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of Chemistry Simulating large molecular systems over long timescales requires force fields that are both accurate and
efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational
efficiency and accuracy of force fields, but they are still several orders of magnitude more expensive
than established molecular mechanics (MM) force fields. Here, we propose Grappa, a machine learning
framework to predict MM parameters from the molecular graph, employing a graph attentional neural
network and a transformer with symmetry-preserving positional encoding. The resulting Grappa force
field outperforms tabulated and machine-learned MM force fields in terms of accuracy at the same
computational efficiency and can be used in existing Molecular Dynamics (MD) engines like GROMACS
and OpenMM. It predicts energies and forces of small molecules, peptides, and RNA at state-of-the-art
MM accuracy, while also reproducing experimentally measured values for J-couplings. With its simple

input features and high data-efficiency, Grappa is well suited for extensions to uncharted regions of
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Accepted 13th Decermber 2024 chemical space, which we show on the example of peptide radicals. We demonstrate Grappa's
transferability to macromolecules in MD simulations from a small fast-folding protein up to a whole virus

DOI: 10.1039/d4sc05465b particle. Our force field sets the stage for biomolecular simulations closer to chemical accuracy, but with
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1 Introduction

In recent years, advances in geometric deep learning have led to
the development of highly accurate machine learned force
fields, reshaping the field of computational chemistry and
Molecular Dynamics (MD) simulations. E(3) equivariant neural
networks'™* are capable of predicting energies and forces of
small molecules to great accuracy with lower computational
cost than quantum mechanical (QM) methods. However, these
models are several orders of magnitude more expensive than
Molecular Mechanics (MM) force fields, which employ a simple
physics-inspired functional form to parametrize the potential
energy surface of a molecular system, hence trading off accuracy
in favor of efficiency. For MD simulations of large systems such
as proteins and polynucleotides, MM force fields are well
established and widely used. Established MM force fields rely
on lookup tables with a finite set of atom types characterized by
chemical properties of the atom and its bonded neighbors for
parameterization. Recently, Espaloma® and GB-FFs® have
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the same computational cost as established protein force fields.

demonstrated that machine learning can be used to increase
the accuracy of MM force fields by learning to assign parameters
based on a graph representation of the molecule with chemical
properties that rely on expert knowledge, such as orbital
hybridization states or formal charge, as input features.

In this work, we propose a novel machine learning framework,
Grappa (Graph Attentional Protein Parametrization), to learn MM
parameters directly from the molecular graph, improving accu-
racy on a broad range of chemical space and eliminating the need
for hand-crafted features. Grappa employs a graph attentional
neural network to construct atom embeddings capable of repre-
senting chemical environments based on the 2D molecular
graph, followed by a transformer’” with symmetry-preserving
positional encoding. Since MM parameters only have to be pre-
dicted once per molecule, Grappa can be incorporated into highly
optimized MM engines such as GROMACS? and OpenMM.° This
allows energy and force evaluations with the same computational
cost as traditional force fields, at state-of-the-art MM accuracy.

We show that Grappa outperforms traditional MM force
fields and the machine-learned MM force field Espaloma on the
Espaloma dataset,' which contains over 14 000 molecules and
more than one million conformations, covering small mole-
cules, peptides and RNA. We evaluate the potential energy
landscape of dihedral angles of peptides, where we find that
Grappa can match the performance of Amber FF19SB without
requiring CMAPs and closely reproduces experimentally
measured J-couplings. We also show that Grappa improves
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upon the calculated folding free energy of the small protein
chignolin. To the best of our knowledge, Grappa is the first
machine learned MM force field that uses no hand-crafted
chemical features, allowing facile extension to uncharted
regions of chemical space, which we demonstrate on the
example of peptide radicals. Grappa is transferable to indi-
vidual macromolecules and assemblies such as proteins and
viruses, which exhibit similar dynamics as established force
fields. Starting from an unfolded initial state, MD simulations
of small proteins parametrized by Grappa recover experimen-
tally determined folding structures of small proteins, suggest-
ing that Grappa captures the physics underlying protein
folding. We demonstrate the efficiency of Grappa, which is
inherited from MM, by simulating a system of one million
atoms with the proposed force field on a single GPU, with
a similar number of timesteps per second as a highly per-
formant E(3) equivariant neural network' on over 4000 GPUs.

1.1 Molecular mechanics

In MM, the potential energy of a system with a given molecular
graph is expressed as a sum of contributions from different
interactions. Bonded interactions are described by functions of
E(3)-invariant internal coordinates such as the lengths r; of
bonds between two atoms, angles 6;; between three consecutive
atoms and dihedrals ¢;;; of two planes spanned by four atoms.
For the dihedrals, one considers interactions between four
atoms that are either consecutively bonded (torsions) or where
three atoms are bonded to a central atom, often referred to as
impropers, which are used to maintain planarity of certain
chemical groups. One commonly uses harmonic potentials for
bond stretching and angle bending and a periodic function for
the dihedral potential. The potential energy of all interactions
along bonds then is given by

Bronaea(x) = 3 ki/(’z/—r,(.;”)z

(ij)e bonds

+ 3 k(w0 (1

(ijk)e angles
Mperiodicity

+ : : z : ki/kl Cos(n¢ij/c/)7
(ijkl)e dihedrals ~ n=1

with the equilibrium values (of bonds and angles) rﬁj‘?) and
495},) and the force constants k;, kjx and ki, as the set of MM
parameters, which we denote as

£ = {547...(/)\1 e {bonds, angles, torsions, impropers}}. (2)

For the periodic dihedral potential, a common choice is
a Fourier series with the constraint that the dihedral potential is
extremal at and symmetric around zero, which eliminates the
need for sine terms. Additionally, atom pairs that are not
included in such N-body bonded interaction terms contribute to
the potential energy through pairwise nonbonded interaction,
typically described by Lennard-Jones and Coulomb potentials.

Traditional MM force fields define a finite set of atom types
determined by hand-crafted rules, which are used to assign the
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free parameters {k;, ry , ...; based on lookup tables for possible
combinations of atom types. In Grappa, we replace this scheme
by learning the parameters from the molecular graph directly,
which allows for a more flexible and transferable description of
the potential energy surface.

A fundamental limitation of standard MM is the assumption
of a constant molecular graph topology, which is enforced by the
use of harmonic bond potentials. While this restricts accuracy
and prohibits the description of bond-changing chemical reac-
tions, the physical interpretability of the potential energy func-
tion ensures that simulated systems remain stable, even in states
that are poorly described by the force field. Grappa builds on this
advantage, and also inherits the superb efficiency that MM force
fields achieve through this assumption.

