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Dynamics and kinetics exploration of the oxygen
reduction reaction at the Fe—N,4/C—-water interface
accelerated by a machine learning force fieldf

*ad

Qinghan Yu, (22 Paj Li,*® Xing Ni,? Youyong Li {22 and Lu Wang
Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction
interface are essential for improving fuel cell efficiency. We developed an active learning framework
combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of
the ORR on Fe—N4/C using a fully explicit solvent model. Different possible reaction paths have been
explored and the O, adsorption process is confirmed as the rate-determining step of the ORR at the Fe—
N4/C—-water interface, which needs to overcome a free energy barrier of 0.39 eV. By statistical analysis
of solvent configurations for proton-coupled electron transfer (PCET) processes, it is revealed that the
configurations of interface water remarkably influence the reaction efficiency. More hydrogen bonds and
longer lifetimes facilitate the PCET reactions and even make them barrierless. Our theoretical framework
highlights the significance of solvent configurations in determining free energy barriers, and offers new
insights into the reaction mechanism of the ORR on Fe—N,4/C catalysts.

Introduction

Renewable energy technologies, such as fuel cells, play a pivotal
role in advancing low-carbon, sustainable development goals
when humanity is confronted with significant energy and
environmental challenges.* Central to the efficiency of fuel cells
is the electrocatalytic oxygen reaction reduction (ORR) occur-
ring at the cathode, a critical process with sluggish kinetics that
directly impacts the power output.>® A deep understanding of
the kinetic reaction mechanism during the ORR process and
the intricate interactions between catalyst surfaces, reaction
intermediates and solvent molecules at the electrode-liquid
interface is essential for revealing the reaction mechanisms and
developing novel catalysts.*® Due to the complexity of the
interfacial and electrochemical environments, atomic-scale
insights revealed from experiments are limited, and traditional
computational methods often overlook the solvent's influence
and the interface effects on electrochemical reactions.” Implicit
solvation computational models attempt to address this
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limitation by representing solvent molecules with continuously
polarized media,*'® but some models suffer from multinomial
approximations leading to inaccurate interface description.
Most of the structural models fail to account for proton
exchange between reactants and solvent molecules, and static
calculations of interface structures based on lowest-energy
configurations ignore structural fluctuations along reaction
coordinates. Moreover, the discrepancy between vacuum/
continuously polarized media environments and realistic envi-
ronments significantly affects reaction energies and the rate
determining step (RDS). Therefore, developing computational
methods that closely describe the ORR process in realistic
electrochemical environments is urgently needed.

The rapid development of computing power in recent years
has enabled a series of studies describing the catalyst-solvent
interface using ab initio molecular dynamics (AIMD) with
explicit solvation models, revealing new insights.*** As for the
ORR on the Fe-N,/C catalyst, Liu et al. used constant potential
AIMD with a hybrid solvent model and found that the
competitive adsorption of O, and H,O at the Fe site was the rate-
determining step of the ORR.™ Wang et al. investigated the ORR
at the same interface using AIMD simulations with a fully
explicit solvent model, and they observed ions in solution
formed pseudo-adsorption states on the reaction sites.* These
methods achieved a more detailed description of the complex
environment at the ORR interface, but it is also a challenge to
observe the crucial reaction mechanism in such short-time
dynamics, and the AIMD simulations with large length-scale
and long time-scale simulations are extremely expensive and
time-consuming.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d4sc06422d&domain=pdf&date_stamp=2025-02-17
http://orcid.org/0000-0003-4376-2649
http://orcid.org/0000-0002-5248-2756
http://orcid.org/0000-0003-0552-1385
https://doi.org/10.1039/d4sc06422d
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc06422d
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC016008

