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Alloy-type materials hold significant promise as high energy density anodes for lithium-ion batteries.
However, the initial coulombic efficiency (ICE) is significantly hindered by the poor reversibility of the
conversion reaction and volume expansion. Here, the NiO/SnO, multilayers with a hybrid interface of
alloy and transition metal oxides are proposed to generate Ni nanoparticles within confined layers,
catalyzing Li,O decomposition and suppressing the coarsening of Sn or Li,O particles. Supported by
density functional theory (DFT) calculations and revealed by operando magnetometry, the spatially
confined, well maintained Ni active sites lower the energy barrier for Li-O bond rupture and enhance
the migration dynamics of Li*. The enhanced reaction kinetics lead to achievement of an impressive ICE
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when constructed with the same framework, SiO, also delivers significantly improved lithium storage
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Introduction

The rapid growth of new energy vehicles and large-scale energy
storage systems has increased the demand for energy storage
devices with lithium-ion batteries (LIBs) bearing the majority of
this demand.'* Among well-studied LIB anode materials, alloy-
type materials (e.g., Sn, Si, Ge, etc.) based on alloying/de-alloying
reactions have emerged as a promising candidate anode
alongside commercial graphite materials due to their high
theoretical capacity, low working potential and cost-
effectiveness.*™ These alloy-type anodes typically suffer from
drastic volume expansion (>300%), leading to poor electronic/
ion conductivity, continuous growth of the solid electrolyte
interphase (SEI), and significant performance degradation.'>**
Recently, MO, anodes (M = Sn, Si, etc.) have played a crucial role
in advancing energy storage solutions and often exhibit better
cycling stability, as the Li,O matrix generated from the
conversion reaction (xLi" + MO, + xe~ — M + xLi,0) alleviates
expansion stress and reduces volume fluctuations.***” However,
the poor reversibility of the conversion reaction results in low
initial coulombic efficiency (ICE), a critical factor for anode
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satisfy both ICE and overall electrochemical performance.

materials as it dictates the ability to mitigate irreversible
capacity loss.*® A low ICE reduces energy density of a battery,
significantly limiting its practical applicability.** Therefore,
improving the ICE of alloy-type anodes is essential for
successful commercial implementation.

Two main factors have been identified as the primary
determinants of low ICE in alloy-type anodes. First, as discussed
above, the irreversible transformation of Li,O results in poor
reversibility for the conversion reaction.”®* Meanwhile, the
volume expansion of M (e.g., Sn and Si) during the alloying
reaction causes continuous SEI growth, ultimately leading to
partial lithium depletion.'® To achieve a high ICE, researchers
have attempted to reduce the electrode size and enhance the
contact area between M and Li,0.**** For example, Park et al.
proposed high-entropy silicon anodes by the element screening
method, facilitating mass and charge transport and achieving
a high ICE of 90.3%.>*** Li et al. synthesized alloy anodes with
a disordered lattice and liquid metal phase to achieve higher
metallic conductivity, improving the ICE up to 91%.>® However,
the ongoing coarsening of grains, along with the associated
volume expansion and electrode fractures, further accelerates
the capacity decay. Additionally, transition metals (TMs) could
catalyze the decomposition of Li,O and facilitate the phase
transition, and are commonly utilized in the construction of
alloy-type anodes. However, building alloy-type anodes with
small-sized, highly active TMs to achieve an ICE over 90%
remains challenging.>-** Early research demonstrated that
small-sized, highly active TMs can be generated in situ from

© 2025 The Author(s). Published by the Royal Society of Chemistry
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transition metal oxides (TMOs) during the lithiation
process.'”** In this context, hybridizing alloy-type metals with
TMOs in a confined space may offer a new approach for
achieving high ICE.

