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alable synthesis of 40-
thionucleosides†

Callum Lucas,‡a Ethan Fung, ‡a Matthew Nodwell,a Steven Silverman,b

Bara Singh, a Louis-Charles Campeau b and Robert Britton *a

40-Thionucleosides (thNAs) are synthetic nucleoside analogues that have attracted attention as leads for

drug discovery in oncology and virology. Here we report a de novo thNA synthesis that relies on

a scalable a-fluorination and aldol reaction of a-heteroaryl acetaldehydes followed by a streamlined

process involving carbonyl reduction, mesylate formation and a double displacement reaction using

NaSH. We demonstrate the multigram preparation of 40-thio-5-methyluridine and highlight the

production of purine and pyrimidine thNAs as well as C20-modified thNAs.
Introduction

For several decades nucleoside analogues (NAs) have served as
a prolic source of antiviral and anticancer therapeutics, and
account for more than half of all approved antiviral drugs.1

However, the pressure of new pathogens and emergence of drug
resistance has highlighted the need for continued exploration
of NA-relevant chemical space to identify compounds with novel
mechanisms of action or enhanced resistance-combating
properties.2 One promising class of NAs that have been
studied since the 1960s3 are 40-thio NAs (thNAs), where the ring
oxygen is replaced with a sulfur atom. This single modication
can have a profound impact on biological activity, including
pharmacokinetic and pharmacodynamic properties.1,4 Further,
due to the increased stability of the C–N anomeric bond, thNAs
are generally more resistant to hydrolysis.5 For example, thiar-
abine (40-thioaraC (1), Fig. 1),4 a thNA of the sponge metabolite
cytarabine, was developed to treat hematological malignancies
and solid tumors. Here, replacement of the endocyclic oxygen
with sulfur resulted in an improved once daily oral dosing
regimen compared to cytarabine, which requires twice-daily
intravenous administration.6 The structurally related 20-deoxy-
uoro thNA FF-10502 (2)7 is an anticancer agent with improved
potency over the related NA gemcitabine. Additionally, 40thio-
DMDC (3)8 and the C40 alkyne thNA 4 9 have demonstrated
potent anticancer and anti-HIV activities, respectively. In
particular, the C40-alkyne containing thNA 4 is a nucleoside/
iversity, Burnaby, British Columbia, V5A

pment, Merck & Co., Inc., Rahway, NJ

(ESI) available: The experimental
and 13C NMR spectroscopic data. See
nucleotide reverse transcriptase inhibitor (NRTI) that also
demonstrated an excellent selectivity index.9 The use of thNAs
in oligonucleotide sequences is also of importance, and
processes to access 40-thio locked nucleic acids (LNAs)10 or to
carry out nucleobase diversication using biocatalysis11 have
advanced efforts in this area.

A common approach to thNAs involves production of a pro-
tected 4-thioribose (e.g., 6), which can be achieved in as little as
6 steps.12 For example, Miller has shown that 6 can be accessed
from the ribose-derived bromo aldehyde 5 on multigram scale
by bromide displacement using NaSH.12 This synthesis sup-
ported production of 40-thiouridine (7),12 a precursor to thiar-
abine (1). An important contribution by Guindon13

demonstrated that thNAs can also be constructed using an
acyclic approach where the nucleobase is attached prior to
cyclization. For example, the ribose-derived tBu thioether 9 was
cyclized under basic conditions to form the 20-uoro thNA 10.13

Our groups have previously reported14 a straightforward
synthesis of NAs 14 that relies on two key steps: (i) a one-pot a-
uorination and aldol reaction (aFAR), and (ii) an annulative
uoride displacement (AFD) reaction (Fig. 1C). Considering the
ease of access to ketouorohydrins of general structure 13, and
precedent for the formation of thioribose analogues via
displacement strategies (e.g., Fig. 1B), we sought to extend our NA
synthesis platform to the preparation of thNAs. Importantly, this
approach would afford orthogonally protected thNAs and should
support the synthesis of C20-modied thNAs (e.g., 1 and 2). Here,
we report the development of this process, its application to the
synthesis of purine and pyrimidine thNAs and a 40-seleno NA,
and the multigram-scale synthesis of 5-methyl 40-thiouridine.
Results and discussion

Our initial efforts focused on the use of thymine derivative 17,
which was prepared on 100 g scale and is a stable solid that can
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 40-Thionucleoside analogues (thNAs) and strategies used to
prepare these compounds. (A) Examples of pharmaceutically relevnt
40-thionucleosides. (B) Syntheses of 40-thionucleosides. (C) A one-pot
organocatalytic a-fluorination and aldol reaction (aFAR) and its
application to nucleoside synthesis. (D) Synthesis of 40-thionucleo-
sides from aFAR products. Blue colouring is used to emphasize the
endocyclic sulfur atom and two key reactions: (i) aFAR, and (ii) annu-
lative fluoride displacement (AFD).