Open Access Article. Published on 20 January 2025. Downloaded on 11/1/2025 8:12:41 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Integrating artificial intelligence into chemistry offers
a promising solution to this challenge. In recent years, machine
learning (ML) has been employed to make fast predictions
across various scales, from microscopic to macroscopic in
spatial scope and also from static to dynamic in temporal
dimensions."”®™"” Particularly, machine learning force fields
(MLFF) have shown great promise in predicting complex cata-
lytic systems and enabling large-scale and long-time dynamics
simulations with first-principles accuracy,"”® which has been
applied to the rapid identification of transition states for
organic molecules on Pt surfaces,'>*® exploration of proton
transfer mechanisms at the TiO,-water interface,** examination
of water dissociation in interfacial environments,* analysis of
the dynamic ORR mechanism on the Au-water surface® and
NH; decomposition on the Li,NH surface.*

A deep understanding of the electrocatalytic reactions in
realistic environments is crucial for designing and optimizing
electrocatalysts with both high stability and activity. An impor-
tant catalyst for the ORR is single atom Fe embedded in N-doped
graphene (Fe-N,/C), and extensive efforts have been made to
improve its ORR activity and explore its reaction
mechanism.”****3° Given the importance of the solid-liquid-
gas interface in understanding ORR fundamentals, we con-
structed an active learning workflow to conduct fully explicit
solvent simulations at the Fe-N,/C-water interface using MLFFs
and metadynamics. Our exploration of the dynamics and kinetic
properties of the four-electron ORR revealed that the O, adsorp-
tion onto Fe active sites is the RDS, rather than the proton-
coupled electron transfer (PCET) process, which was consistent
with the previous constant-potential AIMD simulations."® Long
time-scale and fully explicit solvent simulations showed that the
arrangement of water molecules at the solid-liquid-gas interface
plays a crucial role in determining adsorption free energies of
reaction intermediates and the free energy barriers. The statis-
tical results of the interface solvent configuration based on
MLFF-MD provide a microscopic explanation for the macro-
scopic energies of various ORR steps. Our theoretical framework
reveals new insights into the reaction mechanism of the ORR on
Fe-N,/C, and emphasizes the significance of atomic-scale kinetic
studies in heterogeneous electrocatalysis.

Computational details

MLFF was trained using the DeepMD-kit**> employing a radial
cutoff of 6 A and the se_e2_a descriptor. The training set data
were obtained from spin-polarized DFT calculations conducted
with the Vienna ab initio simulation package (VASP).** The
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional®* with van der Waals correction was used to describe the
electronic interaction. MD simulations utilizing the MLFF were
performed with the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS).** All enhanced sampling simu-
lations were performed with a well-tempered metadynamics
approach implemented in PLUMED.** More computational
details on DFT calculations, model training and validation,
molecular dynamics and enhanced sampling, and trajectory
result analysis can be found in the ESL

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion
Activate learning workflow

Our MLFF simulations were developed and implemented
through a workflow framework, as illustrated in Fig. 1. To
comprehensively and accurately describe the ORR interfacial
environment, we gathered a wide range of possible structures to
explore the configuration space. Initially, 3374 structures were
generated through a series of AIMD and classical molecular
dynamics (MD) simulations (Fig. 1a). These initial configura-
tions were categorized into various groups, including different
densities of bulk water, graphene, Fe-N,/C, graphene-water
interface, Fe-N,/C-water interface, and Fe-N,/C-adsorbate-
water interface. The details are summarized in Table S1 of ESL.}

