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te- and cluster-based framework
for reaction condition prediction†

Zihan Wang,‡a Kangjie Lin, ‡a Jianfeng Pei *b and Luhua Lai *ab

Computer-assisted synthesis planning has emerged as a valuable tool for organic synthesis. Prediction of

reaction conditions is crucial for applying the planned synthesis routes. However, achieving diverse

suggestions while ensuring the reasonableness of predictions remains an underexplored challenge. In

this study, we introduce an innovative method for forecasting reaction conditions using a combination

of graph neural networks, reaction templates, and clustering algorithm. Our method, trained on the

refined USPTO dataset, excels with a top-3 accuracy of 63.48% in recalling the recorded conditions.

Moreover, when focusing solely on recalling reactions within the same cluster, the top-3 accuracy

increases to 85.65%. Finally, by applying the method to recently published molecule synthesis routes and

achieving an 85.00% top-3 accuracy at the cluster level, we demonstrate our approach's capability to

deliver reliable and diverse condition predictions.
Introduction

The rapid development of machine learning has signicantly
advanced its application in aiding chemists with synthesis.1–4 In
recent years, computer-assisted synthetic planning (CASP) has
gained signicant attention and demonstrated its value in drug
synthesis5–9 and natural product synthesis.10,11 As indispensable
components of chemical reactions, reaction conditions (cata-
lysts, solvents, and reagents) also need to be accurately pre-
dicted.12 Reaction conditions are essential for forward
prediction models,13,14 as the same reactants may yield
completely different products under different conditions.
Thoughtful consideration of reaction conditions not only
enhances the selection of more feasible routes in synthetic
planning algorithms15 but also aids chemists in grasping the
model's underlying logic. This, in turn, facilitates the practical
experimental implementation of the predicted routes.16,17

Efforts have been made to predict conditions for specic
reaction types. Struebing et al.18 employed quantum chemistry
calculations in designing solvents for the Menschutkin reac-
tion. Machine learning methods are also widely applied. Mar-
cou et al.19 used multiple models to build an expert system to
predict conditions for the Michael reaction. Maser et al.20 used
a relational graph convolutional neural network to predict
conditions for four high-value reaction types. Afonina et al.21
ences, College of Chemistry and Molecular

871, China. E-mail: lhlai@pku.edu.cn

for Advanced Interdisciplinary Studies,

-mail: jfpei@pku.edu.cn

tion (ESI) available. See DOI:
introduced an articial neural network that ranks reaction
conditions by their efficacy for hydrogenation reactions. Kwon
et al.22 applied a graph-augmented variational autoencoder to
predict feasible reaction conditions for cross-coupling reac-
tions. Angello et al.23 developed a workow utilizing machine
learning and experimental robotics to accomplish the selection
of general conditions for the heteroaryl Suzuki–Miyaura
coupling reaction. Attempts such as utilizing high-throughput
datasets with active learning methods have also been made.24–26

Apart from specic reaction types, there are also studies that
focus on predicting conditions for general reactions. Gao et al.27

integrated molecular ngerprinting with fully connected neural
networks to predict reaction conditions, ensuring cohesive
connectivity between different condition components.

In addition to molecular ngerprinting and graph-based
approaches, transformer-based models have also been widely
applied to reaction condition prediction tasks. Schwaller et al.8

used a transformer model to make concurrent predictions of
conditions and reactants for a given target molecule. Jaume-
Santero et al.14 used a transformer model to predict reaction
conditions for given reactants and products. Kreutter et al.28

also applied a transformer model for reagent prediction in their
proposed triple transformer loop framework. Andronov et al.29

subdivided and sequenced reaction condition components and
then trained a transformer model to predict conditions. Wang
et al.30 developed a prediction model for reaction conditions
based on a transformer architecture and incorporated a pre-
training strategy that leverages reaction domain knowledge.
Qian et al.31 utilized text retrieval methods to pinpoint relevant
textual information for given reactions, thereby improving the
accuracy of predicting conditions.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic diagram of the complete condition prediction workflow.
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Nonetheless, many challenges remain to be solved in pre-
dicting general reaction conditions. A well-performing predic-
tive model should provide reasonable recommendations for
complete reaction conditions, as well as ensure compatibility
among the different components (catalysts, solvents, and
reagents). Since feasible reaction conditions for transforming
reactants into products are usually not unique, an effective
predictive model should present all possible reaction condi-
tions, which has been overlooked in previous studies.

