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In deep learning methods, especially in the context of chemistry, there is an increasing urgency to uncover
the hidden learning mechanisms often dubbed as “black box.” In this work, we show that graph models built
on computational chemical data behave similar to natural language processing (NLP) models built on text
data. Crucially, we show that atom-embeddings, a.k.a atom-parsed graph neural activation patterns, exhibit
arithmetic properties that represent valid reaction formulas. This is very similar to how word-embeddings
can be combined to make word analogies, thus preserving the semantic meaning behind the words, as
in the famous example "King” — "Man” + "Woman" = "Queen.” For instance, we show how the reaction
from an alcohol to a carbonyl is represented by a constant vector in the embedding space, implicitly
representing “—H,." This vector is independent from the particular carbonyl reactant and alcohol product
and represents a consistent chemical transformation. Other directions in the embedding space are
synonymous with distinct chemical changes (ex. the tautomerization direction). In contrast to natural
language processing, we can explain the observed chemical analogies using algebraic manipulations on
the local chemical composition that surrounds each atom-embedding. Furthermore, the observations
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Accepted 22nd April 2025 find applications in transfer learning, for instance in the formal structure and prediction of atomistic

properties, such as *H-NMR and *C-NMR. This work is in line with the recent push for interpretable
DOI: 10.1039/d4sc05655h explanations to graph neural network modeling of chemistry and uncovers a latent model of chemistry

rsc.li/chemical-science that is highly structured, consistent, and analogous to chemical syntax.

Neural networks in chemistry have gained tremendous traction
in the past decade, carrying a broad range of applicability, from
aiding drug and material discovery,"™* to speeding up or
bypassing the prediction of electronic structure properties.'**
For each application, numerous approaches have been
designed, including both graph-**-*¢ and text-based models®**"~**
where such techniques enjoy a varying degree of success.

In the context of text-based models, sophisticated text-based
chemical inputs have been developed such as the Simplified
Molecular Input Line Entry System (SMILES),**¢ the Self-
Referencing Embedded Strings (SELFIES),"** and SMILES
arbitrary-target specification (SMARTS).**** Though convolu-
tional neural networks have been tried successfully on SMILES-
based text for the detection of chemical motifs and on predic-
tion of drug activity,>*** Many so-called “linear graph models”
have been fitted using recurrent neural networks (RNNs) due to
their capacity of holding short- and long-term information
about text.****** For example, SMILES2Vec is a deep RNN that
learns important features from SMILES strings to predict
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toxicity, activity, solubility and solvation energy of chemical
compounds.* Text-based models also facilitate the design of
generative architectures that predict the result of chemical
reactions, generating the product strings from a reactant string
input, or generating molecules of a desired property.’”?%*

Graph models,"”>?*?¢¢ on the other hand, represent
molecules as a collection of atoms in three-dimensional coor-
dinate space. Generally speaking, the coordinates of the atoms
serve as inputs to such models and the output is the target
chemical property under investigation, often on energy.
Permutational- and symmetry-invariant graph models have
been designed successfully for the prediction of electronic
energy within chemical accuracy.””?*** Notably, such graph-
based methods in chemistry share important properties with
text-based recurrent and transformer models making it
instructive to examine the connection between these seemingly
different approaches.

The central object shared in all these approaches is the
“embedding” which is the feature-building quantity of the
neural network in the latent space. For example, in text-based
models, word-embeddings represent the latent features for
each word in the context of the sentence after training.*** In
chemistry, atom-embeddings, also optimized through training,
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are the features representing an atom in the context of
a molecular graph.”>*** These neural activations for the word/
atom are tuned to hold meaningful information about the
context of the data (i.e. words, molecules) and the specific input.
However, they are generally high-dimensional and obscure
objects to analyze on their own. In previous works,** we
showed that the embeddings of chemical GNN models hold
valuable information about chemistry. This information
includes the ability to distinguish molecular environments and
the ability to quantify molecular similarity.** We also showed
that the embedding space is a readily transferable representa-
tion for a wide array of properties such as for pK,, NMR, and
solubility, underscoring the completeness of these representa-
tions.®* In this work, we go beyond the locality of the repre-
sentation, and show that graph-embeddings behave similar to
text-embeddings in that they have arithmetic properties that
reveal meaningful combinations. This is akin to how word-
embeddings can be combined to make word analogies in
natural language models.**** Our methodology will naturally
uncover the chemical syntactical organization of the embed-
ding space.

The surprising property of word analogies using vector
arithmetic has been observed first in natural language pro-
cessing (NLP) models.”**>% In trained models such as skip-
gram with negative sampling (SGNS), the word analogy “King
is to X as Man is to Woman?” is solved by taking the closest
vector to “King — Man + Woman” which happens to be the
vector for X = “Queen.” The success of this is based loosely on
the Pennington et al. conjecture,® proven in ref. 51, which
states that such word analogies are linear iff p(w|a)/p(w|b) =
p(w|x)/p(w|y). In simple terms, if words a and b are found in the
same ratios as x and y across all words w of a vocabulary, then
there must be a linear analogy between, a, b, x, and y. Despite
the strong theoretical prior provided by the Pennington
conjecture, experiments in word analogies for the assessment of
social bias in NLP revealed that a distinction must be made
between factual and semantic analogies.®® Whereas factual
analogies with a unique answer can be drawn between words or
entities with a clear distinct meaning, the situation is different
for words with more semantic flexibility. Interestingly, experi-
ments in social bias of NLPs have shown that the poster
example “King — Man + Woman” = “Queen” is indeed prone to
semantic bias and can lead to different analogies. We show in
this work that similar mechanisms are at work in chemistry,
where graph-embeddings of molecular graphs can provide
a more factual and highly organized representation of chemical
environments than more traditional vector encodings, such as
Morgan Fingerprints.”.

The existence of linear algebraic analogies in chemical
statistical models comes with some promising consequences.
Firstly, it means that fundamental stoichiometric reactions can
be modelled with vector algebra thereby opening a new way to
traverse the chemical space in an algebraically structured way.
In a related recent study® these vector relations were not
observed, but explicitly imposed as learning objective for
chemical reaction formulae in a molecular GNN in order to
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ensure generalization or transferability of molecular represen-
tations by means of a global algebraic framework.