Subsequently, additional structures for the training set were
acquired via an active learning iteration framework, as depicted
in Fig. 1b. This framework employed a committee query
strategy, where a structure was predicted by four models based
on MLFFs-MD with only random seed variations, and their
maximum deviation was calculated, denoted as “model devia-
tion”. Configurations with model deviations below the desig-
nated minimum value were considered to adequately describe
by the current force field. Configurations falling within the
defined range of model deviations were labeled. In contrast to
the conventional single-interval model deviation strategy of
DPGEN,* a multi-interval model deviation strategy was adop-
ted, dividing the model deviation interval into multiple subin-
tervals. Within each subinterval, a higher proportion of
configurations was selected for relatively large model deviation
and a lower proportion of configurations was selected for rela-
tively small model deviation facilitating the comprehensive
consideration of configurations and accelerating the conver-
gence of the iteration process because configurations with
larger model deviation are more worthy of learning than those
with smaller model deviation. Additionally, to avoid the simi-
larity of configurations within the training set, only the
configurations with residual values surpassing the specified
threshold were selected to expand the training set. A total of
6008 configurations were collected in our work, which is
significantly fewer (less than a half) than the previous
studies,?*® underscoring the efficiency of our configuration
selection strategy. Furthermore, the metadynamics method was
employed in the active learning MD simulations to thoroughly
sample transition state configurations for calculating the free
energy barrier. The composition of the specific system corre-
sponding to metadynamics is shown in Table S1.f Finally,
a long-term model training was performed for all configurations
to obtain a higher-precision MLFF. This force field was subse-
quently utilized to conduct biased/unbiased MD for evaluating
the kinetics and dynamic properties of the ORR on the Fe-N,/C
catalyst (Fig. 1c).

Validation of our MLFF model

Fig. 2a-d show the accuracy of our trained MLFFs. In the vali-
dation set, the mean absolute errors (MAE) in energy and force
are 3.4 meV per atom and 0.07 eV A~ respectively, indicating
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Fig. 1 Schematic diagram of the activate learning workflow. (a) Collection of initial configurations; (b) an active learning strategy based on
committee queries and metadynamics; (c) MD simulations based on MLFFs to study the kinetics and dynamic properties of the ORR.

our trained MLFF could provide accurate predictions for both
energies and forces during MD simulations. Besides energetics,
the configurations were also compared between our MLFF-MD
and AIMD simulations. For water molecule description, the
radial distribution function generated by MLFF-MD simula-
tions agrees well with the results from AIMD simulations, as
shown in Fig. 2e, indicating the accurate capture of both intra-
and intermolecular structures of water molecules by our MLFF.
In addition, the accuracy of MLFF was also verified in predicting
the adsorption energy. After 10 iterations of active learning
iterations, the adsorption energies of O, and H,O predicted by
MLFF are basically consistent with the values from density
functional theory (DFT) (Fig. 2f). Therefore, the above

comparisons confirm our trained MLFF achieved the accuracy
of ab initio calculations.

The reactants and products can be well described from our
MLFF model by using the active learning strategy, while the
transition states should be described by enhanced sampling.
The metadynamics simulations employed the reaction path as
the collective variable (CV). The reaction path was expressed by
a series of well-designed reference structures, effectively dis-
tinguishing different intermediate and transition state struc-
tures, as shown in Fig. 3a. The full spatial configurations of the
reaction path were fully sampled by combining active learning
and enhanced sampling, covering a broader configuration
space which could not be achieved by using unbiased MD.
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Fig. 2 Comparison of model accuracy for the training set and validation set. (a and b) Comparisons between energies and forces derived from
DFT calculations and MLFF predictions for the training set and (c and d) validation set. (e) Comparison between the radial distribution function of
O-H in pure water obtained from AIMD and MLFF-MD. (f) Adsorption energies of O, and H,O by the active learning workflow.
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To validate our model's ability to distinguish the different
chemical environments of configurations, we employed the ¢-
distributed stochastic neighbor embedding (+-SNE) method to
visualize the structural features of all training sets, as shown in
Fig. 3b. Configurations with similar chemical environments
tended to aggregate together, while those with different chem-
ical environments distribute distinctively from each other.
Water molecules, water clusters and bulk water structures rep-
resented by dark green dots are distributed in the upper left of
the graph. The catalysts, including Fe-N,/C and pristine gra-
phene, are distributed in the bottom right of the graph, shown
in brown. Catalyst-water interface structures colored by green
color are located in the middle of the graph, since they con-
tained both water molecules and catalysts. Isolated dot clusters
colored by green at the bottom represent the Fe-N,/C-water
configuration (Fig. S3bt), which is distinctive with the Fe-N,/C-
water configuration (Fig. S3at), indicating that our strategy can
successfully distinguish configurations with different Fe-N
coordinated environments. Moreover, this model can also
distinguish different adsorbates on the active site (Fig. S3at)
and different chemical environments of water molecules (Fig.
S3bt). The numerous structures and continuous distribution in
the energy plot indicate sufficient sampling of both stable and
metastable structures in the configuration space.