Given the intricate connections between different elements
of reaction conditions, we propose a holistic approach that
treats catalysts, solvents, and reagents as an integrated system
when offering suggestions. Compared to reactions with
different templates, reactions sharing the same reaction
template oen involve more similar reaction mechanisms.
Herein, we introduce Reacon, a reaction template-driven
framework for predicting reaction conditions using directed
message passing neural networks (D-MPNN).32 This method
leverages reaction conditions recorded under the same
template to narrow down the model selection scope. Addition-
ally, we present a label-based clustering algorithm that groups
similar predicted conditions together to enhance the diversity
of top-ranking predictions and simplify condition selection for
experimental chemists. The workow of our approach is illus-
trated in Fig. 1. We further validate our approach on several
recently published synthesis routes and corresponding
conditions.
Methods
Data preparation and preprocessing

In the present study, we utilized the USPTO patent dataset,33

which is currently the largest and widely employed open-access
dataset for organic reactions. We categorized the reaction
conditions into three parts: catalyst, solvents, and reagents.
The original dataset includes labeling of catalysts and solvent
information, but it does not further distinguish between
© 2025 The Author(s). Published by the Royal Society of Chemistry
reactants and reagents. We dened molecules that contain
atomic mapping as reactants and those without atomic
mapping as condition components. However, considering the
specicity of oxidizing agents, if only oxygen atoms are map-
ped in a molecule, we also classify it as a reagent. The
comprehensive workow for dataset processing is outlined as
follows:

(a) Reactions with SMILES34 that cannot be parsed by RDKit35

are removed.
(b) Reaction templates (radii = 1) for each reaction are

extracted using RDChiral36 and reactions for which templates
could not be extracted or occurred fewer than 5 times are
removed.

(c) Reactions containing catalysts, solvents, or reagents that
appeared fewer than 5 times are eliminated.

(d) For reactions with multiple solvents and reagents, we sort
them according to their frequency of occurrence under the
corresponding template. Reaction conditions that occurred
only once or hadmore than one catalyst, two solvents, and three
reagents are removed.

(e) The dataset is randomly divided into training, validation,
and testing sets with a 0.8 : 0.1 : 0.1 ratio.

The nal dataset consists of 690 872 data points; encom-
passing 439 catalysts, 542 solvents, and 2746 reagents.

Following the initial data screening, we proceeded to
construct our template-condition library using the training
dataset. As shown in Fig. 2A, for each reaction data, we extracted
three different types of templates: r1, r0, and r0*. Here, r1 and
r0 represent templates extracted using RDChiral36 with different
radii, while r0* represents the simplest form obtained by
retaining only atoms and bonds from the r0 template. We ob-
tained a total of 26 228 r1 templates, 9755 r0 templates and 7106
r0* templates. Templates with less information cover a larger
chemical space but exhibit lower specicity. Thus, candidate
reaction conditions provided by identical r1 templates should
be the most accurate, followed by r0 templates and r0*
templates.
Chem. Sci., 2025, 16, 854–866 | 855
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Fig. 2 (A) Examples of r1, r0, and r0* templates. (B) Example of the condition clustering algorithm.
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Condition clustering algorithm

Drawing inspiration from the way chemists classify reaction
conditions, we conducted feature extraction for each compo-
nent using 31 labels, as illustrated in Table 1. These labels
encompass: (a) presence of specic functional groups, such as
alkenes, alcohols, and carboxylic acids. (b) Presence of specic
elements, primarily referring to metals such as transition
metals, main group metals, and reducing metals (alkali metals
and alkaline earth metals). (c) Featuring specic functionalities,
such as oxidants, reductants, and acids. This determination is
based on the presence of corresponding constituents, such as
Table 1 All labels used to describe reaction components and their
classification criteria

Feature types Number Labels

Functional
group

21 Alkene, alkyne, alcohol, ether, aldehyde,
ketone, carboxylic acid, ester, amide, nitro,
amine, halide, acid chloride, anhydride,
nitrile, aromatic, sulfone/sulfoxide,
phosphine, metal alkyl, silane, sulde