Most significantly, and in contrast to NLP, the structure of
the chemical embedding space is not a consequence of the
social construct of language. Rather, it relates quantitatively to
the underlying chemical structure and formula. We demon-
strate how this can be achieved using perturbational updates
that are based on the neighbouring atoms’ representation and
a self-consistent framework. Simultaneously, this leads to
a natural interpretation of GNN embedding space as vector
algebra found between reactant and product states, which is
synonymous with chemical formulaic language. Finally, we
anticipate that the existence of a highly organized space around
atomic chemical neighbourhood embeddings can facilitate
contemporary development of generative models in chemistry.

This paper is organized as follows. In the Methodology
Section, we first recapitulate the training of our pretrained GNN
model on electronic energy,*~® and our transfer learning
models to other properties ("H-NMR and *C-NMR).*> Details of
the hyperparameters chosen for each architecture and the
dataset used for training can all be found in Section 1.1.
Following this, in Section 1.2 we discuss how we prepare our
reaction datasets from the QM9 dataset®” using an algorithm
that can query any class of reactants and transform them to
products via a specified reaction. This dataset creation proce-
dure will serve our observations on chemical reaction analogies
in the embedding space which we present in Sections 2.1-2.3.
Following our observations, we deduce an approximate repli-
cate model of the embedding space based on layered atomic
neighbourhood information in Section 2.4 which will explain
our chemical analogy observations. Lastly, in Section 2.6 we
show how linear analogies can reveal hidden relations in
chemical properties such as "H-NMR and *C-NMR.

1 Methodology
1.1 GNN, pretraining and hyperparameters

We employed a pretrained graph neural network, SchNet,"*° on
electronic energy of the QM9 dataset.”” QM9 is a set of 134 K
small-sized organic molecules (~5-10 A in size) with optimized
conformations all computed using the B3LYP/6-31G(2df,p) level
of density-functional theory. For the SchNet GNN model, the
nodal features (i.e. the atom-embeddings) were chosen to have
a 128-dimensional latent feature space. The edges that update
the nodal features employ an initial expansion of interatomic
distances using equally separated Gaussians with a cutoff of 50
A. This provides the edges with enough parametric flexibility to
update the nodal features via the convolutional operation
described in ref. 17. More details on the GNN algorithm can also
be found in ref. 17-20. Note that more efficient GNN training
algorithms employ cutoff distances that are significantly shorter
which allow for efficiently learning the neighbour interactions.
However, this avenue was not chosen since a large cutoff
distance is purposeful to maintain a global representation of
molecules in the embedding space. We trained on 100 K
molecules with total electronic energy at 0 kelvin as the target
property. An additional 10000 data points were used for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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validation during the training process. The rest of the set (20
000) was leftover for testing and for the construction of our
reactions datasets, see below. The trained model achieves
a MAE of 0.2 meV and 1 meV on training and testing set's
molecular energy, respectively. The trained model, details on all
the hyperparameters, as well as the extracted embeddings for
QM9 molecules can be found in ref. 66.

For the prediction of "H-NMR and "*C-NMR, we employed
a transfer learning model as introduced earlier in.** Such
models help to transfer the integrity of learned chemical
representation from GNN models to new molecular properties
and datasets. The transfer learning architecture used is a simple
feed forward neural network (made up of one layer of 128 nodes,
followed by “tan #” activation, followed by another linear layer
of 128 nodes), that intakes energy-trained embeddings (from
SchNet) as inputs to transfer learn to other properties such as
"H-NMR, and "*C-NMR. This follows very closely to the transfer
learning architecture used in previous works,*> only here the
activation function has been replaced from linear or “Relu”, to
“tan h.”

For 'H-NMR and C-NMR data, we used the QM9INMR
dataset,’® which has gas- and solvent-phase chemical shifts
computed at the mPW1PW91/6-311+G(2d,p) for all QM9 mole-
cules at geometry optimized conformations computed at the
B3LYP/6-31G(2df,p) level. We used the hydrogen- and carbon-
site embeddings as the input representation for training on
the prediction of gas-phase "H-NMR and "*C-NMR. The model
was trained using an 8000 molecule randomized dataset from
QMOINMR, achieving a RMSE of 2.69 ppm for carbon NMR and
0.20 ppm for proton NMR on 2000 molecule separate test set,
which is comparable to full-fledged training on significantly
larger datasets. For instance, the highly accurate kernel
regression model that was applied at the inception of the
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QMINMR dataset®® achieves a mean error of 1.9 ppm for carbon
chemical shifts. Both carbon and proton NMR results are within
the accuracy of density functional methods.

1.2 Reactions dataset creation

After training the model, we automated a dataset creation
procedure mimicking the endpoints of reaction processes such
as substitution, elimination, hydrolysis, Diels-Alder, and more.
The procedure works as follows. First, we automate the identi-
fication of reactant functional groups across the hold-out test
set of QM9 using a specified reactant label. The automation
procedure can annotate every atom's environment up to any
compositional depth (one, two, to several bonds away) in
a bijective labelling representation. This is done by using
atomic number priority to order neighbouring atoms which
ensures uniqueness in the representation. The priority system is
equivalent to the one used in well-established standards of
ordering R/S or E/Z nomenclature.® Ultimately, we obtain
a local-centric label for each atom in the dataset that can be
queried for long-range features. For instance, we query all
straight-chain alcohols, alpha-positioned alkynes, or any other
branching motif specified, or left unspecified (ex. all alcohols in
QMD9). Second, once reactants are isolated, a specified reaction
is automated on the dataset. For instance, if the specified
reaction is a methylation, this is carried out by removing
a hydrogen and adding a methyl to mimic methylation on the
alcohols. Lastly, we geometry optimize using two different force
fields for comparison, MMFF94 and GAFF.”