Herein, we report magnetron-sputtered NiO/SnO, multi-
layers (NSMs) capable of achieving an ultra-high ICE up to
92.3% and a remarkable capacity retention of 97% after 800
cycles. As a self-supporting electrode material, the prepared
nanocomposite films have been successfully utilized in quasi-
solid state batteries. Operando magnetometry tracks the phase
evolution during the charge-discharge process. The tightly
wrapped nanolayer structure provides a confined space to
stabilize reduced Ni particles, suppressing the coarsening of Sn
and Li,O particles. Density functional theory (DFT) calculations
revealed that the free energy of Li-O bonds and the migration
dynamics of Li" are significantly influenced by active Ni nano-
particles (NPs), thus facilitating the subsequent delithiation
process of Li,O. Furthermore, the NiO/SnO, anode exhibits
decent electrochemical performance in Na/K-ion batteries
(SIBs/PIBs), demonstrating great promise as advanced anode
materials for next-generation batteries. More interestingly, the
superior ICE improvement strategy is universal in NiO/SiO,,
Co0/Sn0,, and Fe,03/Sn0O, alloy-type anode materials.

Results and discussion

The schematic illustration of the NiO/SnO, multilayers fabri-
cated by magnetron sputtering is shown in Fig. 1a. Layers of
5 nm NiO and 10 nm SnO, are alternately sputtered onto the
copper electrode to form well-confined NiO/SnO, interfaces.
The synthesized multilayer films are directly used as binder-free
anodes for lithium-ion batteries (Fig. 1a). All tested film mate-
rials and their preparation conditions are summarized in Table
S1.7 The X-ray diffraction pattern demonstrates the amorphous
nature of the NSM (Fig. S1at), which is further confirmed by the
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Fig.1 (a) Schematic illustration of the NSM preparation process. (b) CV
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twisted and disordered lattice pattern of NiO and SnO, in the
corresponding TEM image (Fig. S1bt). The X-ray photoelectron
spectroscopy (XPS) survey spectrum of the NSM (Fig. S2at)
confirms the existence of C, O, Sn and Ni. And high-resolution
XPS validates the dominant valences states of Ni** (Fig. S2b)
and Sn*" (Fig. S2ct) in the NSM, representing the original high
purity film. The cyclic voltammograms (CVs) of the samples
versus Li'/Li recorded in the range of 0-3 V at a scan rate of
0.5 mV s~ ', are shown in Fig. 1b. In the first negative scan for
NSM, SnO, or NiO combined with Li" ions shows a reduction
peak at around 1.2 V (i.e., SnO, + 4Li* + 4~ — Sn + 2Li,0 and
NiO + 2Li" + 2e~ — Ni + Li,O, respectively).®* The cathodic
peaks at around 0.55 V and 0.25 V are attributed to the forma-
tion of the solid-electrolyte interface (SEI) layer and the alloying
reaction (Sn + xLi" + 2¢” — Li,Sn).**** In the first positive scan,
the peaks detected at 0.5 V and 2.2 V are attributed to the
dealloying of Li,Sn alloys and the oxidation of Ni to NiO,
respectively.®* Notably, the NSM shows stronger decomposition
peaks of Li,O (Sn + 2Li,0 — SnO, + 4Li" + 4e”) compared to
pure SnO, between 1.0 V and 2.0 V, indicating a significant
improvement in the reversibility of the conversion reaction.

The electrochemical performance of the NiO/SnO, multi-
layer electrode was investigated by using coin-type half cells
(LIBs). As shown in Fig. 1c, the specific capacities of the NSM
anode for the first charge and discharge are 1543.1 and
1671.9 mA h g respectively, corresponding to a high initial
coulombic efficiency (ICE) of 92.3%, as one of the best SnO,-
based electrode performances reported in the literature
(Fig. 1d). In contrast, the ICEs of pure NiO (Fig. S31) and SnO,
are only 63.2% and 71.9%, respectively. The rate capability of
NSM and SnO, electrodes at current rates ranging from 0.5 to
5A g ' is shown in Fig. 1e. The NSM anode delivers a reversible
capacity of 1453.2 mA h g~ " at a current density of 1 Ag™~'. When
the current rate returns to 0.5 A g~ ', 91.8% of the original
capacity (1333.7 mA h g ") is retained. In contrast, the SnO,
electrode only exhibits 1038.5 mAh g "at 1 Ag " and retained
only 60.6% of its capacity at 0.5 A g~'. Longterm cycling
stability was evaluated at a current density of 1 A g~ '.Remark-
ably, the NSM anode exhibits excellent cycling stability (Fig. 1f)
with nearly 100% coulombic efficiency and retains 97% of its
reversible specific capacity even after 800 deep cycles.