Element 3 Transition metal, reducing metal, main
group metal

Function 5 Oxidizer, reductant, acid, Lewis acid, base
Else 2 Ionic, other

856 | Chem. Sci., 2025, 16, 854–866
high-valence metals or hydride ions. (d) Additionally, an “ionic”
label was assigned to compounds exhibiting charge separation,
while those not falling into any category were labeled as “other.”
Except for the ‘other’ label, all labels are non-exclusive, allowing
each component to have multiple labels. The detailed criteria
for assessment are presented in Table S1.†

Given the frequently encountered ambiguous distinction
between solvents and reagents in the dataset, two conditions
must meet the following criteria to be classied into the same
cluster: (1) share a common catalyst label (or both have no
catalyst label). (2) If the total number of solvent and reagent
labels exceeds 2, there should be a minimum of two overlaps;
otherwise, the labels must be entirely identical. The detailed
clustering process is given in Fig. S1.† An example of condition
labelling and clustering is shown in Fig. 2B.

For each new reaction, we rst determine whether it belongs
to an existing reaction condition cluster. If it does, we add it to
the corresponding group and update the labels. Otherwise, we
establish a new cluster with the label of the new reaction. To
ensure no intersection between different categories, when
a reaction could be classied into multiple categories, we assign
it to the cluster with the most label intersections. If the number
of label intersections is equal, the category with a larger inter-
section of catalyst labels will have higher priority. Specic
examples of clustering effects can be found in Table S2.†
© 2025 The Author(s). Published by the Royal Society of Chemistry
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GNN models

For the prediction of separate conditions, we utilized the D-
MPNN (Directed Message Passing Neural Network)37 and GAT
(Graph Attention Network)38 models. The detailed network
descriptions are given in ESI Section 2†, and information on
hyperparameter selection can be found in Tables S3 and S4.†

As shown in Fig. 3A, the input of the model consists of two
parts: the molecular graph of the reactant and the differences
between the reactant and product. For each molecular graph,
vertex information includes atom type, bond count, and charge,
among other features. Bond information includes bond order,
isomerism, and whether it forms a ring.32
Baseline models

To facilitate model performance comparison, we designed the
following three baselines:

(1) Popularity baseline: to assess the model's ability to
differentiate between various conditions under the same
template,39 we devised this popularity baseline method to
identify the most frequently occurring reaction condition for
each template.
Fig. 3 (A) Overview of the model architecture used for reaction conditi

© 2025 The Author(s). Published by the Royal Society of Chemistry
(2) Similarity baseline: similar to the Retrosim approach,40

this model calculates the overall molecular similarity between
the input reaction and reactions in the corresponding template-
condition library, and then outputs the condition with the
highest similarity score. The overall similarity is determined by
the product similarity multiplied by the similarity of the
reactants.

(3) Reaction ngerprint MLP: this encompasses six feed-
forward neural network models, each with two hidden layers
(256, 64). These models are utilized to forecast the catalyst,
solvent 1, solvent 2, reagent 1, reagent 2, and reagent 3 for
individual reactions. The input of this model comprises two
components: the reagent ngerprint (1024 dimensions) and the
reaction ngerprint (1024 dimensions), which are obtained by
subtracting the reactant ngerprint from the product
ngerprint.

(4) RCR: RCR (Reaction Condition Recommender) is a reac-
tion condition prediction framework proposed by Gao et al.27 It
used several neural networkmodels for predicting each reaction
condition component. For the complete reaction condition
prediction, a stepwise prediction strategy was adopted, i.e., the
catalyst information was predicted rst, and the corresponding
information was introduced into the solvent prediction, and the
on prediction. (B) Flowchart of the condition prediction algorithm.

Chem. Sci., 2025, 16, 854–866 | 857
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subsequent components were predicted in the same way. We
reproduce the RCR model as we understand it using the same
training hyperparameters as in the original literature.
Condition score metric

For a complete set of reaction conditions (including catalyst,
solvent 1, solvent 2, reagent 1, reagent 2, and reagent 3), the
condition score (ConScore) for these conditions can be obtained
by multiplying the selection probabilities of each component.