Note that due to limitations of training on the QM9 dataset
which only involves equilibrium geometries, our current
procedure only accounts for initial and product states but does
not involve mechanistic transitions. This approach is analogous

Fig. 1 Work flow for creating datasets of reactants and products. Starting with the QM9 dataset, we label all the atoms in the QM9 database
according to the molecular environment surrounding them. Second, we isolate reactants of a reaction using the labelling system, in the illus-
tration shown this is done for alcohol reactants. Third, the reactants are transformed to their product form, for instance, oxidation of alcohols,
resulting in product carbonyls. Then lastly, we test the reactants and product through SchNet model to extract and calculate the embedding

difference between reactant and product at the reaction site.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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to state vector changes, similar to other state-dependent prop-
erties in chemistry (such as Gibbs free energy, enthalpy, and
entropy) which depend on initial and final states without
explicitly modeling transitions. While modeling transitions is
an exiciting future direction, and there is ongoing work
attempting to expand SchNet's trainability to include out-of-
equilibrium geometries,” our goal at this stage is to provide
a tool for interpreting neural network models in terms of these
reactant and product states.

Following the preparation of the reactant and product
databases, we then run the reactants and products through the
pretrained GNN model. Then we extract their atom-embeddings
at the reaction-site. For instance, in hydrolysis, this would be
the carbon on the carbonyl group. Finally, we obtain a complete
database comprising the atom-embeddings of all molecules in
the entire the QM9 dataset, completed with the reactant-
product pairs of interest. The extensiveness of the database will
reduce potential bias associated with small datasets in the
retrieval approach described below. Our procedure is auto-
mated in a python workflow visualised in Fig. 1. The software
for this procedure is open source and is referenced in the Data
availability statement.

In order to visualize the embeddings as they change from
reactants to products, we project the high-dimensional vectors
of the embedding space to a lower-dimensional space while
incurring minimal data loss. This can be done with Principal

View Article Online

Edge Article

Component Analysis (PCA)”> which finds the lower-dimensional
space that packs the largest variance in the data.

Ultimately, visualization techniques fall short from giving
a comprehensive quantitative grasp of the chemical syntax in the
embedding space. We will quantify our observations of linear
analogies by means of cosine similarities in high-dimensional
spaces, which will provide a measure on how well two different
vectors are mutually aligned (see next section).

2 Results & discussion

We investigate the chemical analogies in the embedding space
with key reaction processes of increasing complexity that
amount to all of the basic features of chemical reactions
(adding/breaking bonds, one-step/multi-step). These reactions
being (1) oxidation of alcohols/alkanes/alkenes, (2) Diels-Alder,
(3) hydrolysis of amides to carboxylic acids, (4) tautomerization
of alcohols to carbonyls, (5) substitution reactions, and (6)
elimination reactions. While this set of reactions is definitely
not exhaustive compared to the wide variety of reactions
chemistry has to offer, it nevertheless is a balanced sample and
will incur observations that can be easily extended to any
reaction using the proposed methodology. The following
subsections will delve into the first three reactions, whereas the
rest of the reactions are explored in Tables 1 and 2, and in the
following discussion.

Table 1 Neighbour test results using the average reaction vector to transform reactants to products for GNN embedding vectors (% GNN) and
Morgan Fingerprints, with (% MF) and without the reactant vector (% MF\r). If the product obtained using the average reaction vector estimate is
indeed nearest to the true product's embedding from the GNN space in a Euclidean sense, then it counts as a success to the neighbour test

Reaction Force field QM9| new| total Density % GNN % MF % MF\r
RCH,CH,R — RCHCHR MMFF94 2062| 118 | 2180 5x10°* 62.8 0.0 13.3
RCHCHR — RCCR MMFF94 2285| 80 | 2365 4x10* 71.1 0.0 80.0
CH,0OH — CHO MMFF94 1749| 228 | 1977 5x 107* 62.7 48.0 48.0
Dieneophile + diene — cyclohexene MMFF94 7896/ 112 | 8008 1x 10" 73.2 0.0 50.0
RCONH, — RCONH,OH MMFF94 0| 127 | 127 8 x 107 60.9 24.4 24.4
RCONH,0OH — RCOOH MMFF94 1787| 127 | 1914 5x 1077 60.2 33.1 33.1
RF — ROH GAFF 22|17 | 39 3 x 1072 81.3 40.0 46.7
RF — RNH, GAFF 22|17 |39 3x107? 81.3 0.0 6.7
ROH — RNH, GAFF 1916| 1395 | 3311 3x107* 61.9 0.0 53.2
RCHCHOH — RCH,CHO GAFF 29| 149 | 178 6 x 107° 58.6 0.0 85.7
RCH,CH,0OH — RCHCH, GAFF 25| 133 | 158 6 x107° 60.0 0.0 5.3

Table2 Cosine similarity between the various average reaction vectors for GNN embedding vectors (lower triangle) and for Morgan Fingerprints
(upper triangle, italic, see Section 2.5). Cosine similarities above 0.50 are depicted in red and below —0.50 in blue

alkane ox | alkene ox | alcohol ox | Diels-Alder | hydro1l | hydro2 | sub. 1 | sub.2 | sub. 3 | elim. | tautom.
alkane ox 1.00 -0.06 -0.01 -0.19 0.03 -0.02 0.00 0.04 0.00 0.04 -0.11
alkene ox 0.72 1.00 0.00 0.11 0.00 -0.01 0.00 0.00 0.00 | 0.00 0.01
alcohol ox 0.35 0.29 1.00 0.00 -0.13 0.01 -0.18 0.00 0.40 | 0.57 0.19
Diels-Alder -0.73 -0.54 0.00 1.00 0.00 -0.01 0.00 0.00 0.01 0.00 0.07
amide hydrolysis step 1 -0.17 -0.10 -0.70 0.09 1.00 -0.53 0.30 -0.06 -0.18 | -0.09 -0.13
amide hydrolysis step 2 0.14 0.13 0.43 -0.01 -0.64 1.00 -0.18 | -0.29 -0.31 0.00 0.01
substitution (F — OH) -0.18 -0.13 0.19 0.24 0.60 -0.38 1.00 0.17 -0.34 | -0.22 -0.21
substitution (F — NH;) -0.18 -0.13 -0.19 0.03 0.46 -0.75 0.61 1.00 0.38 0.00 0.03
substitution (OH — NH,) -0.06 -0.14 -0.34 -0.15 0.05 -0.57 -0.21 0.59 1.00 0.42 0.26
elimination 0.54 0.32 0.23 -0.52 -0.52 0.48 -0.64 | -0.49 0.02 1.00 0.15
tautomerization 0.55 0.69 0.32 -0.41 -0.12 0.08 0.01 -0.03 | -0.11 | 0.15 1.00
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2.1 Oxidation reactions
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Fig. 2 depicts the reaction process in the embedding space in

the PCA projection for the oxidation of alkanes (2a), alkenes
(2b), and alcohols (2¢). In each, only the embedding vector of
the reactant-center carbon C; and product-center carbon Cj, are
(1) depicted in color, and commented by an arrow representing the
reaction. Note that the arrows only represent the reactant and

