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The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or
properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic
control on the stacking structure of a vinylene-linked covalent triazine framework (termed sp?c-CTF) for
improving hydrogen peroxide (H,O,) photoproduction. Upon the catalysis of EtONa in Knoevenagel
polycondensation, a typical eclipsed stacking mode (sp?c-CTF-4@AA) was built, while a staggered one
(sp?c-CTF-4@AB) was constructed using LIOH. The AB stacking might be induced by the Li* promoted
Lewis acid—base interactions with the nitrogen atoms of s-triazine units which would endow the s-
triazine units with a charged state and enlarge the total crystal stacking energy. Specifically, the shift in
the stacking mode speeds up electron transfer within each layer and along interlayers, thereby improving
the photocatalytic activity. spc-CTF-4@AB features superior activity over the eclipsed stacking
counterpart (sp?c-CTF-4@AA) in sacrificial agent-free H,O, generation, comparable to the state-of-the-
art COF photocatalysts, which has not been demonstrated in this field before. This work demonstrates
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significantly different conductivity.** 2D covalent organic
frameworks (COFs) have emerged as a new class of materials

Introduction

Two-dimensional (2D) materials, including graphene, hexag-
onal BN, MoS,, etc., have been reported and extensively studied
in various applications such as optoelectronics, spintronics,
catalysts, chemical and biological sensors, supercapacitors,
solar cells, and lithium-ion batteries for their distinct
properties.** Controlling the stacking mode of 2D materials
endows them with wunconventional mechanical, photo-
electrical, and chemical properties.*” For instance, the evolu-
tion of monolayer molybdenum disulfide (ML-MoS,) from the
2H phase (AB-stack) to the 1T phase (ABC-stack) gave

“Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of
Chemistry and Chemical Engineering, Central South University, Changsha 410083,
P. R. China. E-mail: gilbertyu@csu.edu.cn

“State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. E-mail:
Fan-zhang@sjtu.edu.cn

‘Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling,
College of Materials and Chemical Engineering, Hunan Institute of Engineering,
Xiangtan 411104, P. R. China

T Electronic  supplementary  information
https://doi.org/10.1039/d4sc06451h

1 Q. X. and A. C. contributed equally to this work.

(ESI) available. See DOI:

© 2025 The Author(s). Published by the Royal Society of Chemistry

with defined molecular stacking, large surface areas and open
regular channels, featuring extended molecular sheets inter-
acting through non-covalent interactions like w—m and van der
Waals forces.'*® The pioneer 2D COF was disclosed by Yaghi
et al. in 2005, which features an unusual AB stacking mode
through boronate/boroxine polycondensation chemistry.**
However, most known 2D COFs are AA stacked, and the known
reports are focused on exploring available synthetic methods for
2D COFs, reticulating building blocks, or establishing new
covalent linkages and topologies for task-specific functional-
ities and applications. The topology and properties of 2D COFs
were mainly tailored through in-plane molecular structures, but
seldom by the vertical stacking modes.">** Several limited pio-
neering efforts including judicious regulation of building
blocks, and catalyst-triggered (like CF;SO;H) or solvent-assisted
methods have been found to be effective in weakening the
attraction of m-m stacking layers and facilitating interlayer
sliding.*>-*

More recently, numbered vinylene-linked covalent organic
frameworks (sp”c-COFs) have been developed via Knoevenagel or
aldol condensation routes, and they have exhibited high chem-
ical stability and attractive photocatalytic activity due to their
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robust and fully r-conjugated backbones.”>>* The photocatalytic
transformations enabled by sp”c-COFs, such as photocatalytic
H,O0, generation, provide an alternative approach to dismiss the
disadvantages (e.g;, high energy consumption, safety risks)***¢ of
the traditional anthraquinone method. However, very limited
structures or topologies of sp”c-COFs have been developed so far,
and unveiling the relationship between the bulk structure and
photocatalytic activity remains a highly challenging subject.
Herein, we report an alkali-metal ion-regulating strategy to
control the stacking structure of a vinylene-linked covalent
triazine framework (sp’c-CTF-4) during the Knoevenagel poly-
condensation. An eclipsed AA stacking mode (denoted as sp’c-
CTF-4@AA) was achieved by applying sodium ethoxide (EtONa)
as the catalyst. A staggered stacking mode (sp’c-CTF-4@AB) was
formed upon catalysis of lithium hydroxide (LiOH). Such
phenomena were ascribed to the enlarged total crystal stacking
energy from the coordination of Li" ions to the nitrogen atoms of
the s-triazine unit during the growth of frameworks. The two
stacking-mode COFs showed significantly different physical
properties and photocatalytic activities toward the production of
H,0, under visible light irradiation. Because of the much
stronger capability in separation and transport of photo-
generated charge carriers, the rate of H,O, generation of spc-
CTF-4@AB can reach 2758 umol h™" g~ which is unprecedent-
edly 2.7 fold that of the eclipsed stacking counterpart without
adding any sacrificial agent. This finding provides new guidance
in the design and synthesis of efficient and stable heterogeneous
catalysts for H,0, production.
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Results and discussion