2 Grappa

Inspired by the atom typing with hand-crafted rules in tradi-
tional MM force fields and in analogy to Wang et al.,> Grappa
first predicts d-dimensional atom embeddings,

v={ye Rd’ie v}, (3)
which can represent local chemical environments that are
encoded in the structure of the molecular graph G = (v, £&),
where the set of nodes v represents the atoms and the set of
edges € represents the bonds. In a second step (Fig. 1), for each

interaction type [ MM parameters £ are predicted from the
embeddings of the atoms involved in the respective energy

contribution,
3
Network

Symmetric Symmetric Symmetric
Transformer Transformer Transformer
Bond Angle Dihedral
Parameters Parameters Parameters

By

Fig. 1 Grappa predicts MM parameters in two steps. First, atom
embeddings are predicted from the molecular graph with a graph
neural network. Then, transformers with symmetric positional
encoding followed by permutation invariant pooling maps the
embeddings to MM parameters with desired permutation symmetries.
Once the MM parameters are predicted, the potential energy surface
can be evaluated with MM-efficiency for different spatial
conformations.

ngo
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£ 0 =i v ), (4)

using a transformer Y that is invariant under certain permu-
tations. With the energy function of MM, the predicted param-
eter set § defines a potential energy surface, which can finally be
evaluated for different spatial conformations x of the molecule,

E(x) = Epmm(x, §). (5)

Since the mapping from molecular graph to energy is
differentiable with respect to the model parameters and spatial
positions, it can be optimized on predicting QM energies and
forces end-to-end, as visualized in Fig. 3. Notably, the machine
learning model prediction does not depend on the spatial
conformation of the molecule, thus it has to be evaluated only
once per molecule and the computational cost of each subse-
quent energy evaluation is given by the MM energy functional.

Grappa currently only predicts bonded MM parameters since
we expect that nonbonded interactions are not covered suffi-
ciently by the monomeric datasets used for training, rendering
the nonbonded parameters underdetermined. The nonbonded
parameters are taken from established MM force fields that can
reproduce solute interactions and melting points, which we
expect to be strongly dependent on nonbonded interactions.

2.1 Permutation symmetries in MM

For the mapping from atom embeddings v to MM parameters,
we postulate certain permutation symmetries that the model
should respect. To derive these symmetries, we consider the
energy function of MM as a decomposition into contributions
from subgraphs of the featurized molecular graph that corre-
spond to bonds, angles, torsions and improper dihedrals. We
demand invariance of the energy contribution under node
permutations that induce isomorphisms of the respective
subgraph. For bonds, angles and torsions, these permutations
leave the respective spatial coordinate invariant, thus we can
achieve invariance of the energy contribution by demanding
invariance of the MM parameters,

gg}wond) _ 5](})011d) (6)

1 angl
ERRES = g5pel, 7)
E({_}I?/rsmn) — gsltq(/)_irslon)~ (8)

For improper dihedrals, however, not all subgraph isomor-
phisms leave the dihedral angle invariant and demanding
parameter invariance under those permutations would lead to
an energy contribution that is not invariant. In Grappa, we solve
this problem by decomposing the improper torsion contribu-
tions into three terms, as described in Section A.4.

2.2 The Grappa architecture

To predict atom embeddings from the molecular graph,
Grappa employs a graph attentional neural network inspired
by the transformer architecture.” Multi-head dot-product

© 2025 The Author(s). Published by the Royal Society of Chemistry
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attention on graph edges" is followed by feed-forward layers
with residual connections' and layer normalization,™ which
has been demonstrated to enhance the expressivity of atten-
tion layers.™

For the map from these embeddings to MM parameters, it is
desirable to use an architecture that respects the permutation
symmetries (eqn (6)-(8)) by design, constraining the space of
possible models to those that are physically sensible. In the
proposed symmetric transformer architecture, we use permu-
tation equivariant layers followed by final symmetric pooling.
However, since we do not require invariance under all permu-
tations but only under permutations as defined in eqn (6)—(8),
we can increase expressivity by allowing the model to break
symmetries that are not required.

Following these considerations, we use multi-head dot-
attention layers, which are permutation equivariant by design,
and introduce a positional encoding that is invariant under the
required permutation symmetries but can break others. For
example for angles, this positional encoding is given by

(vi, v, v) = (@0, ¥,®1, 1, ®0), 9)

where the @ operation appends the respective value to the
node feature vector, making it invariant under ijjk — kji but
not under e.g. ijk — jik. After these equivariant layers, we apply
a multilayer perceptron (MLP) on the concatenated permuted
node embeddings and sum over the desired set of permuta-
tions P,

% = ZMLP([%(:')’ ZU )

geP

(10)

defining a symmetry pooling operation with P-invariant output
to obtain parameter scores z. We call this combination of
permutation invariant positional encoding with permutation
equivariant layers and symmetric pooling the symmetric
transformer, which is illustrated in Fig. 2. The symmetric
transformer can be generalized to permutation symmetries of
arbitrary subgraphs by using the eigenvectors of the graph
Laplacian® as positional encoding.

Finally, we map the scores z to the range of physically
sensible parameters, e.g. (0, «) for bond and angle force
constants or (0, ) for equilibrium angles 6°). To this end, we
use scaled and shifted versions of ELU and the sigmoid function
as described in A.2.3. While one could also use the exponential
for mapping to (0, o), ELU's linear behaviour towards large
inputs is favorable for producing stable gradients during opti-
mization. With the scaling we ensure that a normally distrib-
uted output of the neural network is mapped to a distribution
with mean and standard deviation that is suitable for the
respective MM parameter, which can be seen as a normalization
technique.” For predicting dihedral parameters &;;;, we use
a sigmoid gate, which allows the model to suppress dihedral
modes that are not needed.

As input feature, we use one-hot encodings of the atomic
number, the number of neighbors of the respective node and
membership in loops of length 3 to 8, which can be directly
calculated from the molecular graph. The assignment of
nonbonded MM parameters is done using a traditional force

Chem. Sci., 2025, 16, 2907-2930 | 2909
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Fig. 2 Architecture of the symmetric transformer: atom embeddings
are equipped with a permutation invariant positional encoding
determined by the subgraph they represent. They are then passed
through n = 3 permutation equivariant transformer layers, symmetry-
pooled and mapped to the possible range of the respective parameter.

To Interval

Interaction Parameters

I

Inference
. QM Energy
‘Molecular Graphl [ Positions ]J [ QM Force

MM Parameters

MM Energy
Functional

Pred. Energy
Pred. Force

Fig. 3 Grappa predicts one set of parameters per molecule. With the
MM energy functional (egn (5)), the parameters can be mapped to
energies and forces of given conformations, whose deviation from the
ground truth (QM) is minimized during training. Functions are repre-
sented in blue, conformation-specific quantities in green and mole-
cule-specific quantities in grey.

field of choice. Since the bonded parameters predicted by
Grappa may depend on the scheme by which nonbonded
parameters are assigned, we pass the partial charge of each
atom as input feature to Grappa, which also allows to encode
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the total charge of a molecule without breaking graph symme-
tries as one would potentially do by assigning atomwise formal
charges instead.

2.3 Training

We train Grappa to minimize the mean squared error (MSE)
between QM energies Eqy and forces —ViEqw, Whose contri-
bution we weight by the hyperparameter Ar, and its prediction, £
and V,E respectively, which includes the non-learnable
nonbonded contribution. At the start of training, we also
include the deviation of predicted bond, angle and torsion MM
parameters to those of a given traditional force field, weighted
by Auwaa and, for regularization, the L, norm of dihedral MM
parameters EE}};}‘), weighted by Agin as in ref. 10. That is, we use
the loss function

% =MSE(E, Equ)+ Ar MSE(VE, VyEqu)

o 2 (11)
+ Avm MSE(, Eypaa) + AainlIE“™][,.