We start with the simplest of the listed reactions, (a) the
oxidation reaction of alkanes, alkenes and alcohols,

RCH,CH,R — RCHCHR + H,

RCHCHR — RCCR + H, (2) product end-points and do not represent the full reaction
process, for which QM9 is not designed. However, there has
RCHOH — RCO + H, (3) been some recent effort in exploring the success of transfer

learning to real-space quantities of chemistry that would

PC2

(b) oxidation of alkenes

15
10

PC2

(d) Diels-Alder

5 5
0 0

N N
L -5 O -5

=+ &
-10 -10
-15 -15

-5 0 5 10 15

(e) hydrolysis of amides, step 1 (f) hydrolysis of amides, step2

Fig.2 Transformation vectors from reactant to product embedding for oxidation of (a) alkanes, (b) alkenes, (c) alcohols, (d) Diels—Alder reaction,

e) hydrolysis of amides step 1, (f) hydrolysis of amides step 2, at the reaction center after geometry optimizing the products with MMFF94 force

field. The scatterplot around the arrows comes from QM9’s carbon embeddings which naturally separate based on functional groups and have

been greyed out except for the embeddings that resemble the reaction center embeddings for reactant and product, ex. all other alkanes and

alkenes in QM9. The colors represent the functional groups for alkanes, alkenes, alkynes, , carbonyls, of the Diels—Alder product,
, and carboxylic acid.
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include any part of the chemical space.” The scatterplot in the
background of the arrows, consists of all the carbon embed-
dings of QM9 labelled according to chemical moiety as was
shown in ref. 61. Other C embeddings in QM9 consisting of
distinct functional groups from the reactant's functional group
are shown in gray. Whereas the colored groups (annotated in
the caption) represent atoms in QM9 that have same functional
groups as the reactants and products of the reaction.

The first thing to notice from Fig. 2a is that the alkane and
alkene carbons aggregate in different and well-separated clus-
ters, as does every other carbon-centered chemical moiety in the
database. This was already observed and discussed previously
in ref. 23,61. The second observation is that all the vectors of the
transformation appear to be equal to a large extent. The extent
to which the vectors are equal can be quantified by considering
the average “oxidation vector from alkane to alkene” and use
this as a proxy to transform the embedding of any reactant
alkane to its alkene counterpart, that is,

- 1 &
(alkane oxidation) = N Z [XC atkane; X Catkene; | * (4)
i=1

In this approach, <alkane oxidation> can be used to estimate
any xCalkene,- from its xCalkenep

e Xy, T (alkane oxidation). (5)

alkene;

We investigate the validity of this approximation for each
reaction in the dataset by means of the “neighbour test,” i.e. if
the resulting xc,.,., of eqn (5) leads closest to the true alkene
embedding or not within the total compounded set of all
alkenes (=2180, see Table 1). The neighbour test is analogous to
the one carried out for the original word vector analogies where
the word embedding for “King” — “Man” + “Woman” came out
nearest to the vector for “Queen.” Here, the average oxidation
vector serves the same role as the vector for ¢ — “Man” +
which transformed the word ”King” to ”Queen,” and
similarly ”policeman” to "policewoman” and ”boy” to "girl”. In
this case, the average oxidation vector can map 62.8% of reac-
tant alkanes to be nearest their true product alkene C-
embedding at the reaction center, see Table 1. This points
towards a highly structured space, as more than 1 in 2 vectors
are mapped exactly to the correct alkene using an average esti-
mate reaction vector, opposed to a probability of 1 in Nyjkenes (1/
2180, see Table 1) if this would be random over a uniform
distribution. In other words, the average <alkane oxidation>
vector does not map to just any of the 2180 available alkenes,
but lands exactly on the correct one 62.8% of the time. A
noteworthy observation is that a 100% neighbour test can be
achieved if the removal of hydrogen is performed without any
subsequent force field optimization. Such discrepancy and the
role of geometry optimization will be discussed later.

A different and more continuous measure to validate the
performance of <alkane oxidation> is to compare the average
distance between the predicted and the true value

”)

“Woman

1 d o
~ E ‘ngkenel — XCypene,| = 372, to the average pairwise distance
i
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1
of all alkenesmzij:‘xcalkmi—xcalkmej =9.46, or the

2
average distance to the nearest neighbour of each alkene,

1
]T/' E xcalkenei - xc‘a'kc"fnearestm
i

within the ‘alkenes’ feature space bordering on the exact
subspace that the alkene product lies in. It is also worth
mentioning that in contrast to language models, the analogies *
— “Man” + “Woman”’ have not been learned explicitly as “H,”
does not represent any single atomic embedding and is there-
fore categorically excluded from the dataset.

Similar results hold for the oxidation of alkenes to alkynes,
and alkanes to alcohols, see Table 1 and Fig. 2b and c. Visually,
it also appears that the average oxidation vectors, across reac-
tion classes, i.e. for alkane, alkene, and alcohol oxidation in the
PCA space appear to be largely colinear from the figures. To
confirm that this colinearity is not a coincidence of the 2D
projection space, we can measure the cosine similarity between
the average vectors in the original high-dimensional space, see
Table 2 (lower triangle). In the Table, the off-diagonal elements
show the average cosine similarity between reaction classes (ex.
between alkane oxidation and alkene oxidation) taken by
considering the cosine similarity between the average reaction
vectors of those classes,

= 1.79. It is evident that we are well

(reaction;) x <reactionj>

cos®; =

\/ |(reaction,)|’| (reaction, )|’

It is apparent from the Table that all oxidations share a high
degree of cosine similarity, especially when compared to the
other reactions studied. This is indeed significant, considering
that in a high-dimensional space (128-D) it is increasingly likely
that any two random vectors are orthogonal.” It can be shown
that the dot product of normally distributed vectors in D
dimensions are strongly centered at cos(d) = 0, with a standard
deviation of ¢ = 1/D. For our 128-dimensional latent space,
deviation from orthogonality of a normal distribution is 0.008.
Thus the cosine similarity of 0.72, as shown in the Table,
between alkane and alkene oxidation for instance, is an
appreciable breach to orthogonality and implies significant
colinearity in the 128-D latent space. There is also a breach of
orthogonality between the oxidation reactions and elimination
and tautomerization reactions, as these reactions also align
considerably with oxidation with cosine similarities of 0.54 and
0.55, respectively, as Table 2 shows.