The vinylene (-CH=CH-) connected covalent triazine frame-
work (sp”c-CTF-4) was synthesized through the Knoevenagel
condensation between TMT and TFPB under selected condi-
tions (Fig. 1a). The sp”c-CTF-4@AA sample with an eclipsed
stacking mode was synthesized in a binary solvent of o-dichlo-
robenzene/n-butanol (3/7 v/v) under the catalysis of sodium
ethoxide (EtONa). The staggered-stacking sp’c-CTF-4@AB was
prepared under optimized solvothermal conditions of dimethyl
formamide/o-dichlorobenzene/methanol (3/1/0.2 v/v/v) in the
presence of lithium hydroxide (LiOH) (detailed in the synthesis
section of the ESIt). sp’c-CTF-4@AA is obtained as a pale-yellow
powder (yield: 87%), whereas the staggered-stacking sp’c-CTF-
4@AB is yellow (fluffy, yield: 86%). The crystallinity of the
resultant frameworks was revealed by PXRD measurements.
sp’c-CTF-4@AA shows clear characteristic peaks at 5.9°, 10.2°,
and 11.7°, representing the (100), (110) and (200) facets,
respectively, for an eclipsed stacking model (Fig. 1b). The peak
at 25.3° corresponds to the layer-to-layer eclipsed stacking
distance of 3.43 A (001). In contrast, the experimental PXRD
results for sp”c-CTF-4@AB, including the number, position, and
strength of peaks, matched well with a staggered stacking
model (PM space group, unit cell parameters: a = b =17.53,¢ =
3.1, « = 3 = 90° and vy = 120°). The signal observed at 21.5°
(Fig. 1c) clearly indicates the formation of Li-N interaction
around the triazine units.”””® The chemical structure, porosity,
morphology, and photoelectric properties of two sp®c-CTF-4
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Fig. 1 (a) Schematic diagram for the synthesis of sp?c-CTF-4 and views of the corresponding refined 2D crystal structure; PXRD patterns of (b)

sp2c-CTF-4@AA and (c) spc-CTF-4@AB; comparison between the

experimental (black cross) and Pawley refined (red line) profiles, the

simulated patterns for AA and AB stacking mode (blue line); (d) **C CP/MAS solid-state NMR spectra of sp®c-CTF-4@AA and sp?c-CTF-4@AB.
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Fig. 2 (a) (top) Nitrogen adsorption (black) and desorption (red) isotherms of sp?c-CTF-4@AB ((inset) pore size distribution curve of sp>c-CTF-
4@AB); (bottom) nitrogen adsorption (black) and desorption (blue) isotherms of sp?c-CTF-4@AA ((inset) pore size distribution of sp?c-CTF-
4@AA); (b) XPS spectra of N 1s (left) and Li 1s (right) for sp?>c-CTF-4@AB; (c) plausible formation mechanism for sp?c-CTF-4@AB.

samples were characterized and compared. The formation of
olefin (-C=C-) linkage was proved by Fourier transform
infrared (FT-IR) spectra through the emergence of vinylene
stretching vibration (1630 cm ™). Both of the two samples show
structural similarity without clear distinction on the absorbance
intensity location of specific peaks (Fig. S1t).”> Besides, the
band at 1628 cm ™' in Raman spectroscopy further proves the
formation of C=C linkages for the as-synthesized frameworks
(Fig. S2t). High-resolution TEM (HR-TEM) images of sp>c-CTF-4
further confirmed the aligned porous structure (Fig. S31). A
solid "*C cross-polarization magic angle spinning nuclear
magnetic resonance (CP-MAS NMR) spectrum (Fig. 1d), in
which all prominent signals are well consistent with the
proposed polymer structure, further confirms the successful
polycondensation. Besides, different aggregation structures of
2D COFs can be investigated using *C CP/MAS solid-state NMR.
Compared with sp’c-CTF-4@AA, the peak intensity of the
triazine carbon at 176.2 ppm for sp’c-CTF-4@AB is sharply
attenuated, indicating that the intimate interactions between
the neighboring layers of the sp’c-CTF-4@AB are weakened,
and the change in the fine chemical environment further proves
the formation of the AB stacking mode.** N, sorption isotherm
measurements were conducted to probe the porous structure of
the obtained frameworks (Fig. 2a). Based on the nonlocal
density functional theory (NLDFT) model, pore size distribution
(PSD) was evaluated. sp’c-CTF-4@AA delivers a high BET
surface area of 752 m* g~ ' with a dominant pore diameter at
1.18 nm. In contrast, a lower BET surface area of 278 m* g~ for
sp”c-CTF@AB, and a slightly narrow dominant pore width in
the PSD curve suggests the presence of meandering channels
and certain inaccessible pore volumes for nitrogen probes,
probably ascribed to its relatively lower crystallinity and the
presence of Li" within its lattice.