Since MM can only predict energy differences of states, not
formation energies, we subtract the mean of target and pre-
dicted energies for each molecule. As shown previously for other
machine learned force fields,**® we find training on forces —V,E
in addition to energies important also in our setting, for two
reasons. First, the energy is a global, pooled quantity and thus
less expressive than the forces, which are local and by a factor of
3N more numerous. Second, as shown in,"” learning derivatives
of the target with respect to the input can lead to improved
generalization and data efficiency, effectively smoothing the
learned potential energy surface. Details on the training
procedure and hyperparameters can be found in A.3.

3 Results and discussion
3.1 Grappa is state-of-the-art

To demonstrate that Grappa is the current state-of-the-art MM
force field in terms of accuracy, we train and evaluate a Grappa
model on the dataset reported in the follow-up paper' to
Espaloma, which contains 17 427 unique molecules and over
one million conformations. Our training and test partition is
identical with the one from Espaloma, where the molecules
were divided into 80% training, 10% validation and 10% test
set, based on isomeric SMILES strings. The dataset covers small
molecules, peptides and RNA with states sampled from the
Boltzmann distribution at 300 K and 500 K, from optimization
trajectories and from torsion scans. The nonbonded contribu-
tion is calculated using the OpenFF-2.0.0 force field'® and
partial charges from the AM1-BCC method, as in Espaloma. We
train the model for 1000 epochs on an A100 GPU, which takes
about one day.

For all types of molecules, Grappa outperforms established
MM force fields and Espaloma in terms of energy and force
accuracy on Boltzmann-sampled states as shown in Table 1 and
Fig. 4a. While the Boltzmann samples are the more relevant
benchmarking data for using Grappa in MD simulations, we
also evaluate it on torsion scans and optimization trajectories

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Accuracy of Grappa, Espaloma 0.3 (ref. 10) and established MM force fields on test molecules of the Espaloma dataset, which contains
nonbonded contributions from AM1-BCC partial charges. We report the RMSE of centered energies in kcal mol™ and the componentwise RMSE
of forces in kcal mol™* A~%, uncertainties can be found in Table 7. Gaff-2.11 (ref. 19) is a general-purpose force field, ff14SB?° is an established
protein force field and RNA.OL3 (ref. 21) is specialized to RNA. The SPICE-PubChem and SPICE-DES-Monomers datasets, containing small
molecules, along with the dipeptide dataset, are subsets of the SPICE dataset.?? The RNA datasets feature trinucleotide states calculated with the
B3LYP-D3BJ functional

Dataset Test mols Confs RMSE Grappa Espaloma Gaff-2.11 ff14SB, RNA.OL3 Mean predictor
SPICE-PubChem 1411 60853 Energy 2.3 2.3 4.6 18.4
Force 6.1 6.8 14.6 23.4
SPICE-DES-Monomers 39 2032 Energy 1.3 1.4 2.5 8.2
Force 5.2 5.9 111 21.3
SPICE-Dipeptide 67 2592 Energy 2.3 3.1 4.5 4.6 18.7
Force 5.4 7.8 12.9 12.1 21.6
RNA-Diverse 6 357 Energy 3.3 4.2 6.5 6.0 5.4
Force 3.7 4.4 16.7 19.4 17.1
RNA-Trinucleotide 64 35811 Energy 3.5 3.8 5.9 6.1 5.3
Force 3.6 4.3 17.1 19.7 17.7
(a) Grappa
Small Molecules Dipeptides
S 45+
% i 100 _ (¢) Learned Atom Embeddings
= 45l 10.0 2
> ()
= 2
o Ot 10 9
w w
5 15T
o
@ -30+ ~
P e 10° O e 1.0 1 =
-30-15 0 15 30 45 -30 -15 0 15 30 45
(b) Established Force Fields
_ 10°
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£ i 100
g 2 > U1
2 151 10 10.0 2
2 g e H o P
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5 10 8 eC oS
=l N ) N ecCl
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1 10 -45 —t—t—f 1.0 —t—t—t—+—t+—+ 1
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QM Energy [kcal/mol] QM Energy [kcal/mol] QM Energy [kcal/mol]

Fig. 4 Comparison of energy predictions of (a) Grappa and the established force fields (b) Gaff-2.11, ff99SB-ILDN and RNA.OL3 for test
molecules from Espaloma’s SPICE-PubChem, SPICE-Dipeptide and RNA-Trinucleotide datasets; force predictions are depicted at 21. (c) The first
principal components u; and u, of Grappa-predicted atom embeddings from the Espaloma test dataset can be related to a combination of the
main group and period in the periodic table of elements. Lines of constant main group or period are represented by approximate diagonals in
latent space.

(Table 7). There, we find Grappa and Espaloma to be competi- 3.2 Grappa is extensible across chemical space
tive, while Grappa is more accurate for forces and less accurate
for energies. Grappa also outperforms the baselines if only
trained on a fraction of Espaloma’s training set (Fig. 19), indi-
cating high data efficiency.

Chemical properties based on expert knowledge, e.g.
hybridization and aromaticity, have long been used to assign
MM parameters,''® also when those are machine-learned.>*
With Grappa, we show that accurate MM parameters can be
predicted directly from the molecular graph, without relying on
hand-crafted chemical input features.

If a certain kind of chemistry is not part of the training set of
a machine learned force field, predictions can go awry. While
the current datasets already cover a significant part of chemical
space, extensions should be straightforward and accessible. To
demonstrate Grappa's extensibility to rather uncommon mole-
cules, we train it on peptide radicals, which play a role in
enzyme catalysis*® and as mechanoradicals** and for which we
generate a dataset as described in A.5.

In Table 2, we report the accuracy of Grappa on a test set
of unseen peptide radicals with and without training on

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci,, 2025, 16, 2907-2930 | 2911
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Table 2 Ablation study on extensibility. The test accuracy on peptide
radicals is reported in kcal mol™ A~*. We compare Grappa trained on
the dataset described in Section 3.3 (Grappa) and on the extension of
the dataset including peptide radicals (Grappa-radicals)

RMSE Grappa-radicals Grappa Mean predictor
Energy 31+03 41+03 7.0 £ 0.5
Force 8.5 £ 0.2 13.6 £ 0.3 40.6 £ 1.2

() )

Fig. 5 Grappa captures key structural features of radicals. (a) Alanine
radical optimized with QM (grey carbon atoms) and Grappa (blue
carbon atoms) with an RMSD of 0.05 A. For comparison, we also show
the same alignment for native alanine in (b) (RMSD of 0.06 A). Grappa
can predict the planarity of the three bonds involving the C, atom in
(a).

other peptide radicals. Grappa can, indeed, learn to predict
more accurate parameters for radicals. Additionally, we
demonstrate that Grappa can learn the effect of radical
atoms on optimized geometries with an example of an
alanine radical in Fig. 5. We report no baseline values since,
to the best of our knowledge, Grappa is the first MM force
field that covers this part of chemical space. On the other
datasets from Espaloma, Grappa remains competitive, as
can be seen in Table 8.