ConScoreðxÞ ¼
Y

PiðxÞ ði ¼ cat; solv1; solv2; reag1; reag2; reag3Þ (1)

Complete condition prediction algorithm

The workow of the condition prediction algorithm is shown in
Fig. 3B. For each input reaction, we will rst use the reaction
condition prediction model to obtain the probability of each
condition component. Then we will search the template-
condition library for conditions recorded under the same
template of the input reaction as candidates. During the process
of generating candidate conditions, we rst search for identical
r1 templates in the template-condition library. If none are found,
we then search for r0 templates and r0* templates. Aer
obtaining the condition candidates, we use the previously ob-
tained probabilities to calculate the ConScore for each candidate.
These candidates are then ordered by their ConScore, and this
ranked list constitutes our predictive output. The pseudo-code
for the template-based reaction prediction is illustrated in
Fig. S2.† For situations where the template of the predicted
reaction does not appear in the template-condition library, we
obtain the top-3 predictions for each reaction component model
and generate all possible combinations of these as candidates.
Results and discussion
Predicting individual components of reaction conditions

We rst trained independent models for the prediction of
catalyst, solvent 1, solvent 2, reagent 1, reagent 2, and reagent 3.
Table 2 presents the performance of the GAT and D-MPNN
models alongside other baselines. All models demonstrated
high prediction accuracies for the catalyst, approximately 90%.
This is because a large fraction of the reactions do not require
Table 2 The individual prediction performance of different models on e

Model

Catalyst Solvent 1 S

Top-1 (%) Top-1 (%) T

Popularity baseline 91.03 37.01 7
MLP 87.07 28.56 8
RCR 90.01 55.58 8
Similarity baseline 90.56 30.11 7
GAT 91.73 61.53 8
D-MPNN 93.12 61.93 8
D-MPNN (multi-task) 92.45 59.76 8

858 | Chem. Sci., 2025, 16, 854–866
catalysts, which simplies model training, thereby minimizing
performance disparities among models. The same reason
applies to the prediction of solvent 2 and reagent 3. In contrast,
predicting solvent 1, reagent 1, and reagent 2 proved to be
relatively more challenging. Here, the GAT model attained
prediction accuracies of 61.53%, 66.74%, and 78.24% respec-
tively, while the D-MPNN model attained 61.93%, 68.23%, and
80.44% respectively, signicantly outperforming the other
baselines. The largest gaps, nearly 30% in prediction accuracies
for solvent 1 and reagent 1, were found between the GNN
models and other models.

We also trained a multi-task D-MPNN model to predict all
the conditions simultaneously. Compared to the separately
trained models, the multi-task model can make predictions
faster and it also performs well on all tasks. More model
performance results can be found in Table S5.†
Predicting complete reaction conditions

Aer obtaining the predictive model for each component of the
reaction conditions, we used it to calculate the ConScore for all
complete reaction conditions in the template-condition library
that correspond to the same template as the input reaction. The
performance of complete condition prediction on the test set is
listed in Table 3, where accuracy is calculated based on whether
the predicted complete condition with the top-N ConScore
matches the ground-truth conditions. GNN models surpassed
other baseline models by 5–10% under this framework, sug-
gesting that they can effectively learn the relationship between
reactants and reaction conditions.

In comparison, the similarity baseline did not achieve the
expected high accuracy, performing slightly below the popu-
larity baseline. This discrepancymay be attributed to the USPTO
dataset's abundance of similar reaction instances with varying
conditions.

In addition to the random split, we also conducted a more
challenging time split. We used data from 1976 to 2014 as the
training set, data from 2015 as the evaluation set, and data from
2016 as the test set. Our model continued to outperform the
other baselines on this dataset. The performance of the model
is shown in Tables S6–S8.†

We also tested the performance of our model on the reac-
tion condition dataset provided by Wang et al. and compared it
to the performance of the parrot and RCR models reported in
ach component of reaction conditions in the test set

olvent 2 Reagent 1 Reagent 2 Reagent 3

op-1 (%) Top-1 (%) Top-1 (%) Top-1 (%)

6.14 39.50 75.10 93.45
0.72 35.48 75.01 95.00
5.08 62.37 76.34 95.21
5.69 34.19 76.40 93.25
5.16 66.74 78.25 95.31
6.61 68.23 80.44 96.05
6.12 66.72 79.63 95.95

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance of different models on condition predictions in the test set