A few reports have shown that the phase conversion of
staggered modes to eclipsed ones in COFs was triggered by

© 2025 The Author(s). Published by the Royal Society of Chemistry

certain synthetic conditions. The synthetic conditions indeed
dominate the polymorph formation and crystalline evolu-
tion.*"*> Of particular interest is the possible mechanism for the
formation of the AB-stacking structure. In our case, N atoms of
the triazine unit with a lone pair of electrons appear to be
potential Lewis-base sites, coordinating with Lewis-acid sites
(metal ions). The possible interaction between the triazine unit
and Li" was probed via in situ "H-NMR spectroscopic measure-
ments on model compounds like 2,4,6-trimethyl-1,3,5-triazine
(TMT). After mixing with various concentrations of LiOH-H,-
0, the "H NMR signals at 2.60 ppm for hydrogens of the methyl
group in TMT transfer to the high field (2.46-2.50 ppm). This
indicates that there would be an interaction between Li" and the
triazine unit (Fig. S4t). X-ray photoelectron spectroscopy (XPS)
measurements were further conducted to distinguish the
chemical state of nitrogen atoms. The N 1s spectra of sp®c-CTF-
4@AB are deconvoluted into a single peak located at 398.7 eV,
which was attributed to triazine N. An additional peak is found
at 398.1 eV for the N 1s signal of the N-Li peak. Accordingly, the
deconvoluted peak in the Li 1s spectrum could be assigned to
the Li-N coordinate bond (Fig. 2b), further identifying the Li-N
interaction.’*** Notably, inductively coupled plasma-atomic
emission spectrometry (ICP-AES) results (residual Li'":
0.03 wt%) indicate that each triazine ring would be coordinated
with one Li* in a cell. The Na* content of sp®c-CTF-4@AA based
on ICP-AES analysis is merely 0.01 wt%. Therefore, the residual
Na' would exert an almost negligible effect on the crystallinity
evolution of our frameworks.

To unveil the stability of different stacking modes, first-
principles calculations were carried out (Fig. S5 and 67). Total
energy calculations show that the Li coordination strengthens
the stability of sp”c-CTF-4@AB by Li-N interaction.®® The cor-
responding topology of sp”c-CTF-4@AB was modeled with
Pawley refinement, exhibiting a staggered stacking model with
good R factors (R, = 3.37%, R, = 2.63%). DFT calculations

Chem. Sci., 2025, 16, 2215-2221 | 2217
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reveal that such stacking mode also exhibits lower energy than
those of sp’c-CTF-4@AA with or without Li* coordination by
95.46 kcal m~ " or 49.58 kcal m™", respectively, which is also
much lower than that of Li-free sp®c-CTF-4@AB by 48.65 keal
m ™' (Table $17). These results indicate that the formation of AB
stacking might be induced by the Lewis acid-base interactions
between Li* and the nitrogen atoms of s-triazine units. The
interaction would endow the s-triazine units with a charged
state, enlarging the total crystal stacking energy. This means
there is a certain amount of electronic repulsion between sp*c-
CTF-4 layers, which leads to a staggered stacking mode
(Fig. 2¢).% sp®c-CTF-4@AB could maintain the primary skeleton
connectivity after being treated in saturated KOH methanol/
water (1:1) solution (Fig. S7f), as revealed by XPS spectra,
manifesting its relative stability.

