsevier, Copyright 2022.

Chemical Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 1
/2

6/
20

26
 1

1:
19

:5
4 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
voltage values of 0.5 and 0.55 V, the MeOH reforming rate was
found to be enhanced compared to that of the isothermal
conditions achieving around 98% and 94%, respectively. Thus,
the electrochemical heat can satisfy the required heat for the
MSR reaction.

Chen et al.129 designed a 0D model including both MSR and
HT-PEMFC technologies and studied the inuence of different
parameters such as the S/C ratio, reaction temperature, fuel cell
number, MeOH catalytic combustion ratio and anode stoichi-
ometry on the system efficiency and performance. As stated by
this and many other studies, great effort must be put into
enhancing the power generation. The optimisation of the S/C
ratio should be made considering the CO selectivity, revealing
that the S/C ratio of 1 had the highest CO selectivity. Maximum
output power was obtained at 513 K with the efficiency
increasing up to 37% compared to other reaction temperatures.
Additionally, the anode reduction stoichiometry led to efficient
electricity generation of almost 12%. The integrated system was
able to sustain the heat generation from the anode.
3824 | Chem. Sci., 2025, 16, 3810–3831
A kinetic analysis of the MSR reaction on a commercial Cu/
ZnO/Al2O3 catalyst and a theoretical study concerning the
integration of the MSR reaction and HT-PEMFC were conducted
by Ozcan and Akin,130 as shown in Fig. 8b. The system was
developed for portable devices with power less than 15 W under
optimum conditions. Using all the reaction rates and kinetics
obtained from the analysis, a comparison was carried out
between the obtained experimental and simulated conversion
rates, showing good agreement between the results. The results
from investigating different operating conditions in order to
optimise the net power output of the integrated system were
evaluated revealing that the system could generate 15.4 W
power output, which is about twice that of the total required
power (6.2 W).

A novel approach for an integrated system was suggested by
Li et al.,131 suggesting the utilisation of heat waste from the HT-
PEMFC system to supply theMSR reaction for H2 generation. An
organic ranking cycle (ORC) was proposed as well, to recover the
remaining heat for electrical power generation (Fig. 8c). A
© 2025 The Author(s). Published by the Royal Society of Chemistry
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thermodynamic model was designed, and the results showed
that the reaction rate was enhanced by the increase of temper-
ature and the H2O/MeOH ratio, achieving a H2 yield above 95%.
In addition, the implementation of the ORC subsystem using
R245fa as the organic working uid for waste heat recovery
showed that the system has a better performance with the
highest net output power of 1.64 W and efficiency of 17.65%. It
was observed that higher anode pressures and hence lower
cathode pressures could potentially improve the thermody-
namic performance, minimising the cost and environmental
pollution. The system optimisation resulted in an increase of
net power output by around 48%.

Liang et al.132 incorporated a waste heat system that could be
used in combination with cooling, heating and power genera-
tion for the integrated MSR-PEMFC system. An equation-
oriented framework for the optimisation of the combined
cooling, heating and power generation was proposed. The
framework included the modelling of the MSR reaction and
PEMFC system in detail, cooling and heating systems, heat
integration, heat exchangers and energy and economic perfor-
mance evaluation. It showed that the combined heating, cool-
ing and power system was economically and
thermodynamically advantageous to heat recovery. Moreover,
the combination system showed 4.5% levelised cost of elec-
tricity of 0.2374 $ per kW per h compared with the conventional
combination system. The heat exchanger network consists only
about 2% of the total investment being effective in reducing the
computational complexity.

6. Challenges & prospects

There is growing interest in the MSR reaction and more
generally to MeOH for its importance as a chemical, fuel and
feedstock. MeOH is one of the key H2-carrier molecules, with
potential applications in the transportation sector. However,
the technology faces several challenges, particularly in catalyst
development. Effective catalysts must inhibit CO formation
while increasing selectivity towards H2 and CO2. This is crucial
not only to prevent catalyst deactivation but also to avoid
poisoning the anode in PEMFCs. The design of such catalysts
should focus on optimizing the performance at lower temper-
atures to suppress the RWGS reaction, thereby minimizing CO
generation. If CO production cannot be completely suppressed,
catalysts must be designed with materials that offer resistance
to coking, tolerance to poisoning, and stability against sinter-
ing, thus extending their operational lifespan. Another key
challenge is the high cost of catalyst materials. For example,
although Pd-based catalysts have demonstrated exceptional
conversion rates and H2 yields, their high cost hinders wide-
spread adoption in large-scale applications.

A deeper understanding of the MSR reaction mechanism,
metal–support interactions, surface adsorption energy, reaction
pathways, and energy barriers is essential for developing effec-
tive catalysts. Many Cu-based catalysts have been thoroughly
studied in terms of their reaction mechanisms, and there has
been recent progress with Ni-based catalysts as well. Research
on new materials for the MSR reaction should be conducted
© 2025 The Author(s). Published by the Royal Society of Chemistry
strategically, aiming to overcome CO formation and catalyst
deactivation through mechanistic studies and the design of
cost-effective catalysts for practical applications. Another crit-
ical aspect of catalyst design is the pore structure, which can
oen be random and result in the deactivation of catalytic sites.
Proper design of the porous structure, accounting for heat and
mass transfer phenomena, can maximize active reaction sites
and improve the overall catalyst efficiency.

The selection of operational units is crucial for the tradi-
tional packed bed reactor to suffer from hot spots due to the
thermal non-uniformity and the large pressure drop over the
reactor's length. The reactor and herein the system concept
should be able to carry out the MSR reaction in small- and large-
scale applications and with high efficiencies. The MRs and
micro-reactors are more advantageous compared to the
conventional unit. MRs offer the selective separation of
component species and could be employed directly to PEMFC
units without any purication process, while the micro-reactors
can overcome the pressure drop issues of packed bed reactors
offering better heat and mass transfer rates. Nevertheless, the
Pd membranes that have shown superior separation perfor-
mance are limited by their enormous cost. Many efforts should
be made in order to create cost-effective MRs and microreactors
in terms of membrane materials and improve their scalability
and operation in order to overcome potential issues.

PEMFC applications in the transportation sector were found
to be a promising solution against the conventional fuel
combustion engines. The direct utilisation of MeOH in PEMFC
systems lacks performance due to the oxidation and poisoning
of the anode. However, the transformation of the H2-energy
carrier, MeOH, through the reforming reaction into H2 is more
attractive due to the lower energy density. The main challenge is
the heat recovery to maximise the overall efficiency and not
waste the released heat from the HT-PEMFC systems. Many
investigations suggest the heat integration between the
reformer unit and HT-PEMFC to operate at similar tempera-
tures. Another important parameter is the lifetime of the inte-
grated system which most of the times depends on the stability
of HT-PEMFC stacks. The optimisation of existing components
used and the development of new ones are considered major
contributors. Moreover, the lifetime of HT-PEMFC stacks in
real-world applications is even more affected compared to the
lab-scale experiments as there are many variations in the
operating conditions, issues regarding the heat management,
cell imbalances and failures. PEMFC systems also face other
serious problems such as chemical, mechanical and thermal
degradation and agglomeration. The main reason for this effect
is the high operating temperatures, the acidic environment and
the low humidity, which should be addressed soon in order to
facilitate this technology transfer.
Data availability
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