The extension to peptide radicals indicates that Grappa can
learn new chemistries accurately without negatively affecting
the performance on the original datasets. Due to Grappa's
limited complexity of input features - only connectivity, atomic
numbers and partial charges — the chemical space accessible for
parameterization is vast. As long as a molecule has a fixed
connectivity and the MM energy functional is a reasonable
approximation, Grappa can be trained to predict parameters for
it. For extending machine learned force fields to new chemis-
tries, it is usually required to generate additional training data.
Grappa's high data efficiency (Fig. 19) suggests that it requires
less of such additional training data than other machine
learned MM force fields.

3.3 Grappa is compatible with multiple nonbonded
parameter schemes

In order to make Grappa compatible with partial charges from
the popular ff99SB>* and CHARMM36 (ref. 26) protein force
fields, we calculate the nonbonded contributions of these force
fields for the SPICE-Dipeptides and Protein-Torsion datasets
used only with the contribution from AM1-BCC charges in
Espaloma. We train Grappa on the resulting dataset, incentiv-
izing it to predict bonded parameters that can be combined

2912 | Chem. Sci, 2025, 16, 2907-2930
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Table 3 Ablation study on different nonbonded contributions. We
report the test accuracy on the SPICE-Dipeptide dataset with
nonbonded parameters from AM1-BCC/OpenFF-2.0.0, ff99SB and
CHARMM36 in kcal mol™ A~ for Grappa trained on the Espaloma
dataset (Grappa-base) and the extension containing peptide
nonbonded contributions from ff99SB and CHARMM36

Nonbonded

parameters RMSE Grappa Grappa-base

AM1BCC Energy 24+0.1 2.4 +0.1
Force 5.5+ 0.1 5.6 £ 0.1

ff99SB Energy 2.3£01 2.6 £ 0.1
Force 5.5+ 0.1 6.1 +0.1

CHARMM36 Energy 2.5+ 0.1 31+0.1
Force 5.5£0.1 6.4+ 0.1

with the respective partial charges, which it receives as input as
described in Section 2.2.

We conduct an ablation study on the effect of using
different nonbonded parameters on the accuracy of Grappa
on the SPICE-Dipeptides dataset (Table 3). We find that, in
combination with either of the charge models above, Grappa
can predict energies and forces of dipeptides to higher
accuracy than established force fields (Table 1), even if only
trained on AM1-BCC charges. Training Grappa to be
compatible with nonbonded contributions from ff99SB and
CHARMM36 improves its accuracy to the same level as ach-
ieved with AM1-BCC charges. In practice, this means that
Grappa can be used in existing workflows where proteins are
parametrized with the established protein force fields ff99SB
and CHARMM36 by overwriting bonded parameters in the
resulting topology.

3.4 Grappa reproduces known features of relaxed dihedral
scans

Protein dynamics are largely governed by the free energy land-
scape of the backbone dihedral angles ¢ and y. While Grappa
achieves a high accuracy with respect to vacuum QM energies
on the Protein-Torsion test set (Table 8), we also investigate its
free energy landscape by performing relaxed dihedral scans of
the Ace-Ala-Nme peptide with implicit solvent and compare
with Amber ff14SB and Amber ff19SB (Fig. 6).>

In several regions, Grappa's energy profile resembles that of
Amber ff19SB, which was found to be in good agreement with
the QM profile.>” For example, the diagonal shape and extension
of the «, helix basin at (¢, ¥) = (—80°, —20°) and the minimum
in the « helix - 8 sheet transition region (—90°, 80°) are captured
by Grappa without requiring CMAPs, which were specifically
fitted on the respective QM profile in the case of Amber ff19SB.
We investigate further how Grappa achieves this behaviour
(Fig. 16). Grappa not only tunes the parameters of the dihedrals
involved, but also those of neighboring dihedrals and angles,
which we find to have a significant contribution to the dihedral
free energy landscape. This indicates that learning all parame-
ters at once, as in Grappa and Espaloma, has important
advantages over fitting individual parameters separately as
commonly done for established force fields.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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requiring CMAPs.

3.5 All bonded interactions have a large potential for
improvement

Grappa's modular formulation allows for learning only a certain
type of interaction while keeping the others fixed to those of an
established force field. To quantify the improvement of Grappa
over the widely used protein force field Amber ff99SB-ILDN,>* we
train Grappa models that predict only certain types of MM
parameters and evaluate their accuracy in Table 4.

For each interaction, replacing the ff99SB-ILDN parameters
with those predicted by Grappa improves the energy RMSE. The
extent of this improvement varies to some extent, with dihedral
interactions having a low and the bond interaction the highest
impact on the force RMSE. Taken together, we show that com-
plementing ff99SB-ILDN with Grappa parameters for either type
of bonded interaction improves the accuracy of the resulting
force field compared to ff99SB-ILDN.

3.6 Grappa is interpretable

MM parameters. In the classical mechanics potential func-
tions used in MM, a physical meaning can be attributed to
parameters. Hence, badly assigned parameters could be

Table 4 Ablation study for different learnable interactions. We report
the test accuracy of Grappa models that predict MM parameters for
different interaction types in kcal mol™* A%, For the non-learnable
types, MM parameters are taken from ff99SB-ILDN. The models are
trained and evaluated on a dataset of dipeptides sampled at 300 K (see
A.5) with ff99SB partial charges

Learnable interaction RMSE

Bond Angle Dihedral Energy Force

v v v 2.5 5.9

v v 3.0 6.1

v 3.9 7.4

v 3.8 9.2

v 3.5 11.0

4.1 11.8

© 2025 The Author(s). Published by the Royal Society of Chemistry

noticeable, e.g. if a bond is much shorter or stiffer than bonds
between similar atoms or the amplitude of a proper dihedral is
untypically high. Apart from exposing the parameters in the
simulation files, Grappa also provides figures of the parameter
distributions and, if available, comparisons to parameters from
an established force field upon parametrization. For the case of
the protein ubiquitin considered in Section 4.1, parameter
distributions and a comparison to ff99-SBILDN are depicted in
Fig. 20. As expected, Grappa's parameter space (and atom
typing) is more continuous than that of an established force
field, which is based on a limited set of atom types to define
bonded parameters. Interestingly, while the established protein
force field and Grappa predict similar bond distances, we
observe drastic deviations for other types of parameters, such as
differences in equilibrium values and force constants of angle
terms of up to ~30° and a factor of ~2, respectively. Thus,
Grappa can be considered a force field very different from
current standard force fields, despite using the same energy
functional and being trained in presence of the same non-
bonded interactions.

Latent space. To generalize across the broad range of
chemical space covered by the training set, Grappa has to
learn highly informative atom embeddings that capture the
local environment in the molecular graph. For interpreting
this latent representation, we apply a two-dimensional prin-
cipal component analysis on a set of predicted atom
embeddings (eqn (3)) of test molecules (Fig. 4c). It turns out
that the two principal components can be related to main
group and period of the periodic table of elements, whose
structure is learned implicitly by Grappa. Thus, Grappa is
able to learn chemically meaningful atom types implicitly
from energies and forces.

3.7 A tabulated Grappa protein force field

Trust in a particular force field grows over several benchmark
and application studies during which the strengths and limi-
tations become clear.”®* To facilitate the comparison with
tabulated force fields, as well as to provide a force field with
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a low barrier to entry, we construct a reduced tabulated protein
force field from Grappa. The resulting force field has unique,
independent parameters for every residue and for interresidue
bonded interactions. Details on the construction of the tabu-
lated force field can be found in A.7.