In addition to validating the accuracy of our MLFF model, we
have also compared the computational efficiency between our
MLFF model and AIMD calculations. The number of steps
required for metadynamics sampling convergence was tested to
determine the minimum steps required for simulations. The
free energies under different steps are shown in Fig. S4,1 by
using O, adsorption as a representative. The free energy no
longer changes significantly after 500 000 steps, indicating that
the sampling has converged. The Fe-N,/C-water system calcu-
lated by AIMD with metadynamics requires at least 500 000
steps to achieve convergence for enhanced sampling, costing
approximately 500 days on a 24-core CPU (Dual Intel Xeon Gold

View Article Online
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6126) or 250 days on a V100 GPU. In contrast, for the same
system, the trained MLFF model requires only 4 hours for 1 ns
MD simulations on a V100 GPU or 12 hours on a 24-core CPU.
The computational speed of the MLFF method is approximately
1000 times faster than AIMD simulations without considering
the time consumed for training the MLFF model (see Fig. S1.2
and S4 in ESI}), and the speedup could be even more
pronounced for larger-size systems due to the non-linear
computational complexity of DFT with respect to the system
size.

Dynamics and kinetic properties of the ORR

The well-trained MLFF is utilized to investigate the dynamics
and kinetic properties of the ORR on the Fe-N,/C catalyst. The
dimensions and relative positions of the configuration are
shown in Fig. S1.7 The first step of the ORR on Fe-N,/C involves
the adsorption of O,, regarded as a “thermal process”.** Using
MLFF-MD with metadynamics simulations, a meta-stable
configuration of O, ~ 6.5 A away from the Fe-N,/C-water
interface was determined, which needs to overcome a signifi-
cant free energy barrier of 0.39 eV to adsorb on the active Fe site
(Fig. 4a black line). The high free energy barrier is attributed to
the higher density of water at the catalyst-solvent interface than
that in bulk solvent (red line in Fig. 4a). In bulk solvent with
lower density, there are fewer hydrogen bonds between O, and
water molecules (Fig. 4b). At the catalyst-water interface water
with higher density, the hydrogen bonds between O, and the
surrounding water molecules increase (Fig. 4¢), requiring more
energy to overcome these bonds for adsorption. In addition,
before the O, adsorption, the H,O adsorbed on the Fe site is
also observed in our work, which agrees well with the previous
AIMD simulations.*®

The free energy profile for the ORR process on the Fe-N,/C-
water interface at 300 K has been extensively investigated, as
shown in Fig. 5. The global free energy profile includes an initial
state of *O, and a final state of *H,O, delineated by two
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Fig. 3 Richness of configuration space. (a) Configuration distribution of reactant, product and metadynamics simulation with path collective
variables. The S represents the progress along the reaction pathway, while Z represents the distance between the structure and the reaction
pathway specified by the reference configuration (similarly hereinafter). (b) Visualization of the t-distributed stochastic neighbor embedding
results of structures for all training sets. PC1 and PC2 represent the first and second principal component, respectively. The two principal
component values obtained after dimensionality reduction don't have specific physical and chemical meanings, but only represent the relative
positions of the features of each structure in low dimensional space, reflecting the nearest neighbor relationship between data points.
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shallower basins (*OOH and *O) and one deeper basin (*H,0).
The global minimum energy reaction path, including reactants,
intermediates, transition states, and products, is also illustrated
in Fig. 5. Additionally, the probability of the reaction occurring
along the other paths is very low due to the rapid increase in free
energies with the direction perpendicular to the reaction path.
The free energy barriers for each elementary reaction are
calculated and compared, as shown in Fig. S6.f The results
indicate that the RDS corresponds to the process of O,
adsorption to the active site rather than the four PCET steps,
which is consistent with the AIMD simulations.™