Scheme 1 Synthesis of the fluoromesylate 15.

Table 1 A double displacement reaction to access thNA 16

Entry Thiol Solvent Temp. Yield (%)

1 18 DMF 90 °C 0
2 19 DMF 90 °C 0
3 20 DMF 90 °C 0
4 21 DMF 90 °C 0
5 21a DMF 90 °C 50
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be stored for months without notable degradation.14 We have
shown that the direct reduction of the ketone function in 17
using Me4N$BH(OAc)3 affords 1,3-syn diols with high levels of
diastereoselectivity.14 Application to thNA synthesis would
require 1,3-anti selectivity in the reduction step owing to the
planned invertive cyclization process (i.e., SN2 reaction at C40).
We found this could be readily achieved by rst protecting the
secondary alcohol function as a TBS ether and subsequently
reducing the carbonyl function with L-selectride.15 With the
mono-TBS protected 1,3-anti diol in hand, several activation
strategies were examined and ultimately mesylation proved to
be optimal. Thus, the uoro mesylate 15 could be reliably
© 2025 The Author(s). Published by the Royal Society of Chemistry
prepared in 3 steps from 17 in 75% overall yield following this
straightforward process (Scheme 1).

We next explored the reaction of uoromesylate 15 with
various sulfur nucleophiles15 with an aim to effect a one-pot
double displacement and gain direct access to thNA 16 or
generate a masked thiolate group and intercept intermediates
related to those described by Guindon13 (e.g., 9, Fig. 1).
Surprisingly, common thiol nucleophiles, including benzyl
mercaptan (18), potassium thioacetate (19), NaSH (20) and
Na2S$9H2O (21), did not react with mesylate 15 in DMF, even at
90 °C (Table 1, entries 1–4). Further heating of these reactions
led to hydrolysis of the nucleobase and degradation. However,
we were pleased to nd that using freshly recrystallized Na2-
S$9H2O, the desired double displacement occurred readily at
90 °C, giving the thNA 16 in 50% yield (entry 5). Further opti-
mization ultimately identied DMSO as the optimal solvent for
this reaction and we found additionally that in DMSO, NaSH
was an efficient sulfur nucleophile that reproducibly gave the
thNA 16 in ∼60% yield. Thus, following this straightforward
sequence, the aFAR product 17 could be converted into thNA 16
in four steps with an overall yield of ∼50%. Importantly, owing
to the orthogonal protection of the secondary alcohol functions
in 16, this route should support the synthesis of thNA func-
tionalized at C20 (see below).

Having established a route to the thNA 16, we next evaluated
the scope of this thNA synthesis starting with the readily
available TBS-protected uorohydrins 22a–d (Fig. 2). The uo-
rohydrins can be prepared in 2 or 3 steps from the commercial
6 20 DMSO 100 °C 61

a Freshly recrystalized 21 (Na2S).

Chem. Sci., 2025, 16, 318–322 | 319
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Fig. 3 Large scale synthesis of thNA 27 and synthesis of C20-modified
thNAs 29–36. (A) A multigram scale synthesis of the thNAs 16 and 27.
(B) Synthesis of C20-modified thNAs.

Fig. 2 Synthesis of a purine, pyrimidine and other thNAs. (A) Examples
of pyrimidine, purine and other C40-thNAs produced from aFAR
products. (B) Optimization of reaction temperature and concentration
for the production of 24a. (C) Synthesis of the 40-seleno nucleoside
analogue 25.
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nucleobase/heterocycle,14,16 though in the case of uracil- and
triazole-containing uorohydrins these were produced as
inseparable mixtures of syn- and anti-uorhydrins as
described.12 These diastereomers were separable following TBS
protection and mesylate formation (see ESI†). We further
demonstrated that this process was compatible with pyrazole
and benzoyl-protected adenosine, each of which gave the cor-
responding thNAs 24a–d in good overall yield. This reaction
sequence was further optimized for execution with minimal
chromatography and this sequence of steps could be executed
as a through process with little impact on the overall yield. Due
to challenges in accessing the corresponding cytosine and
guanine aldol products (e.g., 22, HAr = cytosine or guanine),
synthesis of the corresponding thNAs was not explored.