This result is significant in a number of ways. First, it
suggests that oxidation is always in a similar direction in the
embedding space with other oxidations and with other reac-
tions that increase bond order. Explicitly, that means the
opposite, reduction, must be in the exact opposite direction
from oxidation and align with other reactions that decrease
bond order, such as Diels-Alder as as we will later discuss.
Whereas reactions that are distinct tend to be pointing in some
near-orthogonal direction. Additionally, as Table 1 shows, this
is not just the case for the simple case of bond-order changing
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reactions but all the other reactions studied (ex. substitutions
and hydrolysis), presenting a highly interconnected space. It is
apparent that the embedding space is organized based on
chemical formulas considering only compositional changes
between initial and end states. Thus, similar changes in
chemical composition align, reverse changes anti-align, and
distinct changes are orthogonal. Later, we will quantify that
observation using a proposed replicate model of the embedding
space based on neighbourhood composition. This replicate
model will map all the trajectories of compositional changes for
the embedding (adding carbons, removing nitrogens, ...etc), up
to several bonds away.

We mentioned previously that the neighbour test yields near
perfect results when hydrogens are removed without the
subsequent optimization step for any oxidation reaction. The
difference in performance between the optimized and non-
optimized results is chemically meaningful, and can be best
illustrated in the case of oxidation of an alkane. In such
a reaction, it is possible to have either the cis or the trans
product, which are stereoisomers of each other. A closer look at
the oxidation vectors to both isomers we find a difference in the
cosine similarity of the reaction vector going to trans vs. going to
cis. For the cis isomers, the high-dimensional cosine similarity
of the embedding is consistently larger at an average cosine
similarity of 0.95, whereas for the trans isomers, an average
cosine similarity of 0.91 is obtained with respect to the mean
reaction vector embedding. The difference between the cis and
trans cosine similarities with respect to the mean reaction
vector is significant according to an independent samples ¢-test
which gave a p-value of 1 x 10~ The neighbour test using the
average reaction vector yields slightly better results on cis
(67.1%) than on trans (54.9%), which implies that it is biased
towards cis geometry, as QM9 has many alkanes inside rings.

The above analysis explains part of the discrepancy in the
neighbour test going from non-optimized to optimized, as
product alkenes determine which shape they will hold implies
that a single average reaction vector approximation for all
possible optimized states is a biased assumption. Additionally,
we performed MMFF94 and GAFF geometry optimization on
our new products for efficiency, whereas the QM9 dataset, and
correspondingly the SchNet model, is optimized at the B3LYP/6-
31G(2df,p) level of theory. While geometry optimizing using
force fields may effectively be introducing non-equilibrium
geometries from the perspective of the DFT-trained model
thus providing a test of generalizability and robustness of the
model, nevertheless, these discrepancies may be slightly
affecting the results. However, even with these approximations
it is clear that geometry optimization plays only a minor role to
that of chemical composition in mapping out the chemical
embedding space.

2.2 One-step reactions: Diels-Alder

The oxidation reactions discussed in the previous section
demonstrate leaving group reactions whereby atoms leave the
reaction center. The rational next question is about incoming
groups making a bond at the reaction center. Can we still find
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linear analogies for this slightly increased complexity? The
answer is affirmative. A class of such a reaction is the Diels—
Alder reaction.

Ry
R;

/ \ + \_\R2 ) R,

Once again, we find a strong linear analogy for the reaction
in the embedding space, whereby the neighbour test yields
a 73% of the transformed Diels-Alder, using the average reac-
tion vector estimate. See Fig. 2d for the PC projected reaction
embedding vectors of the Diels-Alder reaction.

Diels-Alder also brings to light an additional corroborating
observation. Diels-Alder shares similarities with reduction,
because the double bond at the reaction center is reduced to
a single bond as the ring closes to make the resulting product
adduct. Evidently this makes the reaction vector for Diels-Alder
face the opposite direction to oxidation reaction vectors as can
be seen from Table 2, where the cosine similarity between
Diels-Alder and for instance alkane oxidation is —0.73. Simi-
larly Table 2 shows an opposite alignment with elimination and
tautomerization reactions giving cosine similarities of —0.52
and —0.42, respectively, which are a considerable breach to
orthogonality (< —0.008). This can also be seen in the PC
projection of the reaction vectors in Fig. 2d when compared
with that for oxidation, Fig. 2a. Therefore, even though Diels-
Alder is not technically a reduction via adding hydrogens, it is
highly colinear with reduction (and bond-order reducing reac-
tions) which once again points to a highly organized space. It
has been observed in past work™ that SchNet's modeling of
chemistry is interpretable based on chemical bond-order. Our
results put their findings in a larger framework based in the
implicit chemical syntactical relationship between the embed-
ding’s various subspaces.

2.3 Multi-step reactions: hydrolysis

The hydrolysis of amides to make carboxylic acids is a two-step
reaction process, first making a tetrahedral intermediate of
a carboxylic acid through the imission of a water molecule.

0 OH
[ |
_C—NHR

HO + R NHR R OH

After a quick proton transfer step, an ammonia then leaves
the tetrahedral intermediate.

OH 0

| |

C—NHR — C
R TOH R

-

SOH + NHR

Each of these processes comes with its own distinct
embedding transformation, see Fig. 2e and f for the PC pro-
jected vectors for each step. The average reaction vector (in the
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original 128-D space), for each step, is once again a good proxy
to transform any reactant as shown in Table 1.