sp”c-CTF-4 samples exhibited broad visible-light absorbance
extended to 600 nm in UV-visible diffuse reflectance spectra
(DRS), which would be attractive for the efficient utilization of
natural sunlight (Fig. 3a).*” From the UV-vis DRS, the corre-
sponding Tauc plot analysis exhibits optical energy band gaps
of 2.67 and 2.65 eV for sp”c-CTF-4@AA and sp’c-CTF-4@AB,
respectively (Fig. S8 and 9%). Mott-Schottky measurements
were conducted to study the electronic structure and relative
band positions. The positive slope indicates typical n-type
semiconductor characteristics for sp*c-CTF-4@AA and sp’c-
CTF-4@AB (Fig. S10 and S117). Accordingly, the correspond-
ing conduction band (CB) and valence band (VB) were calcu-
lated (Fig. 3b). The CB bottoms of both COFs lie above the
potential for the O,/H,0, (+0.68 V vs. NHE), ensuring sufficient
reduction potential for H,O, generation from the ORR. In
addition, the oxidation potential of sp’c-CTF-4 also meet the
theoretical prerequisite for the WOR to produce H,0,. The
transient-photocurrent-response intensity of sp’c-CTF-4@AB is
much higher than that of sp’c-CTF-4@AA, as shown in Fig. 3c.
In the meantime, according to electrochemical impedance

View Article Online
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spectroscopy (EIS), the electronic conductivity of sp*c-CTF-
4@AB is also superior to that of sp’c-CTF-4@AA (Fig. S127).
Furthermore, the PL intensity of sp’c-CTF-4@AB is slightly
quenched in comparison with that of sp®c-CTF-4@AA (Fig.
S13%), verifying a more effective suppression of photogenerated
carrier recombination. More efficient separation of charge
carriers and a higher interfacial charge transfer rate have been
demonstrated by sp”c-CTF-4@AB, which is beneficial for pho-
tocatalytic processes.*®*® The stacking mode evolution of the as-
prepared COFs led to intense differences in their photophysical
properties and hence photocatalytic performance. The elec-
tron-hole pair distribution of the two frameworks was further
compared by theoretical calculations (Fig. S14t1). sp’c-CTF-
4@AB gave a significantly weaker electron-hole complexing
ability than sp®c-CTF-4@AA. We conjecture that the shift in the
stacking pattern might allow electrons to transfer either within
each layer of COFs or along the interlayers. Thus, all of this
further proves that the photophysical properties of sp’c-CTF-
4@AB are superior to those of sp’c-CTF-4@AA.

The photocatalytic H,0, production measurements were
carried out using sp’c-CTF-4@AA and sp’c-CTF-4@AB as pho-
tocatalysts in pure water and O, without the addition of any
sacrificial reagent under visible light irradiation. sp*c-CTF-
4@AB showed an amazing photocatalytic H,0, production
performance with a production rate over 2758 umol h™' g~*
(Fig. 3d), whereas sp®c-CTF-4@AA offered a lower H,O,
production rate (1020 pmol h™' g™'). Compared with the
monomer TMT, TFPB and the model product (TST), sp®c-CTF-4
showed significantly superior H,O, properties, suggesting that
the formation of the conjugated structure is more favourable for
the generation and transport of photogenerated carriers (Fig.
S15 and 16%). sp’c-CTF-4@AB showed 2.7 fold better perfor-
mance than sp’c-CTF-4@AA, and this trend is consistent with
their physical properties. In addition, sp”c-CTF-4@AB produced
H,0, with a much better cycling performance as compared with
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Fig. 3 (a) UV/vis DRS of sp?c-CTF-4@AA and sp?c-CTF-4@AB. (b) Band structures of sp?c-CTF-4@AA and sp?c-CTF-4@AB. (c) Chopped
photocurrent density vs. time recorded on sp?c-CTF-4@AA and sp2c-CTF-4@AB at 0.6 V vs. RHE. (d) Time-dependent H,O, photogeneration
using visible light for sp?c-CTF-4@AA and sp?c-CTF-4@AB (5 mg catalyst in 10 mL pure water); (e) recycling H,O, production on sp?c-CTF-4
(reaction time: 1 h); (f) FTIR spectra of sp>c-CTF-4 before and after the H,O, photogeneration cycle.
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EPR spectra of sp?>c-CTF-4 for measuring O,"~; (c) DMPO spin-trapping EPR spectra of sp2c-CTF-4 for measuring "“OH; (d) the Koutecky—Levich
plots obtained via RDE measurements in phosphate buffer (pH 7) solution with continuous O, purging; (e) polarization curves recorded with
simultaneous detection of H,O, at the ring electrode at 1600 rpm; (f) summary of photocatalytic H,O, evolution rates of sp?c-CTF-4 and other

COF-based photocatalysts.