For the reaction process of *0, + 2H" + 2e” — *0O + H,0
(abbreviated as PCET 1 & 2), our enhanced sampling algorithm

reveals two possible paths (path 1 and path 2) for the formation
of *O from *OOH, as displayed in Fig. 6a. In path 1, the O-O
bond in *OOH breaks, and then the detached OH undergoes
protonation in solution (Fig. 6b). A free energy barrier of 0.32 eV
needs to be overcome in the breakage of the O-O bond, while
the protonation process is barrierless. In path 2, *OOH first
receives a proton from solution, then the O-O bond breaks,
resulting in the desorption of H,O (Fig. 6¢). The free energy
barrier of this path exists in the PCET process with 0.60 eV,
while the O-O bond breaking is barrierless. Thus, path 1 is
preferred for the formation of the *O intermediate. Then, the
subsequent reaction processes of *O + H' + e~ — *OH and *OH
+H" + e~ — *H,O (abbreviated as PCET 3 & 4) are calculated,

Free energy (eV)

Fig. 5 The global reaction free energy as a function of path CV S and Z, revealed by the MLFF-MD with metadynamics. The global minimum
energy path is marked by a white dashed line, with red dots indicating the reactants, transition states, and products present on the reaction path.
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which are barrierless (Fig. S71). Finally, the adsorbed water
desorbs from the catalyst surface with a small desorption
barrier of 0.15 eV.

Crucial role of interfacial solvent structures

Previous studies have demonstrated the critical role of
hydrogen bonds in the PCET processes,**™*' since interfacial
water molecules act as proton donors, significantly influencing
the reaction barriers in different PCET processes. To address
this, we extensively analyzed the water configurations at the
interface. Our results show that solvent environments for PCET
1 &2 and PCET 3 & 4 are different. A greater number and longer
lifetime of hydrogen bonds between the solvent and adsorbate
exist for PCET 3 & 4, facilitating the PCET process with lower
free energy barriers (Fig. 7f and g). The radial distribution
function of O atoms in *O, and H atoms has been calculated,
indicating that there are significantly more H atoms around the
O atom in the first layer of solvent for PCET 3 & 4 (Fig. 7a). It

© 2025 The Author(s). Published by the Royal Society of Chemistry

implies that more hydrogen bonds will be formed in PCET 3 & 4.
The density of H atoms in H,O along the z-direction is statis-
tically analyzed. The results show that water molecules prefer to
aggregate at the interface with a higher density than the bulk
solvent (Fig. 7b). Furthermore, the density of H atoms at the
interface for PCET 3 & 4 is higher than that of PCET 1 & 2
(Fig. 7e), also facilitating the formation of more hydrogen
bonds.

To better understand the role of hydrogen bonds in different
PCET processes, we have analyzed the directional tendency of
water (angle ¢) at the interface.***® As shown in Fig. 7c, PCET 3 &
4 have a larger angle (92° for the first peak and 119° for the
second peak) compared to PCET 1 & 2 (90° for the only peak),
indicating a tendency of water molecules to adopt an H-down
configuration where more H atoms point towards the adsorbed
O atom. This results in the formation of more hydrogen bonds
at the interface (Fig. 7c and e). Consequently, the proton
transfer process of PCET 1 & 2 with fewer hydrogen bonds is

Chem. Sci., 2025, 16, 3620-3629 | 3625
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between O? and interface water for PCET 1 & 2 and PCET 3 & 4 processes, respectively. Dashed lines between O and H atoms represent hydrogen

bonds.

more challenging and thus has a free energy barrier (Fig. 7f),
whereas the proton transfer process of PCET 3 & 4 with more
hydrogen bonds is easier without any barrier (Fig. 7g). Statistical
analysis of the number of hydrogen bonds is also performed in
a larger supercell. The same result is remarkably observed with
the formation of more hydrogen bonds in PCET 3 & 4, strongly
supporting the conclusions related to the free energy barrier.