On a test dataset of dipeptides sampled at 300 K, the tabu-
lated force field has an RMSE of 2.6 kcal mol ™" for the energy
and 6.0 kcal mol~* A™* for forces (Fig. 15). In the tabulated case,
the parameters depend only on the residues involved in the
bonded interaction, whereas in Grappa, the same residue may
have different parameters depending on the sequence context.
With the current hyperparameters (Table 5), Grappa's field of
view on the molecular graph includes all atoms reachable
within seven bonds and can thus reach beyond the residues of
atoms involved in the bonded interaction. For the investigated
dipeptide dataset, this increased field of view only has
a marginal effect on energy and force RMSE, corroborating the
efficiency of tabulated force fields for regular polymers such as
proteins.

With the tabulated Grappa force field, we provide a highly
accurate force field with fixed parameters that can be used and
analyzed the very same way as traditional force fields.

4 Force field validation

Especially for large biomolecules, force fields are not only
required to predict energies and forces as accurately as possible,
but their predictions should behave in such a way that certain
macroscopic properties such as stability and consistency with
experimentally determined folding states are fulfilled in MD
simulations. Grappa is well suited to overcome the gap between
empirically validated, established protein force fields and
machine learned force fields.

In this section, we demonstrate that Grappa is on par with
established force fields when it comes to MD simulations of
proteins over timescales of hundreds of nanoseconds and that it
captures the physics that cause stability of protein folds. All
simulations mentioned in this section were performed with
GROMACS, for which the Grappa packagef provides
a command line interface, briefly described in A.1. Using this
interface (or a similar one for OpenMM), large biomolecular
systems with over 100000 atoms are parameterized within
minutes on a CPU (Fig. 11).

4.1 Grappa keeps large proteins stable during MD

A basic check for a protein force field is if a native protein
structure remains stable over time during an MD simulation.
QM methods and E(3) equivariant neural networks suffer from
the problem that while their end-to-end predictions are accu-
rate, they might fail in yielding stable simulations because of
diverging gradients of the potential energy surface when
extrapolating beyond regions covered by the training dataset.
Particularly over long timescales, the system might drift out of
the range of validity of the model and small errors might
accumulate, leading to instabilities of the system and a poten-
tial crash of the simulation. MM with its interpretable, physics-
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by the time difference At. (b) C-Alpha RMSD from the initial state
during MD simulation of ubiquitin in water with Grappa.
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Fig. 8 (a) Free energy profile obtained from a 4 ps MD simulation of
CLNO25 with Grappa. The shaded area indicates the intermediate state
between the folded and the extended states (left panel, see A.8.1). The
backbone of the predicted cluster center in blue is aligned with the
reference structure in grey (right panel). (b) Backbone RMSD to the
reference structure of CLNO25 during the two simulation runs with
Grappa.
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inspired energy function, with parameters that are
conformation-independent, ensures a higher degree of stability,
and we indeed did not observe simulation crashes.

However, since it is not ensured a priori that macrostates
such as protein folds remain stable during MD, we next assess
Grappa's capability of keeping protein folds close to their
experimentally determined structure. As example system, we
use ubiquitin (PDB ID: 1UBQ), which is a protein with 76 amino
acids whose fold contains a beta-sheet and an alpha-helix. We
perform a 200 nanoseconds MD simulation of ubiquitin in
aqueous solution with Grappa and Amber ff99SB-ILDN,* for
which details are given in A.8.3. We find that the C-alpha RMSD
from the initial state is bounded by about 4 A in 200 ns simu-
lation with both Grappa and Amber ff99SB-ILDN (Fig. 7c),
indicating that the folded state of the protein is stable. Struc-
tural fluctuations on timescales of up to 2 ns are of similar
magnitude (Fig. 7b).

4.2 Grappa reproduces the experimental folding free energy
of a small protein

In order to assess Grappa's capability of capturing the physics
responsible for protein folding, we simulate a variant of the
small protein chignolin (CLN025) at its melting temperature of
340 K, where its folding free energy is expected to be zero, with
ff99SB nonbonded parameters and TIP3P water.** During two
simulations of 4 us length, we observe multiple folding and
unfolding events (Fig. 8b) and obtain a calculated folding free
energy of —3.0 kT, which is closer to the experimental reference
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than the value of —4.0 kT reported by Shabane et al.** for Amber
ff99SB with the same water model. The improvement is ach-
ieved by tuning only intramolecular bonded parameters,
however, the choice of protein nonbonded parameters®*** has
a sizeable impact on MD-derived folding free energies and is
a potential source for further improvement.

Moreover, clustering structures from the simulations by
their C, distances shows that the central structure of the most
populated cluster is in good agreement with the experimentally
determined structure® with a C, RMSD of 0.77 A (Fig. 8a, right).

4.3 Grappa reproduces experimental peptide J-couplings

Having observed improved accuracy of Grappa with respect to
quantum mechanical energies and forces, the question remains
whether this translates to stronger agreement with experi-
mental ensemble properties compared to other MM force fields.
J-Couplings, which are measurable with NMR, can serve as such
test property as they can also be calculated from the statistics of
dihedral angles obtained in MD simulation via the Karplus
equation and have been target of extensive force field
refinement.>**”%

We validate Grappa on a jJ-coupling benchmark dataset
consisting of 13 small peptides at pH 2 (ref. 35-39) and find that
Grappa with nonbonded parameters from ff99SB achieves
a slightly lower x> and RMSE than Espaloma with AM1-BCC
charges and much better performance than the established
ff14SB force field (Fig. 9a).
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(a) J-Couplings of small peptides calculated with explicit solvent simulations compared with the experimental reference values along with

the RMSE and 2 values with standard error of the mean for Amber ff14SB, Espaloma-0.3 and Grappa. (b) Free energy landscape of Ala—Ala—Ala

with protonated C-terminus.
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For one of the peptides from the benchmark, Ala-Ala-Ala
with protonated C-terminus, we also show the dihedral free
energy landscape of the compared force fields, calculated by the
statistics of visited states during 1.5 us of simulation in Fig. 9b.
Both Espaloma and Grappa show an increased sampling of
transition regions consistent with recent improvements on
peptide backbone parameters.*”

4.4 Grappa can be finetuned for challenging molecules

In order to assess Grappa's performance on challenging mole-
cules where applicability of molecular mechanics is limited, we
evaluate it on the 3BPA dataset* of states of the drug-like
molecule 3-(benzyloxy)pyridin-2-amine (Fig. 10a), which was
used to test the extrapolation capability of the E(3) equivariant
model MACE.? Since the Espaloma dataset used for training
Grappa does not contain 3BPA, we also report the values for
a Grappa model that was finetuned on states sampled with MD
at 300 K, as in ref. 2 and 40. Additionally, we include 10 states
from the relaxed 8 = 150° dihedral slice.