sp>c-CTF-4@AA (Fig. 3e). The IR spectra show that sp*c-CTF-4
maintains good structural stability after H,O, cycling perfor-
mance tests (Fig. 3f). To clarify the exact H,O, production
process, a series of control experiments were carried out. Under
high-purity nitrogen conditions (continuous ventilation to
prevent the interference of oxygen), the two sp>c-CTF-4 samples
still have some ability to produce H,O, (Fig. 4a). This means
that they are likely to have a water oxidation pathway in this
process. In addition, potassium dichromate (K,Cr,O,) and
triethanolamine (TEOA) are chosen as electron and hole sacri-
ficial agents to study the H,0, production capacity of the sp’c-
CTF-4, and the results show that both electrons and holes play
important roles in this process. To probe the reactive oxygen
species in the photocatalytic process, electron paramagnetic
resonance (EPR) spectra were measured using DMPO as a spin-
trapping agent. As illustrated in Fig. 4b and c, under visible light
irradiation, typical characteristic peaks of DMPO-O,"~ for sp’c-
CTF-4 were observed, indicating the production of O, inter-
mediate species. This result further suggests that this ORR is
the 2e two-step oxygen reduction pathway for H,O, production
(0 = 0,7 — H,0,) in this system. Meanwhile, DMPO-'OH
signals are detected for sp’c-CTF-4 samples. In addition, the
typical characteristic peaks for sp’c-CTF-4@AB are significantly
stronger than those for sp”c-CTF-4@AA, indicating the superior
ability of the former to produce both O,"~ and "OH intermediate
species. To further elucidate the mechanism of H,0, genera-
tion, more control experiments (Fig. 4d and e) were carried out.
The rotating disk electrode tests show that the number of
transferred electrons is 2.42 for sp”c-CTF-4@AA and 2.15 for
sp’c-CTF-4@AB, respectively. In addition, the rotating ring disk
electrode tests show that both materials could oxidize water into
H,0,. Therefore, it can be concluded that these catalytic
systems produce H,0, mainly by the two-step single-electron
oxygen reduction pathway (O, — O,~ — H,0,) supple-
mented by the water oxidation pathway (Fig. S177).

© 2025 The Author(s). Published by the Royal Society of Chemistry

The H,0, production performance of the sp?c-CTF-4 pho-
tocatalyst in the presence of alkali catalysts (LiCl: 0.03% or
NaCl: 0.01%) was investigated (Fig. S187). Neither the addition
of LiCl to the sp’c-CTF-4@AA photocatalytic system nor the
addition of NaCl to the sp®’c-CTF-4@AB photocatalytic system
caused any obvious change in the H,0, production rate. It is
demonstrated that the photocatalytic activity is not influenced
by free Li*, and the performance is improved only when Li* in
situ interacted with the N atoms in the s-triazine units during
the polycondensation. Among most known COF photocatalysts
for H,0, production (Fig. 4f and Table S21),*°2 sp*c-CTF-4@AB
is comparable to many known COF photocatalysts, exhibiting
2.7 fold as high performance as that of sp’c-CTF-4@AA. In
addition, our sp®c-CTF-4 photocatalysts show prominent
stability under various conditions, including treatment in
aqueous 35% H,0,, concentrated HCI (12 M), and saturated
KOH methanol/water (1:1) solution (Fig. S19 and 20%). This
stability is superior to that of SNW-4 (ref. 63) or CTF-T1 (ref. 64)
(Fig. S21-24%), and is adaptable for versatile functional plat-
forms like catalysis, sensing and separation.

Conclusions

In summary, we have established an efficient strategy to tailor
the stacking mode in 2D vinylene-linked covalent triazine
frameworks by regulating the base-catalyst with different alkali-
metal ions during Knoevenagel polycondensation. A rare sp?c-
CTF example with a staggered stacking mode (sp’c-CTF-
4@AB) was obtained by utilizing the Lewis acid-base interac-
tions between the Li" ions of the base catalyst and nitrogen
atoms of s-triazine blocks. The evolution on stacking modes of
2D frameworks directly led to the significant difference in
photophysical properties. Accordingly, they exhibited efficient
but significantly different photocatalytic activities for the
production of H,0,. sp’c-CTF-4@AB shows attractive activity

Chem. Sci., 2025, 16, 2215-2221 | 2219
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with a H,0, production rate of 2758 umol h™' g~* due to its
much stronger capability in separation and transport of pho-
togenerated charge carriers. It is envisaged that either the in-
plane molecular structure or vertical aggregation of a 2D
vinylene-linked COF might play the key role in the design and
exploration of a robust high-performance photocatalyst. This
study may shed light on the regulation of crystalline structures
for 2D COFs, and pave the way for developing smart framework
materials with desirable properties and functionalities.
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