To further understand the remarkable ICE stemming from
the high reversibility of the conversion reaction (Li,O + Sn —
SnO, + Li'), ex situ XPS characterization was conducted at
different potentials. As shown in Fig. 2a, when gradually
charged to 3 V, Sn** fully occupies the valence state in the NSM,
whereas in bare SnO, (Fig. 2b), 17% of Sn remains in the Sn°
state along with Sn**.3® After 50 cycles (Fig. S41), the Sn° content
increases to 68% in bare SnO, (Fig. S4at), while the NSM still
shows Sn*" without any impurities (Fig. S4bt), indicating Sn
and Li,Sn coarsening in bare SnO, and the high reversibility of
the conversion reaction in the NSM electrode. This result is
consistent with the differential charge capacity plots (DCPs)
observed in the NSM (Fig. 2¢). The shift of the dealloying peak
(Li,Sn — Sn) towards higher potential suggests increasing
polarization due to the coarsening of Sn and Li,Sn. Meanwhile,
the conversion reaction peaks from 1.0 to 2.0 V disappear after
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Fig. 2 Ex situ XPS spectra of Sn 3d for (a) NSM and (b) SnO, at four
different charge states. Differential charge capacity versus voltage
plots for (c) SNO, and (d) NSM electrodes from the 1st to the 100th
cycles.

100 cycles in bare SnO,, indicating the failure of conversion
reaction reversibility. Notably, the dealloying peak of the NSM
remains stable even after 100 cycles (Fig. 2d), confirming the
high reversibility and stability of the conversion/alloying
reaction.*”**

To explore the underlying reaction mechanism of the highly
reversible and stable conversion reactions in the NSM structure,
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Fig. 3 Analysis of the reaction mechanism of the NSM anode in LIBs
using operando magnetometry. (a) CV curves for the first three cycles
at a scan rate of 0.5 mV s~ over a potential window from 0.01V to 3 V.
(b) Operando magnetic monitoring as a function of CV scanning under
an applied magnetic field of 3T, and (c) the corresponding magnified
view of the dotted area. (d) Langevin fitting curve for the hysteresis
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the phase evolution process during cycling was investigated
using operando magnetometry.**-** Fig. 3a and b show CV curves
and time-sequenced magnetization of the NSM electrode, along
with the potential response during the first three cycles. The
periodic magnetization variation reflects the reversible and
steady electrochemical processes. The second discharge/charge
cycle response is magnified and discussed in detail (Fig. 3c).
The peaks and valleys at different voltages in the real-time
magnetization variation are labeled as V1 to V9. The lack of
magnetization variation indicates that no reaction of NiO
occurs from V1 to V2. The pronounced increase in magnetiza-
tion from V2 to V3 is likely due to the reduction from NiO to Ni.
The metallic Ni’ continues to store spin-polarized electrons
between V3 and V4, thereby reducing the slope of the magne-
tization increase.*>*® Followed by the formation and decompo-
sition of the SEI, the magnetization increases (V4 to V5) and
then falls (V6 to V7) corresponding to electron transfer.”” As
spin-polarized electrons are released from metallic Ni°
a significant increase in magnetization occurs from V7 to V8.
The oxidation from Ni to NiO from V8 to V9 induces a rapid
decline in magnetization. Thus, the in situ phase evolution of Ni
particles in the lithiation process is successfully described by
the advanced operando monitoring magnetization, addressing
the limitations of the ex situ technique.***>*® The size of Ni
particles was later quantified using Langevin fitting, as shown
in Fig. 3d. The fitted curve matches perfectly with the experi-
mental data, and the calculated diameter of the Ni particle is
1.2 nm. The result proves that the confined multilayers restrict
the Ni particle size to the nanoscale, ensuring their uniform
dispersion in layers, which provides more electron transport
channels. Furthermore, DFT calculations (Fig. 3e) were used to
investigate the relationship between Ni NPs and the decompo-
sition of inactive Li,O at a potential of 1.2 V. As shown in Fig. 3e,
the Li-O bond breaking process at the Ni/Li,O interface is an
exothermic reaction with a total free energy of —2.85 eV, while
the Li,O interface exhibits an energy barrier of 1.07 eV. This
confirms that the Ni NPs accelerate the delithiation of Li,O,
consistent with the highly reversible conversion reactions in the
NSM.