We find that while Grappa achieves similar performance as
the established force field Gaff-2.11 without additional training,
it can be finetuned to capture more intricate characteristics of
the potential energy surface of the 8 = 180° slice (Fig. 10b and c)
that are not represented by Gaff-2.11. We note that in order to
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perform well not only on Boltzmann-sampled states but also on
relaxed dihedral slices, it is necessary to include a few relaxed
states from other slices, which we investigate further in
Appendix A.9. In Table 6, we also report accuracies for different
temperatures and more slices, where we find that Grappa
outperforms Gaff-2.11 in terms of energy and force RMSE even
without finetuning.

4.5 Grappa is orders of magnitude more resource-efficient
than E3 equivariant models

Efficiency of force fields is crucial; otherwise the computational
cost for simulating large systems on long timescales can
prohibit their application in simulations of many systems of
interest. To demonstrate Grappa's efficiency, which it inherits
from molecular mechanics, and to also showcase its capability
of jointly parametrizing RNA and proteins, we simulate the
virus STMV* in solution - a system with approximately one
million atoms, visualized in Fig. 14a. For this system simulated
with Grappa, we measure a performance of 101 timesteps per
second on a single A100 GPU in GROMACS? without system-
specific optimizations.

A recently proposed machine learned force field relying on
an E(3) equivariant neural network with state-of-the-art accu-
racy and efficiency, Allegro,* has been shown to be capable of
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Fig.10 Example for finetuning Grappa. (a) The 3BPA molecule with the dihedral angles «, 8 and v. (b) Potential energy along the gamma dihedral
for fixed o and 8 and relaxed other degrees of freedom as described in ref. 40. (c) Potential energy on the relaxed § = 180° slice. We subtract the

minimal energy on the slice for each force field.
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performing near-quantum-accuracy simulations of systems of
unprecedented size. This is achieved by using a strictly local
architecture, which allows parallelization across thousands of
GPUs. Since they are not constrained by the energy functional
of MM, E(3) equivariant models like Allegro, NequlP** or
MACE® have greatly improved accuracy but are orders of
magnitude more expensive than MM force fields like Grappa.
For the system at hand, Allegro reports a performance of 106
timesteps per second on 4000 A100 GPUs.*® Hence, at reduced
accuracy and incapable of describing topological changes
directly, Grappa has more than three orders of magnitude
higher efficiency than Allegro for simulating the example
system.

5 Conclusions

With Grappa, we propose a machine learning framework for
molecular mechanics force fields with state-of-the-art accuracy
that can be used seamlessly in established MD engines. Our
validations show that Grappa reproduces experimental results
and is transferable to large biomolecules like proteins and
viruses, which sets the stage for large scale simulations at
improved accuracy, with the same computational efficiency as
established MM force fields.

Unlike most traditional MM force fields, Grappa is not
specialized to a certain chemical species, but offers consistent
parameterization of molecules with different chemistries, such
as a wide range of small molecules, peptides and nucleotides,
with a single model at a higher level of accuracy than previous
MM force fields. Grappa not only enhances existing parameter
sets, but also reaches previously inaccessible regions of chem-
ical space, such as non proteinogenic amino acids or protein
radicals.

Since current state-of-the-art E(3) equivariant neural network
potentials like Allegro and MACE are several orders of magni-
tude more expensive than molecular mechanics and might also
be less robust under large perturbations as for example in high
temperature simulations, we regard machine learned molecular
mechanics approaches like Grappa as suitable method for
simulating large systems, especially if computational resources
are limited or when it is not necessary to simulate all parts of
a system at quantum accuracy.

6 Outlook

While Grappa achieves high computational efficiency through
molecular mechanics, it also inherits its fundamental limita-
tions, including restricted accuracy and the inability to directly
describe chemical reactions. However, Grappa is well suited for
efficient reparametrization of large molecules that undergo
local topological changes induced by chemical reactions, e.g. in
kinetic Monte Carlo simulations.* This is due to both, Grappa's
finite field-of-view, which ensures locality on the molecular
graph, as well as the lack of hand-crafted chemical features,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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which allows to apply the parametrization to cut-out regions of
molecules.

Grappa is a general and versatile framework to obtain MM
parameters for a broad range of molecules and can be seam-
lessly extended to new chemistries, lowering the barrier for
simulating rarely studied systems that have been neglected due
to the absence of established MM parameters. To this end, the
Grappa package implements workflows for retraining on the
provided and custom new datasets.

While we consider the consistency with established
nonbonded parameters an advantage of Grappa, an extension
of the framework to nonbonded parameters is a straightforward
next step. It would render Grappa fully independent from
traditional MM force fields and could potentially improve its
accuracy further.

Data availability

Grappa is released as open source software under the GNU
General Public License v3.0} along with the Grappa dataset and
SMILES strings used for the train-val-test partition and
configuration files to reproduce Table 1. A repository for
creating the radical peptide and dipeptide datasets§ is publicly
available. All results reported in the validation section were
obtained with Grappa-1.4.0.
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A Appendices
A1 The Grappa package

Grappa utilizes PyTorch* and DGL* in its implementation. The
package is released as open source software under the GNU
General Public License v3.0 and is available on GitHub¥ and on
PyPi:

pip install torch -f https://download.pytorch.org/whl/cpu

pip install grappa-ff.

It brings a command line interface to reparametrize a GRO-
MACS topology file obtained from a traditional force field:

grappa_gmx -f topol.top -o new_topol.top.

For OpenMM, we provide a class that can be used to repar-
ametrize a system with Grappa:

Chem. Sci., 2025, 16, 2907-2930 | 2917


https://download.pytorch.org/whl/cpu
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc05465b

Open Access Article. Published on 15 January 2025. Downloaded on 1/22/2026 12:20:59 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

from grappa import OpenmmGrappa

# use a traditional OpenMM forcefield
# to obtain a system from your topology

top, system = ...

# download a pretrained grappa model

ff = OpenmmGrappa.from_tag(’grappa-1.37)

# re-parametrize the system using grappa

system = ff.parametrize_system(system, top)

# continue with usual workflow

Pretrained released models can be accessed by using a tag;
the model weights are downloaded automatically from the
respective release on GitHub. Released models also contain
a dictionary with results on test datasets, a list of identifiers for
molecules used for training and validation and a configuration
file to reproduce training on the same dataset. Further details
on the package can be found on GitHub .

A.2 Model architecture

In this section, we provide a detailed description of the archi-
tecture of Grappa, including the graph attentional neural
network and the symmetric transformer.

A.2.1 Graph attentional neural network. Grappa's graph
attentional neural network (Fig. 12) is a modification of the
transformer architecture” for graphs, similar to the Graph
Transformer Network,"” but e.g. omits the locality-breaking
graph Laplacian eigenvectors as positional encoding. Instead,
we encode the graph structure by constraining the attention
mechanism to edges of the graph as in GAT," which enforces
locality: In each attention update only neighboring nodes can
influence each other. We use a multi-head dot-product atten-
tion mechanism and a 2-layer MLP as feed-forward network,
where the hidden feature dimension is four times the node
feature dimension.

3]
10 e Grappa model
Import
2 °
210 3 Overhead .
[0} [
£ A1 .
=10 o 8
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[ ]
10" L
[ ] L °
10°  10° 100 10°
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Fig. 11 For molecules with up to 300000 atoms, the runtime of
a parameterization with the Grappa package in CPU mode is largely
due to overhead. Due to its finite field-of-view, parametrizations can
also be parallelised across several nodes by splitting the molecular
graph into subgraphs if necessary.
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Fig. 12 Grappa's graph attentional neural network as described in
Section A.2.1.