3626 | Chem. Sci., 2025, 16, 3620-3629

Additionally, the lifetime of hydrogen bonds also influences
the PCET process.* The longer the lifetime of hydrogen bonds,
the less possibility of hydrogen bond breakage, facilitating the
PCET process. As shown in Fig. 7d, in PCET 3 & 4 there is still
a small residual amount of hydrogen bonds after 1 ps, while the
hydrogen bonds in PCET 1 & 2 decay more rapidly and almost
none is left after 1 ps. Thus, it is more difficult for PCET 1 & 2

© 2025 The Author(s). Published by the Royal Society of Chemistry
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with shorter hydrogen bond lifetimes to occur than PCET 3 & 4
(Fig. 7f). The above statistical results strongly support the
opinion that the interfacial water configurations and the
formation of hydrogen bonds remarkably influence the reaction
barriers in different PCET processes of the ORR. Our strategy
combining MLFF and metadynamics could well describe it from
a long time-scale and fully explicit solvent, providing a statis-
tical explanation for the macroscopic energies of various PCETs.
To validate the efficiency and scalability of the MLFF, the
small system was expanded to a 4 x 4 supercell, consisting of
a total of 1984 atoms. The free energy barrier of O, adsorption is
0.375 eV, which agrees well with that from the original small cell
(0.39 eV), confirming it to be the RDS of the ORR. Also, PCET 3 &
4 are barrierless (Fig. S9af). Statistical results of solvent
configurations for all PCET processes reveal that the RDF of O-
H in PCET 3 & 4 exhibits a higher first peak compared to PCET 1
& 2 (Fig. S9bt). This corresponds to the formation of a larger
number of hydrogen bonds at the interface for PCET 3 & 4 (Fig.
S9ct). The increased hydrogen bonds facilitate proton transfer
and dramatically reduce the free energy barrier for the PCET
process. A more remarkable comparison between PCET 1 & 2
and PCET 3 & 4 could be seen from a relatively larger system.

Conclusions

In summary, we propose a strategy to explore the dynamic and
kinetic mechanisms of the ORR at the catalyst-solvent interface
by combining MLFF and enhanced sampling methods, signifi-
cantly increasing the speed of MD simulations with ab initio
accuracy, resolving the dilemma between “precision” and
“efficiency” in describing complex electrochemical processes.
Our results confirm that the RDS of the ORR at the Fe-N,/C-
water interface is the O, adsorption process with a free energy
barrier of 0.39 eV rather than the PCET process. This is because
O, forms more hydrogen bonds with the surrounding water at
the interface than that in bulk solvent, requiring more energy to
overcome for adsorption. By statistical analysis of water solvent
configurations for different PCET processes, it is found that the
interfacial water configurations remarkably change during the
reaction progress. The density of H atoms at the interface for
PCET 3 &4 is higher than that of PCET 1 & 2, and there are more
H-down configurations in water molecules. Thus, a greater
number and longer lifetime of hydrogen bonds between the
solvent and adsorbate exist for PCET 3 & 4, facilitating the PCET
process with lower free energy barriers. Our study combining
MLFF and metadynamics not only verifies the energetic
conclusions of the previous AIMD simulations, but also reveals
new statistical insights into the reaction mechanism of the ORR
on Fe-N,/C. Our work highlights the significance of kinetic
studies with considering atomic-scale solvent configurations in
heterogeneous electrocatalysis.
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