Analyzing cosine similarity also proves insightful in the case
of amide hydrolysis. For instance, in the first step of the
hydrolysis, where the alcohol is being added to make the
tetrahedral intermediate, there is considerable alignment with
substitution of halogens with alcohols. Additionally, the second
step of the reaction, when the ammonia leaves the reaction
center and forms the carboxylic acid, shows similar alignhment
to the oxidation of alcohols. This is because as the ammonia
leaves, a double bond is formed at the reaction center making
a carbonyl product. Lastly, this second step of hydrolysis also
aligns in the opposite direction with substitution of halogen to
amine. This corresponds with the fact that amine is the leaving
group in the second step of amide hydrolysis rather than the
incoming group as it is in substitution of halogens. Reiterated,
this points to a highly organized space with implicit relation-
ship between its various subspaces.

We have restricted ourselves to just six types of elementary
reactions, but similar conclusions can be drawn for other
processes using the provided methodology. Our query software
has been written with sufficient generality in mind, to quickly
query any reactant (with any short- and long-range features),
remove leaving groups, build any specified functional group,
add/remove bonds at the reactions site, and extract embeddings
at the reaction site, in a fully automated manner. The software
is open source and the link can be found in the Data availability
statement. Additionally, the repository also includes the reac-
tions databases used for testing the linear algebraic analogies in
this work.

2.4 Linear analogies from chemical neighbourhoods

Regardless of the multiple examples shown in the previous
section alluding to a highly organized embedding space in
terms of chemical analogies, this structure may still be
perceived as a coincidence similar to the analogies found in
natural language. However, in contrast to NLP, we can explain
the approximate constant nature of the reaction vectors from
chemical principles. We will show how it is possible to replicate
the embedding space using a perturbative scheme, not much
unlike a simplified proxy to the (k-hop) message passing or
processes underpinning GNNs.”*

From our observations, and that of previous works,**** it is
evident that the embedding space is a self-consistent frame-
work. In other words, the atom's representations depends on
the neighbourhood representation and the neighbourhood's
representation in turn depends on the atom's representation.
This self-consistency can be modeled using local neighbour-
hood composition and a crude initial guess. Then, by updating
each atom's representation based on the neighbours, and in
turn the neighbours based on the updated atoms in repeated
successions, we reach a self-consistent framework that repro-
duces the embedding space.

The embedding replicates are based on introducing a crude
guess of the chemical neighbourhood composition around each
atom. This guess for each atom i is defined as just the average
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embedding in the entire dataset for that element-type,
x%, that is,

A0 = 2. )

So, our starting guess for the oxygen nodal vector is just the
gross average of all oxygen embedding vectors in the set and
does not contain any functional group representation.
Following this, we define the local neighbourhood composition,
the replicates are successively updated in an iterative self-
consistent scheme using the embeddings corresponding to
their neighbourhood atoms.

=%+ 3 ox, (8)

jéml]

where m1] is the set of neighbours that are only one bond away
from atom i, however this can be adjusted as we shall see later.
The perturbational update uses the crude starting embedding
of the element for neighbour j, icj(o). The ¢; are the linear coeffi-
cients that fit the resulting replicate at first perturbation, for
each atom-embedding, xgl), with the exact embedding vector. In
other words, the updates for each distinct neighbourhood are
learned by comparison with the true embeddings.

With only one update, such a crude representation cannot
yet capture all the necessary neighbourhood information.
However, by repeating our approach for a higher order pertur-
bational updates we get deeper neighbourhood information,

N =xl Yy ex. (9)

jéml]

The only difference now is that we no longer rely on using the
crude average neighbour-type embedding but rather here,
x}l) are the results of the previous perturbational update which
took into account their direct neighbourhood. Since the direct
neighbouring atoms also incorporated their own neighbour-
hood from the first order perturbation, then the atom-
embedding for atom i is now recognizing the indirect neigh-
bourhood layer that is two bonds away. This perturbational
approach can now be repeated until self-consistency is reached,
that is, until updates to the atom vectors provide no further
neighbourhood information.

Table 3 show how well the perturbative replicates reproduce
the true embedding vector for alkenes only using both the
neighbour test and the mean distance to the true embedding.
The latter needs to be compared with mean distance between
neighbouring embeddings (1.79) and the average distance
between embeddings of the same class (alkenes: 9.46). Addi-
tionally, the Table shows results for both the linear model
mentioned before, and an added tan# non-linearity (non-
linear)

(10)

X = X"V 4 tan h (Z cjx,("l)).

jem;[1]

Using linear regression, the embedding replicate space is
a near 56% replicate of the true embedding space based on the
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Table 3 Results of the neighbour test and mean distance to true
embedding for alkene embeddings in the QM9 test set (341 mole-
cules), after successive application of the perturbational updates to
form the embedding replicates. The updates were fitted with both
linear and non-linear regression. If the embedding lies nearest to its
true GNN embedding then that counts as a success to the neighbour
test. The table also compares the mean distance to the true GNN
embedding, which can be compared to the mean minimum distance
between alkene embeddings (1.79) or compared to the mean distance
between any two alkene embeddings (9.46)

Perturbation Linear Non-linear

0 0.26% \ 12.6 0.26% \ 12.6
1 0.26% | 8.22 0.29% | 7.00
2 3.52% \ 6.93 5.28% \ 3.87
3 29.5% | 3.60 41.6% | 2.42
4 47.5% \ 3.01 71.6% \ 2.04
5 57.4% | 2.99 82.1% | 1.84
6 56.6% \ 2.96 82.7% \ 1.70

neighbour test after the sixth neighbourhood layer for the
alkenes embeddings. Whereas the non-linear coefficients can
provide a replicate of up to 82% success on the neighbour test
by the fifth order replicate. Additionally, the mean distance to
the true embedding (1.70) is near the minimum distance
between embeddings (1.79). This means that it is nearing the
neighbourhood density of the true embedding model under-
lining the limitations of the neighbour test. Comparing this
distance with the average distance between any two alkene
embeddings (9.46), we can see that we are well-within the alkene
predictions, making fine-tuned replicates based on multiple
bonds away.