After initializing the node features »; as described below, we
apply a single nodewise linear layer followed by an exponential
linear unit (ELU),*

v; « ELU(Wv; + b), We R * % pec RY (12)

Then, we apply Lonn graph attentional layers, each of which
is given by

v; < LayerNorm(»;), (13)
B — (Why). (Wuf),,i/)’ (14)
(k)
] exp (eil_, )
att = ) (15)

SEE)

ne N (i)
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=5 auYwh,, (16)
eN(i)
V,— <W0 concat [V,-(l), V,-<Nh°"'d5)] >7 (17)
v; < LayerNorm(V;) + v;, (18)
v; < ELU(W, ELU(W,v; + b)) + bo) + v;, (19)

where N/ (i) is the set of neighbors of node 7 including the node
itself, (k) denotes the attention head and where the weights

Wk < Rdxd/thds’ (20)
Wo e R, (21)
W, e R4, (22)
W, e R4 (23)

and biases b,, b, are learnable and independent for each layer.
We use dropout*® on the node feature update in (18) and (19).
Finally, we project onto the output dimension den, by a linear
layer,

vi — Wy, We Rbmxd, (24)

As initial node features we choose a one-hot encoding of the
atomic number, a one-hot encoding of whether the node is in
a loop, a one-hot encoding of the potential loop size and the
degree of the node. Since Grappa only predicts bonded
parameters, we have to ensure consistency with the nonbonded
parameters from the traditional force field, which is why we
one-hot encode the traditional force field used for the
nonbonded contribution of the respective state if we train on
a dataset that contains data from different nonbonded
methods. We also include the partial charges (the scalar value
concatenated with a 16-dimensional binning between —2e and
2e) as node input features, which allows us to describe differ-
ently charged conformations of the same molecule without
resorting to global or graph-symmetry breaking features like the
formal charge.

A.2.2 Symmetric transformer. The graph attentional neural
network is followed by four (parallel) symmetric transformers
(Fig. 2), one for each type of interaction, that is one for bond,
one for angle, one for torsions and one for improper dihedral
parameters. For each interaction (e.g. for each angle in the
molecular graph), the node embeddings of the atoms involved
is mapped to a set of respective MM parameters (e.g. equilib-
rium angle and force constant).

As described in Section 2.2, we add a symmetric positional
encoding to the node features, as in (9), that is invariant under
the desired set of permutations but can break symmetries that
are not necessary to make the model more expressive while
keeping equivariance under the permutations that we use for
invariant pooling (10) later on. From the symmetries eqn (6)—(8),

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and from the considerations for improper dihedrals in Section
A.4, we can derive the following positional encodings

PEangle = (0, 1, 0)7 (2‘5)
PEtorsion = (0, 1’ 1’ 0)> (26)
PEimproper = (05 15 la 0) (27)

The bond positional encoding is not needed because the
permutations of the bond parameters are the full group S, and
there is no symmetry that needs to be broken. For torsions and
impropers, the positional encoding does not break all unnec-
essary symmetries, for example the symmetry jjkI — [jki is still
present with positional encoding, and will be broken later.

We then apply a transformer acting one nodes that represent
the atoms involved in the interaction, that is, after a projection
on features of dimension dr,

v; «— ELU(Wv; + b), W e R p e R, (28)

We apply Ly transformer layers, each of which is given by
scaled dot-product attention with Nrpeaqs heads and a 2-layer
MLP with hidden dimension 4dr, skip connections, dropout
and layer normalization as in the original transformer
architecture.”

We then apply a symmetry pooling operation by passing
permuted versions of concatenated node embeddings to a Lyoor-
layer MLP with hidden dimension dp,, and summing over all
permutations ¢ in the respective symmetry group P,

Zi. = Y _MLP([v50), vap), -]),

oeP

(29)

The two dimensional scores z;; for bonds and z;; for angles
are finally mapped to the range of the respective set of MM
parameters by scaled and shifted versions of ELU and the
sigmoid function,

ki = ToPos(z;), (30)

rf-j(-)) = ToPos(z;,), (31)
ki = ToPos(z;.), (32)
6’523 = ToRange,)(Zjk.0), (33)

where ToPos and ToRange, r) are defined in Section A.2.3 and
z__n denotes the n-th entry of the score vector z . For dihedral
force constants, the 27pcriodiciy dimensional scores z;; are fed
through a sigmoid gate to make the model more expressive for
small force constants,

Kijm = Zikr,om+1 X sigmoid(Zy om)- (34)

A.2.3 Scaling of neural network outputs. To map the scores
predicted from the model to the range of the respective MM
parameter, we use scaled and shifted versions of the sigmoid
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function for mapping to a specified interval and of ELU for
mapping to positive values. We choose these functions because
they are differentiable and, in contrast to the exponential, only
grow linearly for large inputs, which can help to stabilize
training. To allow the model to predict scores that are of order
unity, or approximately normally distributed, we choose the
scaling and shifting parameters in such a way that a normally
distributed input would lead to an output distribution whose
mean and standard deviation are close to a given target mean u
and standard deviation o. We choose this target standard
deviation by calculating mean and standard deviation of tradi-
tional MM force field parameters on a given subset of the
training data, except for equilibrium angles, where we restrict u
to /2.
For mapping to positive values, we use

ToPos[u, o](z) :G(ELU(g—O—x— 1)+ 1), (35)
and for mapping to a specified interval (0, y), we restrict
ourselves to the case u = v/2 use

4
ToRange[y/2, d],(z) = v sigmoid (70 x). (36)

We can see that the mean and standard deviation of the
output are indeed close to the target mean and standard devi-
ation if we consider the asymptotic behavior of the sigmoid
function and ELU as their input approaches zero,

ELU(x) ~ x + O(x*) as x—0, (37)

. . 1
Sigmoid (x) ~ =+ + O(x?) as x—0,

2 4 (38)

which follows from the Taylor expansion of the ELU and
sigmoid functions around zero. Thus, using that z has vanish-
ing mean and unit standard deviation, we have indeed, to first
order in z,

(ToRange(z)) = v(1/2 + 4alv(z)) = y/2

and
Var[ToRange(z)] = <72<1/2 + %Z>2> -y’ /4

— 72(1/4+ %(z) + 0 [y () — 1/4) =

For mapping to positive values, we expand ELU in /o — 1 +2
around zero, which is reasonable if /o = 1, and find in analogy
that target mean and standard deviation are recovered to first
order in u/oc — 1 +z.