Metric Model Top-1 (%) Top-3 (%) Top-10 (%)

Exact accuracy Popularity baseline 36.02 56.19 73.01
MLP 34.43 54.19 68.21
RCR 28.56 37.18 42.03
Similarity baseline 36.01 54.98 71.23
GAT 41.67 61.46 76.51
D-MPNN 44.52 63.49 78.55
D-MPNN (multi-
task)

42.41 61.42 76.78

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 9
:2

3:
45

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the article.30 Our model maintains the leading accuracy on
this dataset, with performance details shown in Tables S9
and S10.†
Clustering reaction conditions

Despite the satisfactory accuracy demonstrated by our model,
we also found some problems. As illustrated in Fig. 4, we have
observed a high degree of similarity among the top-ranking
conditions suggested by the model, frequently limited to
substitutions in solvents or reagents. To give more diversied
conditions, we further clustered similar predicted conditions
Fig. 4 Comparison of the performance of the D-MPNN condition pre
Ketone reduction. (B) Ester condensation reaction. (C) Oxidation of alc
highlighted in blue.

© 2025 The Author(s). Published by the Royal Society of Chemistry
together that better align with chemists' preferences. The
clustering algorithm is described in the Methods section.

Fig. 4A illustrates a reaction wherein a ketone is reduced to
a methyl group. While the D-MPNN model successfully repli-
cated the ground truth in the top-2 predictions, the predomi-
nant similarity in the top-ranking predictions gives limited
information for users in selecting reaction conditions. Aer
clustering, a variety of alternative conditions were ranked
within the top-3 clusters, such as the Wolff-Kishner–Huang
Minglong reduction41,42 or substituting acids with Lewis acids.
As shown in Fig. 4B, the ground truth involved using a bulky
dictor with and without using the condition clustering algorithm. (A)
ohol. The same cluster of reaction conditions as the ground truth is

Chem. Sci., 2025, 16, 854–866 | 859
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base, which is not particularly common in ester condensation
reactions. Consequently, the D-MPNNmodel without clustering
failed to predict the corresponding conditions within its top-3
predictions. Aer clustering, similar conditions were inte-
grated, leading to the identication of the corresponding
condition within the top-3 clusters. Fig. 4C illustrates an
oxidation reaction from alcohol to aldehyde. The top-3 predic-
tions used MnO2 as the oxidant, differing only in the solvent.
Aer clustering, in addition to correctly identifying the ground-
truth Dess–Martin oxidation, the D-MPNN model also provided
the Swern oxidation within the top-3 clusters.

In addition to improving model performance, we found that
clustering can help identify potential erroneous reactions in the
dataset. This provides a convenient means to screen for erro-
neous reaction conditions, thus enabling optimization of the
quality of the reaction condition dataset.29 The detailed exam-
ples can be found in Table S2.†

To evaluate the overall performance at the condition cluster
level, we introduced a metric called cluster accuracy. This
metric assesses whether the reaction conditions provided by the
model belong to the top-N condition clusters as the ground
truth. The ranking of different clusters is based on the highest
ConScore within the same cluster. This metric can address
many of the issues present in exact accuracy metrics. For
instance, in practical experiments, several reagents may have
similar effects and can be used interchangeably. The specic
selection of reagents frequently depends on the preferences of
chemists, laboratory inventory, and various other inuencing
factors. Therefore, expecting the model to provide complete
reaction conditions that precisely match the ground truth in the
test set is overly strict.

The performance of different models aer clustering on the
test set is shown in Table 4. Notably, aer adding the clustering
algorithm, the top-1 cluster accuracy of the D-MPNN model
achieved an impressive 65.68%, surpassing baseline models by
more than 10%. Furthermore, the top-10 cluster accuracy
soared to an exceptional 96.11%. These results underscored the
method's remarkable ability to effectively predict diverse reac-
tion conditions. We also tested the effect of different factors on
the nal cluster size with cluster accuracy. The results showed
that different clustering criteria had a large impact on the
results, compared to the use of different template libraries.
Additional discussion on the effect of cluster size on model
performance is given in ESI Section 5 and Tables S11–S13.†

We ultimately selected the D-MPNN model, which demon-
strated the best performance on the test set. By integrating it
Table 4 The performance of the different models on the test set after c

Metric Model

Cluster accuracy Popularity baseline
Reaction ngerprint MLP
Similarity baseline
GAT
D-MPNN
D-MPNN (multi-task)

860 | Chem. Sci., 2025, 16, 854–866
with the clustering algorithm, we constructed our reaction
condition predictor Reacon.