Unfortunately, reaction of the uracil containing uoro
mesylate 23a with NaSH led to substantial cleavage of the uracil
function and degradation, with uracil being released at
a similar rate as thNA 24a formation. Thus, using the standard
reaction conditions (Table 1, entry 6), the 40-thiouridine 24a was
produced in 33% yield. In an effort to improve on this result, we
conducted Design of Experiment (DOE) optimization,17

focusing on the relationship between temperature,
320 | Chem. Sci., 2025, 16, 318–322
concentration, and time (Fig. 2B). Here, we found a correlation
between concentration and time, with a maximum yield of 47%
at a concentration of∼0.3 M aer 3 hours at 115 °C. Using these
optimized conditions, the 40-thiouridine 24a could be produced
in 4 steps and ∼40% overall yield from the TBS-protected keto
uoride 22a. To demonstrate the versatility of this approach, we
also reacted the thymine derivative 15 with NaSeH, generated in
EtOH by the reduction of Se with NaBH4. As highlighted in
Fig. 2C, this reaction gave the 40-selenonucleoside analogue 25,
which is an analogue of the known 40-selenouridine.18 Notably,
selenonucleosides (e.g., 26 19) have also attracted attention as
anticancer agents.

To assess the scalability of this thNA synthesis, we addi-
tionally executed the process starting with 50.0 g of the pro-
tected aFAR product 22e (Fig. 3a). Without additional
optimization we found that the sequence of reduction and
mesylation proceeded in good overall yield, affording 59.0 g of
the mesylate 15. From here, reaction with NaSH in DMSO at
100 °C gave 21.0 g of the thNA 16, which was puried by ash
column chromatography. Removal of the silyl and acetonide
© 2025 The Author(s). Published by the Royal Society of Chemistry
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protecting groups by treatment with 4 M HCl in MeOH then
afforded 8.0 g of 40-thio-5-methyluridine 27.20

Finally, considering that this process affords orthogonally
protected thNAs (e.g., 16), we investigated the selective C20-
functionalization of thymine thNA 16. As highlighted in Fig. 3B,
removal of the TBS protecting group afforded the 20-OH thNA 28
in excellent yield. From here, a 2-step sequence involving
formation of the anhydro thNA and hydrolysis gave the arabino-
congured thNA 29 in good overall yield. Notably, the corre-
sponding triol (i.e., deprotected) has demonstrated activity as
low as 0.77 mg mL−1 against HSV-1.21 Additionally, despite
concerns regarding anomerization of 20-keto thNAs,22 we found
that oxidation of compound 28 using Dess Martin periodinane
buffered with NaHCO3 in CH2Cl2 gave clean conversion to the
corresponding 20-keto derivative. The use of NaHCO3 in this
reaction proved critical, and several other standard oxidation
conditions failed to provide the 20-ketone in any reasonable
yield. This latter material proved to be unstable on all stationary
phases used for chromatographic purications and thus the
crude material was reacted directly with Grignard reagents to
afford a small collection of previously unreported C20-modied
thNAs 30–36. In all cases, the arabino-congured stereoisomer
was the major product, and the minor product was that derived
from epimerization at C10 prior to reaction with the Grignard
reagent (e.g., 34–36, see inset). Similar results have been re-
ported by Matsuda.22 The use of more hindered Grignard
reagents (e.g., cPrMgBr or iPrMgBr) resulted in larger amounts
of C10-epimerization. Removal of the acetonide protecting
group from 30 using TFA gave the corresponding triol 33 in
excellent yield. Notably, Liotta has recently reported related,
ribose-congured C20-modied thNAs.23

Conclusions

In summary, we report a streamlined process for the synthesis
of various thNAs that exploits the ready availability of keto-
uorohydrin aldol products. Importantly, the resulting thNAs
are orthogonally protected, which enables synthesis of C20-
modied thNAs. This overall 7-step sequence was also demon-
strated on multi-gram scale in the preparation of 5-methyl-40-
thiouridine (27) suggesting potential utility for larger scale,
process research efforts. Importantly, the demonstration that
purine and pyrimidine thNAs, 40-seleno NAs, and C20-modied
thNAs can be readily prepared following straightforward strat-
egies suggests that this new approach should inspire and
support medicinal chemistry efforts in this area.
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