The overall morphology and surface microstructure of NSM
and SnO, electrodes were examined after 50 discharge-charge
cycles. In the SEM image, the SnO, electrode exhibits significant
volume expansion and a fractured surface (Fig. S5at). The cor-
responding staggered lattices observed in STEM (Fig. S6a and
bt) are identified as unreacted Sn, SnO, and Li,O particles. In
contrast, the NSM electrode (Fig. S5bt), comprising SnO, and
NiO composites, largely maintains its original structure with
minimal changes (Fig. S6d and et).* EDX mappings show
a uniform distribution of C, O and Sn elements in the NSM
electrode after 50 cycles, suggesting no significant atom
migration or aggregation during the cycling process. In
contrast, the SnO, electrode shows evident particle aggregation
due to the poor distribution of Sn (Fig. S71).>* Overall, these
observations strongly support our experimental results, such as
those of operando magnetometry, validating the reversible
structural transformation catalysed by Ni NPs in the NSM
electrode. Additionally, compared with the thicker SEI film in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the SnO, electrode (Fig. S6ct), the NSM electrode possesses
a more uniform SEI film (Fig. S6ft), which reduces the impact of
electrolyte corrosion and surface side reactions. Thus, such
a synergistic interaction between the internal reversible struc-
ture and external SEI protection significantly improves both the
cycle stability and rate performance.

The kinetic behavior of a lithium-ion battery in the whole
cycle was investigated using the galvanostatic intermittent
titration technique (GITT) method (Fig. 4a).*** The diffusion
coefficient (log D) of the NSM is significantly higher than that of
Sn0,, indicating a faster ion diffusion rate. Electrochemical
impedance spectroscopy (EIS) was used to detect changes in
internal resistance during the electrochemical process. Fig. 4b
illustrates the impedance from the 1st to the 200th cycles.
Notably, by the 100th cycle, the impedance of the SnO, elec-
trode increased fourfold compared to the initial cycle (Table
S2+t). This drastic rise indicates the electrode's failure to main-
tain structural integrity due to Li,O deposition and Sn particle
agglomeration during the process (Fig. S8).>* Conversely, the
impedance of the NSM shows minimal change even after 200
cycles, implying high structure reversibility during the reaction.
For detailed insights, we conducted EIS of both NSM and SnO,
electrodes in the alloying/dealloying voltage range and during
the decomposition of Li,O (discharge to 0.25 V and charged to
0.5V, 1.2 Vor 1.8 V, respectively) in a single cycle (Fig. 4c). The
equivalent circuit fitting is shown in Fig. S9.1 The NSM elec-
trode exhibits lower charge transfer resistance (R.) in smaller
semicircles at high-to-medium frequencies and various poten-
tials compared to bare SnO,, suggesting superior electrical
conductivity of the NSM electrode.* The density of states (DOS)
curves further emphasize the conductivity difference between
SnO, and the NSM (Fig. 4d and e). Above the conduction band,
the DOS intensity of the NSM is much higher than that of SnO,,
indicating a lower energy demand for the electron transition in
the NSM, which corresponds to higher conductivity.>® These
results demonstrate that the NSM structure significantly
enhances Li" diffusion and charge transfer, thereby markedly
improving rate performance.