Analysis of problematic predicted cases. In addition to
highlighting the strengths of Reacon, we also analyzed
instances where it diverged from the ground truth in assigning
the correct condition cluster. Fig. 5 presents representative
cases where the model failed to predict the ground truth cluster
within the top-3 cluster predictions (more examples can be
found in Fig. S3†). In many cases, discrepancies between the
model predictions and the dataset records were not a result of
unreasonable outputs, but rather were attributed to dataset
issues or the presence of various potential reaction conditions.

Fig. 5A illustrates a very common problem in our dataset,
where there are missing data for reaction conditions. Taking the
amide formation reaction as an example, only THF was recor-
ded as the condition. Yet, conducting this type of reaction
without a carboxylate activating reagent oen presents signi-
cant difficulties. In contrast, Reacon provided more compre-
hensive and accurate conditions. Erroneous recording of
reaction condition data is also frequent in USPTO datasets. As
shown in Fig. 5B, the direct use of sodiummetal in this reaction
is dangerous, and it is not a reasonable condition for this type of
reaction. We checked the original patent record and found that
sodium methoxide was actually used, but it was incorrectly
recorded in the dataset as Na and methanol, which are the raw
materials used to prepare sodium methoxide. Reacon not only
predicted the ground-truth condition but also forecasted
a commonly used non-nucleophilic base. Fig. 5C illustrates
another common problem in the USPTO dataset, namely its
inability to distinguish the order of multi-step operations. For
example, for this ester hydrolysis reaction, the dataset recorded
sodium hydroxide and hydrochloric acid as reaction conditions,
with hydrochloric acid being used for post-processing rather
than being added simultaneously. The dataset may inadver-
tently mix up the records, potentially causing challenges in the
model's learning process. In this case, Reacon could still predict
accurate conditions.

In the above cases, the differences between the model
predictions and the ground truth records primarily stem from
issues within the dataset. Specically, in cases of missing or
inaccurately recorded conditions, Reacon can effectively
complete or correct the conditions, offering more logical
conditions. We therefore believe that our model may have some
potential for dataset optimization tasks as well.29

Apart from dataset issues, another challenge in predicting
reaction conditions is the existence of multiple feasible
lustering

Top-1 (%) Top-3 (%) Top-10 (%)

54.04 79.55 91.89
51.38 74.01 86.39
53.63 77.34 91.70
63.14 83.59 95.10
65.68 85.65 96.11
63.88 84.17 95.91

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Reaction cases where the model's predictions do not agree with the ground truth. Conditions from the dataset or literature are marked in
black, while predictions matching the ground truth type are marked in blue, and inconsistent predictions are marked in red. (A) Amide formation
reaction. (B) Nucleophilic substitution reaction. (C) Hydrolysis of ester. (D) Oxidation of alcohol to ketone.
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outcomes. Fig. 5D depicts a reaction where an alcohol is
oxidized to a ketone using TPAP (tetrapropylammonium per-
ruthenate), an oxidizing agent classied within the fourth
ranking cluster in Reacon's prediction. However, the Dess–
Martin oxidation43 and Swern oxidation,44 recommended by
Reacon in the top-2 clusters, are also proven oxidation methods
with high yields. Even though the model fails to predict
conditions consistent with those reported in the literature
sometimes, it still offers feasible conditions.

Evaluation on actual synthetic routes

To further evaluate the practical performance of our model, we
selected 12 drug molecule synthesis routes (100 reactions) from
recently published articles in the Journal of Medicinal
Chemistry45–56 and predicted their conditions using Reacon. This
task is relatively challenging due to several factors. Firstly, some
of the reagents are chosen by chance, depending on the pref-
erences of the chemists or the laboratory inventory. Secondly,
the conditions reported in the literature should have been
purposefully optimized by the chemists, which are difficult to
© 2025 The Author(s). Published by the Royal Society of Chemistry
learn from general datasets. Overall, our predictor reached
a top-3 exact accuracy of 39.00% and a top-3 cluster accuracy of
85.00%. The detailed results are shown in Table S14.† The
predictions of two representative routes are shown in Fig. 6,46,47