With the perturbational replicates at hand, we are now in
a position to prove the linear analogies up to first order
perturbation. We first define a formal reaction vector, under any
given perturbation. At a perturbation of m, for example, we can
isolate a reaction vector as

AX(W)

X7y —p

= x£m> — x;’").

(11)

For an oxidation of an alcohol at a perturbation of 1, this
would give the following
AXRo = cex — (ccxC + enxiy), (12)
For the oxygen, where the left-hand term represents the
product, and the right-hand term represent the reactant oxygen
of alcohol having both a hydrogen and a carbon neighbour
embedding. The difference amounts to only the 0™ order
embedding of the hydrogen, which was removed at that site,
AXoxsg) = _cﬂx(k(i))~ (13)
The key observation is that the reaction vector is propor-
tional to the average %7, a vector which is independent of the
local neighbourhood of the oxygen. Similarly, the reaction
vector for the oxidation from alkanes to alkenes is

AXGe = —cndid), (14)
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which is also proportional to X and independent of the C
environment. This explains how the perturbational replicates
can reduce to the linear analogies found at the first order
perturbation, and how similar changes whether on alkane or
alcohol are colinear. As Table 3 shows, we obtain greater accu-
racy with greater perturbations on the neighbourhood embed-
ding replicates. Of course, including the higher order
corrections, will integrate long-range effects and provide a more
fine-tuned reaction vector that will explain deviations from the
exact constant vector.

2.5 Non-learned morgan fingerprint representation

An important question to consider is how specific the presented
algebraic framework of cosine similarities and neighbourhood
retrieval is to the GNN-learned representations. The uniform
density of states in each cluster reported in Table 1 provides
a naive baseline reference to appreciate the reported neigh-
bourhood retrieval results on a quantitative level, alongside the
qualitative picture in Fig. 2. Nevertheless, it is important to
confront neighbourhood retrieval and cosine similarities with
other molecular vector representations, and investigate whether
similar algebraic relations exist. To this end, we confront the
GNN embedding vectors with Morgan fingerprints (MF) bit
encodings.”® The conceptual similarity between the GNN
embedding vectors and MFs is that it encodes a chemical
representation of atoms or molecules respectively in terms of
chemical environments. A notable difference is that the GNN
embedding vectors have been learned through a training
procedures, whereas MFs encode the chemical environments
explicitly. Additionally, and more importantly, the former
provides a representation of an individual atom within its
chemical environment, whereas the latter is a fully molecular
property.

For the baseline experiment, we have constructed the 2048
bit hydrogen-free radius-2 Morgan Fingerprints of all molecules
involved in Table using the RDKit cheminformatics toolkit.”
The choice of hyperparameters corresponds to standard usage
in cheminformatics applications,’® striking a balance between
local and global molecular property encoding. With the MF
constructed for both reactants and products in each reaction
categories, it is possible to construct average reaction vectors in
this 2048-dimensional space and perform neighbourhood
retrieval and cosine similarity tests, just as before for the GCNN
embedding vectors. The results are presented in Table 1 for the
neighbourhood retrieval test (% MF and % MF\r) and Table 2
(upper triangle) for the cosine similarities.

It can be seen from Table 1 that the neighbour retrieval tests
for % MF performed less than the GNN embedding vectors. An
interesting observation for the % MF is that the product MF
often scored second in the neighbourhood test, with the reac-
tant vector being the closest. This leads to particularly low
neighbourhood tests for % MF for the majority of reactions.
Remarkably, when the reactant vector was removed from the
pool of vectors, the product vector retrieval score increased
considerably, denoted by % MF\r. This observation is reminis-
cent of the observations in NLP,** where often the original
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vector (equivalent to the reactant vector in chemistry) is the
closest to the analogy in situations situation where underlying
semantics might lead to biased analogies. This points to an
internal organization of the MF vector space that is less orga-
nized than the GNN, due to the fact that the MF vectors encode
full molecular information, where multiple different chemical
environments coexist, opposed to the GNN embedding vectors,
which typically encode a single chemical environment around
the single atom. These observations are corroborated by the
cosine similarities in Table 2, which point to a less structured
space compared to the GNN, even considering the highly
dimensional space of the MF.

2.6 Applications of linear analogies

An other interesting question is to what extent these linear
analogies in abstract latent space will provide imprints on real
chemical observables. For instance, one can intuitively expect
that chemical observables that are reasonably well described by
a quasi-linear model in this organized latent space will display
similar behaviour. Remarkably, it is possible to extract tangible
relations for chemical observables based on fairly general
assumptions. Consider an atom-wize chemical observable that
can be obtained as a function f{x) of its chemical composition or
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atomic embedding vector, e.g. >*C-NMR shifts, either from an
end-to-end” or transfer learning®” point of view. Our first
assumption is that this function flx) should be sufficiently
smooth over each individual functional group class, so one can
expand the function around the average X, or 0™ order
embedding vector x© for that functional group

F(x)=f(F+0) =f(F) + 0 x Vf(¥) + O(6%).

Our second assumption resides on the validity of the linear
analogy, stating that there exists a constant reaction vector
<reaction> = A that brings us from the reactant (r) to the
product (p) for all reaction pairs

(15)

Xt A= Xp» (16)
which includes the averages x, by construction. Furthermore, it
implies that each ¢ specifying the individual end points of the
reaction are necessarily equal

0 = 0p = 0. (17)
As a result, one can write for both end points
f0e) =1 (%) +6 x Vf (%) + O(0), (18)
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Fig.3 The ®*C-NMR chemical shift (a and c), and the change in atomization energy (b and d), associated with the alkane and alcohol oxidation, at
the carbon reaction center. The colors represent the functional group of the reactant that was involved in the oxidation, methyls,

, carbonyls.
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fxp) =/ (%) +6 x V(%) + O(8%). (19)

Solving ¢ formally from the first equation, we obtain the
simple linear relation

S 0) = (%) + [ () — F V()™ x VF () + O(F),
(20)

= of(x;) + 6. (21)

With the constants « and # only dependent on the overall
functional group class embedding vectors Xr and Xp, and not on
the individual reaction end points. The relation becomes even
stronger when considering a global linear transfer model

fx)y=ax+b, (22)

For which a quick insightful re-derivation of (21) yields

fxp) =ax,+b=a(x +A)+b=flx,)+al, (23)
So « =1 and 8 = a -A. In Fig. 3, we investigate relation (21) on
BC-NMR shifts and atomization energies for the alkane and
alcohol reactions, extracted from QMOINMR and SchNet
respectively. In previous work,*>> we showed that *C-NMR
shifts are reasonably well reproduced from a global linear
regression model in the latent space. For our oxidation reac-
tions, see Fig. 3a and c, despite the fluctuations [R*> = 0.41, R> =
0.26], a linear fit on the data is in line with the « = 1 relation,
reconfirming the linear analogies in embedding space between
the reaction pairs. To the best of our knowledge, this is the first
observation of the simple linear relation of NMR-shifts between
reaction pairs, entirely facilitated by the linear analogies in the
underlying embedding space.