The schematic diagram of the high electrochemical perfor-
mance mechanism, particularly in achieving ultra-high ICE for
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the NSM configuration, is summarized as follows (Fig. 5a): (1) Ni
nanoparticles are first in situ generated from NiO and widely
distributed in SnO, multilayers to catalyze the decomposition of
Li,O and promote the conversion reaction from Sn/Li,O to
SnO,. (2) The multilayer structure effectively stabilizes Ni NP
active sites and inhibits the coarsening of Sn and Li,O particles
by creating a confined environment. Additionally, it prevents
the formation of a thicker and uneven SEI layer, thereby alle-
viating volume expansion. (3) The nanosized Ni particles
derived from the well-designed NSM provide more electron
transport channels and facilitate Li" diffusion and charge
transfer, thereby elevating reaction kinetics. The same strategy
has been extended to NiO/SiO,, CoO/SnO, and Fe,03/SnO,
multilayers to explore their applicability and effectiveness in
lithium batteries, as shown in Fig. S10-S14.7 It is found that the
nanostructure NiO/SiO, electrode exhibits excellent compre-
hensive electrochemical performance, achieving an ultrahigh
average ICE of 81.2%, significantly surpassing that of pure SiO,.
Additionally, the CoO/SnO, and Fe,03/SnO,-based electrodes
also exhibited remarkable performance, delivering an ultra-
high ICE of 91.1% and 90.5% at 500 mA g, with high capac-
ities and rate performance, respectively. Moreover, leveraging
the structural benefits, the NSM electrode achieves one of the
best electrochemical performances reported for sodium-ion
batteries (SIBs) and potassium-ion batteries (PIBs), (Fig. S15
to S17; see the ESIf for details). The flexibility and adaptability
of this structure make it suitable for various types of batteries,
including lithium-ion, sodium-ion, or potassium-ion batteries,
enabling  outstanding performance across different
applications.

To evaluate the practical application prospects of the NSM,
quasi-solid-state pouch flexible cells (NSM|P(VDF-HFP)
|ILiCo0O,) were assembled as shown in Fig. 5b.°*** The full

Fig. 5 (a) Schematic diagram of the electrochemical performance
mechanism of NSM and SnO, electrodes. (b) Structure model of a thin
film battery and photographs of an electrochromic watch powered by
a flexible battery. (c) Open circuit voltage and (d) an LED logo of SnO,
powered by a flexible quasi-solid-state pouch cell at varied folding
levels.

Chem. Sci., 2025, 16, 418-424 | 421
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battery features an equal size 40 mm cathode and anode. The
open circuit voltage of the battery device remains almost
unchanged (approximately 3.0 V) at different folding states
(Fig. 5¢). As another demonstration, a “Sn0O,” logo comprising
90 LEDs is well illuminated by the flexible battery in both flat
and various bending states (Fig. 5d). These electrochemical
measurements highlight the key characteristics of flexibility
and adaptability, providing a continuous and stable power
supply despite changes in its physical shape or bending states.
We also assembled coin-type full cells with the NSM and
LiNiy sC001Mn,,0, as the anode and cathode separately,
demonstrating similarities in the ultra-high capacity and ICE
(Fig. S1871). On this basis, the “small and powerful” flexible
battery is expected to be a competitive candidate for energy
storage and conversion components in next-generation micro-
electronic devices, as well as in future integrated electronic
devices.

Conclusion

In summary, a NiO/SnO, multilayer anode with confined tran-
sition metal oxide (TMO) layers has been developed for Li-ion
batteries using an alternating magnetron sputtering method.
The designed hierarchical structure of the NSM exhibits an
ultrahigh ICE of 92.3% and a large capacity of 1247.6 mAh g™ !,
retaining ~97% after 800 cycles. Operando magnetometry
directly evidences the evolution of Ni NPs from NiO, and the
DFT calculations revealed that the Ni NPs significantly lower the
energy barrier for breaking Li-O bonds, thereby facilitating the
conversion reaction from Sn/Li,O to SnO,. Additionally, the
confined environment in the NSM helps inhibit the coarsening
of Sn and Li,O by maintaining the nanoscale of Ni active sites,
effectively alleviating volume expansion. Moreover, the well-
dispersed Ni NPs profoundly enhance the conductivity and
reaction kinetics by providing more electron transport channels
and shortening the diffusion distance of Li" and electrons,
respectively. As expected, in a broader range of interfacial
systems, we found that NiO/SiO,, CoO/SnO,, and Fe,03/SnO,
anodes all show significant performance improvements with an
ultrahigh ICE of 81.2%, 91.1% and 90.5%, respectively. The
multifunctionality and universality of NiO/SnO, anodes in Na/
K-ion batteries and flexible quasi-solid-state full cells high-
light their widespread feasibility, offering a promising path
towards high-performance energy storage solutions.
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