and other predicted results can be found in Fig. S4–15.†
In the route depicted in Fig. 6A, many of these predictions

can be achieved by substituting similar reagents with condi-
tions from the literature, oen requiring just a single step. For
example, the actual conditions in step 2 can be achieved by
substituting the model's predictions of LiAlH4 with BH3$SMe2,
and the conditions in step 5 can be obtained by replacing
LiHMDS with KHMDS. Additionally, in step 6 of the route,
Reacon accurately predicted the identical catalysts, reagents,
and one of the three solvents reported in the literature.

In the synthesis route depicted in Fig. 6B, Reacon's predic-
tions closely match the reported conditions in the literature. For
example, the reported conditions in steps 4 and 5 can both be
achieved by replacing the model-suggested THF with 2-MeTHF.
Even predictions deviating from the ground truth remain
rational. For instance, in step 3's dethioacetalization, where the
Chem. Sci., 2025, 16, 854–866 | 861
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Fig. 6 (A) Synthesis route of LNP1892 with actual and predicted reaction conditions. (B) Synthesis route of GDC-1971 with actual and predicted
conditions. Ground truth conditions are marked in black. Consistent predictions are marked in green, while those matching the condition type
but not the ground truth conditions are marked in blue, and inconsistent predictions are marked in red. The default display shows the top-1
results for each cluster unless the rank is specified within parentheses.

862 | Chem. Sci., 2025, 16, 854–866 © 2025 The Author(s). Published by the Royal Society of Chemistry
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literature favored pyridinium perbromide, Reacon proposed an
alternative scenario using PIFA57 as an oxidizing agent.
However, it was inevitable that Reacon occasionally provided
unreasonable results, such as in step 10, where it erroneously
interpreted a reaction involving 3,4-dihydropyran as the addi-
tion of an amino group to a double bond. This misinterpreta-
tion stems from the absence of comparable templates in our
condition library.

Given that the primary objective of general reaction condi-
tion prediction models is to provide synthetic chemists with
a reasonable starting point for condition optimization, this
outcome is sufficiently informative and valuable as a reference.

Conclusions

We have developed a novel framework, Reacon, which encom-
passes a GNN model and predicts rational reaction conditions
by integrating templates and clustering algorithms. Reacon
achieves a top-1 accuracy of 44.52% in recalling ground truth
conditions and 65.68% in predicting the corresponding cluster
in the test dataset. Despite dataset inaccuracies leading to some
errors, Reacon excels in providing more rational reaction
conditions. Furthermore, the model exhibited satisfactory
performance in predicting reaction conditions for actual
synthesis routes. It successfully identied the reported condi-
tion clusters in the literature within the top-3 clusters with an
accuracy of 85.00%, showcasing its capacity to aid chemists in
screening reaction conditions. Overall, our work offers a reliable
condition prediction tool that contributes to chemists in
selecting conditions for new reactions and computer-assisted
synthetic planning.

Despite the promising results, the current approach can be
further improved in the following directions. Firstly, the excel-
lent performance of our framework relies heavily on the
template-condition library, which enhances the performance of
our models while limiting their scalability. This leads to diffi-
culties for our model to make effective predictions for reaction
conditions that do not appear in the training set. Therefore,
further exploration should focus on expanding the predictor's
capacity to predict new conditions. Secondly, temperature and
reaction time are also important components of reaction
conditions, which can be included in future work. Lastly, as
inaccurate reaction conditions can negatively impact both
model training and the clustering of reaction conditions,
a high-quality dataset needs to be collected, especially from
high-throughput experiments to further improve the model.

Code availability

Full code and trained models are available at: https://
github.com/wzhstat/Reaction-Condition-Selector.

Data availability

The dataset used for training is available at https://
www.dropbox.com/scl/fo/v1rhyes2wvead9dz3x4/
hrlkey=nqtst7azldcry3ixnoigmcv3v&dl=0.
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H. Lima, S. Szymkuć, M. Bhowmick, K. Molga, Y. Zhou,
L. Rickershauser, E. P. Gajewska, A. Toutchkine,
P. Dittwald, M. P. Startek, G. J. Kirkovits, R. Roszak,
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