A fit on the atomization energies also yield linear relations
(21) with & = 1.8 [R> = 0.79, R* = 0.77] (see Fig. 3b and d). This
deviation from « = 1 is to be expected from the architecture of
SchNet, in which the final atomization energies are obtained
from a fully connected feed-forward neural network. Further-
more, a closer scrutiny of Fig. 3b and d reveals a substructure
into bands for which each individual « is closer to 1, which may
point towards a more locally fine-tuned sub-classification of the
alcohol/aldehyde and alkane/alkene groups for atomization
energy.

3 Conclusions

In this work, we uncover a latent space of graph neural network
models that maintains a high degree of structural integrity. The
structure of the graph neural network latent space is largely
based on a fine chemical syntax organization. We demonstrate
this via the use of linear analogies, constant vectors that help
transform from one chemical formula to another, a.k.a reaction
vectors. We observed how linear analogies themselves form
a coherent structure, in that similar reactions (ex. oxidations,
eliminations) are colinear in the latent space. Thus, the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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structure of the embedding space can be thought of to have two
levels of organization. The first level is that of molecular
substructure composition; similar substructures are placed next
to each other (alkanes and alkenes vs. aldehydes and ketones).
The second level is that of changes to molecular substructure,
similar chemical changes are in the same direction in the latent
space. This is in line with previous observations in natural
language models in which word analogies can be found in using
vector arithmetic, such as ‘King’ — ‘Man’ + ‘Woman’ = ‘Queen’.
In a similar vein, a chemist can write: ‘Amide’ — ‘Amine’ +
‘Alcohol’ = ‘Carboxylic Acid,’” only in a quantitative chemical
compositional sense. Nevertheless, despite the apparent corre-
lations in the vector algebraic relations, reflected in for instance
the cosine similarities, a more in-depth analysis on a wider
plethora of chemical reactions will be needed to confirm these
relations in more generality.

Our observations were largely explained by a replicate model
of the latent space based on perturbational updates that inte-
grate neighbourhood chemical compositions in successive
layers until self-consistency is reached between atom repre-
sentation and neighbourhood representation. This perturba-
tional model relates the structure of the latent space to chemical
composition. We showed how such a model can explain the
approximately constant reaction vectors. Additionally, the
reconstructed model demonstrates how linear analogies in the
latent space carry over to chemical properties such as NMR and
atomization energies. In other words, the integrity of linear
analogies lies beyond just the latent space and can be used to
explain quasi linear changes in chemical properties, such as
constant NMR shifts, and near-constant changes in atomization
energies.

Although many investigations into the interpretability of
GNNs in chemical applications precede this work, this is among
the first to uncover a structured, quantitative framework that
connects GNN-learned embeddings to fundamental principles
of chemical language at a global scale. In the past, explainability
has been done locally, using extrinsic tools, and observing how
the model responds to limited examples. However, our linear
analogies structure, and perturbational replications sets the
framework for a global explanation to the latent space of GNN
chemistry. While the main frame is set, there is still much room
to explore. One direction is to map out the trajectories of reac-
tions in the latent space, and uncover what is happening
between end-points of reactions, i.e. transition states. Another
direction is to study how this global explanatory framework
reduces to a local one and thus can give us explanations on
a case-by-case basis. For example, we can study how the repli-
cates improve prediction of chemical quantities (or changes in
chemical quantities) based on finely tuning the neighbourhood
composition. This also sets the stage for a global evaluation of
model generalizability and transferability. Lastly, there is room
for improving the replicates of the GNN model. For instance,
the perturbational replicate model uses a neighbourhood
composition feature space that ignores the exact layout of the
graph, by incorporating the exact layout, and using the same
geometry optimization as the GNN model, can lead to a finer
replicate. Nonetheless, the findings in this paper set the stage
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for global explorations in GNN modeling of chemistry in
a single coherent framework.
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4 Appendix

The reaction creation and analysis code can be found at: https://
github.com/QuNB-Repo/DLCheM/tree/master. This automates
reaction dataset creation. It is able to query a dataset for all
reactants specified (with any long-range feature), remove
leaving groups, build any functional group, and extract
embeddings at the reaction site for analysis. The repository also
contains all the prepared reaction datasets and analysis done in
this study.

4.1 Representing neighbourhood feature spaces

Practically, to represent equation 2.4, we must avoid problems
of having a variant number of neighbours as we cannot handle
data of various sizes without reverting back to graph neural
networks. Additionally, we must ensure our representation for
the neighbourhood is unique to each chemical neighbourhood.
To avoid these problems we use a data structure whereby the
chemical neighbourhood feature space is described by
embedding-sized placeholders for the existence of H, C, N, O,
and/or F neighbour, in that order. For instance, being an oxygen
atom in an alcohol, will fill the carbon and the hydrogen
embedding placeholders for each update (while leaving the rest
as zero), with either some previous update or with the initial
average for that neighbouring element. If, for instance, two
carbons are found as neighbours, then their embeddings are
added onto the same placeholder for the carbon neighbour.
This practical approach avoids issues of variant neighbourhood
sizes, as now at each update the number of features is the same,
Dembedding X Delements- If there are multiple neighbourhood
depths included in the representations, then the order of the
neighbour elements is repeated for each depth such that we
have Dempedding X Delements X Ddepth- This ensures uniqueness

10906 | Chem. Sci, 2025, 16, 10895-10908
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in the representation even across multiple layers of neigh-
bourhood depth.
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