A.3 Hyperparameters and training details

For all models discussed in this work, we use the hyper-
parameters listed in Table 5 and a dihedral periodicity of
Nperiodicity = 3- All relative weights between energies, forces and
MM parameters rely on units formed by kecal mol™, A and

2920 | Chem. Sci, 2025, 16, 2907-2930
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Table 5 The hyperparameters used for training the Grappa models in
this work

Hyperparameter Variable Value
Graph neural network

Layers Lonn 4
Hidden dimension d 512
Attention heads Nheads 16
Embedding dimension demb 256
Dropout probability 0.3
Symmetric transformer

Transformer layers Lt 1
Transformer hidden dr 512
dim

Attention heads Nrheads 8
Pooling layers Lpool 3
Pooling hidden dim dpool 256
Dropout probability 0.5
Training setup

Learning rate 107
Molecules per batch 32
States per molecule 32
Force weight Ap 0.8
Dihedral L, weight Adin 1
Traditional MM weight Atrad 0
MM

Torsion periodicities {1, 2, 3}
Improper periodicities {2}

radian. We train the models using the Adam* optimizer with ¢
=10"% B8, = 0.9, 8, = 0.999.

First, we train for 2 epochs on traditional MM parameters
only, which can be interpreted as a form of pretraining that is
efficient in bringing the model in a state where the gradients of
the QM-part of the loss functions are informative. We start the
training on energies and forces with Aqaq = 10>, which we set
to zero after 100 epochs, preventing the model from converging
towards unphysical local minima of the QM-part of the loss
function. When changing weights of terms of the loss function
as described above, we re-initialize the optimizer with random
moments and apply a warm restart,* during which we linearly
increase the learning rate in 500 training steps to decorrelate
the optimizer state from the gradient updates of the previous
loss function. Besides pretraining on traditional MM parame-
ters directly, we have found penalizing large torsion and
improper force constants £ to benefit generalizability across
conformational space.

As validation loss, we use a linear combination of the energy
and force root mean squared error (RMSE) on the sub-datasets
(the rows in Table 1), averaged over all sub-datasets, with
a weight of 1 for the energy RMSE and 3 for the force RMSE to
prevent overfitting on a molecule type. We use this validation
loss for early stopping and for learning rate scheduling. For the
model trained on the Espaloma dataset (Table 1), the validation
loss did not improve after 1000 epochs, which corresponds to
about 25 hours of training on an A100 GPU.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A.4 Improper dihedrals

As discussed in Section 2.2, we postulate that the energy
contributions from the different interactions are symmetric
under certain permutations of the embeddings and spatial
positions of the atoms involved. These permutations are given
by the isomorphisms of the respective subgraph that describes
the interaction. In the case of angles, bonds and torsions, these
symmetries are given by eqn (6)-(8), for improper dihedrals, the
symmetries are given by all six permutations that leave the
central atom invariant, as can be seen from the structure of the
subgraphs in Fig. 13. For bonds, angles and torsions, the
interaction coordinates distance, angle and the cosine of the
dihedral angle are invariant under the respective permutations,
which is why we can construct an invariant energy contribution
simply by enforcing invariance of the MM parameters under the
respective permutations.

For improper dihedrals, this is not the case, as the dihedral
angle is not invariant under all six permutations mentioned
above and a model with improper force constants that are
invariant under these permutations would not have invariant
improper energy contributions. In Grappa, we solve this
problem by introducing more terms for improper dihedrals. For
example

Eimproper = ki1 cos(dyjir) + Kjirs coS(djirer), (39)
is invariant under the permutation jjkl — jikl, which can be
generalized to all six improper permutations. It turns out that
we can reduce the number of additional terms to two by using
another symmetry of the dihedral angle,

Cos(¢ijkr) = cos(dyxi) (40)

which can be seen from the formula for the dihedral angle in
ref. 51. This symmetry allows us to identify pairs of terms that
are transformed into each other under the permutation jki —
[jki and use a force constant that is invariant under this
permutation,

kg/?}pmper) _ k?;'_/r(l;proper). (41)

(b) Angle

(c) Torsion

(d) Improper

Fig. 13 The subgraphs of the molecular graph that correspond to
bonded MM interactions, namely bonds (a), angles (b), torsions (c) and
improper dihedrals (d).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A.5 Datasets

A.5.1 Espaloma dataset. We reproduce the dataset used to
train and evaluate Espaloma 0.3 (ref. 10) by downloading the
published, preprocessed data. The preprocessing entails
filtering out high-energy conformations as detailed in ref. 10. As
in Espaloma, our train-val-test partitioning procedure relies on
the unique isomeric SMILES strings of the molecules, which are
included in the dataset. We reproduce|| the partitioning from
Espaloma 0.3** with the same random seed.

A.5.2 Dipeptide and peptide radical dataset. The datasets
of radical peptides and dipeptides sampled at 300 K and scripts
for their creation are publicly available.ff We use the Amber
ff99SB-ILDN* force field for sampling the states and the BMK
functional® with 6-311+G(2df,p) basis set in Psi4 (ref. 53) for the
single point QM calculations. For sampling radical peptide
states, we use a preliminary Grappa model trained on optimi-
zation trajectories and torsion scans of radical peptides. The
radical peptides are what we call hydrogen-atom-transfer (HAT)
type radicals, that is, they are formed by removing a single

(@)
(b)
6
———————)
=
a
(%2}
Z2
OO 10 20 30
Time [ns]
Fig. 14 (a) The virus STMV, containing proteins (blue) and RNA (red).

(b) RMSD of protein C-alpha and RNA carbon atoms of the virus in
solution during a 30 ns MD simulation with Grappa.
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Fig. 15 Accuracy of a tabulated Grappa protein force field on the test
dataset of dipeptides sampled at 300 K (see A.5). The energy prediction
per conformer (left) has an RMSE of 2.6 kcal mol™. The force
prediction per atom and component (right) has an RMSE of
6.0 kcal mol™* A2,
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hydrogen from a peptide. For the nonbonded contribution, we A.5.3 Metrics. For the calculation of the RMSE in Table 1, we
use the same Lennard-Jones parameters as for the original subtract the mean predicted energy for each molecule and for
peptide and add the partial charge of the hydrogen in the each force field since we are only interested in relative energy
original peptide to the heavy atom it was attached to.

Grappa

Amber ff14SB

Grappa - Amber ff14SB

(a)

100 100 100 {4

potential 5 o 0 0
~100 ~100 -100

(l)) 100

bond S o

-100

(c)

100

vl

angle

-100

(d)

vl

screened
dihedral

(e)

non-screen g of)
dihedral

-100

()

100

nonbonded % °

-100

Energy (kcal/mol) Energy (kcal/mol)

Fig. 16 Contribution of different force field terms to the potential energy landscape during a relaxed dihedral scan of Ace—Ala—Nme in implicit
solvent for Amber ff14SB, Grappa and their difference. (a—f) Present the total potential energy and separate terms as specified. For each term, we
calculate the contributions of the states obtained by relaxing on the full potential energy (with implicit solvent) and subtract the minimal energy
across the dihedral surface.
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differences (and the mean is the unique global shift that mini-
mizes the RMSE). For forces, we report the componentwise RMSE

w2 (A

3
=1 j=1

RMSE=

as it is done in Espaloma 0.3.

As in Espaloma, we report the RMSE of centered energies,
which means that, for a given molecule and a given force field, we
subtract the mean of the predicted energies before comparing
them to values predicted by another force field, for which we also
center the predicted energies. This is done because molecular
mechanics can only predict energy differences between states of
a given molecule. Thus constant shifts in energy should have no
influence on the quality measure of the prediction, which is
ensured by subtracting the mean energy per molecule.

A.6 Contributions to the dihedral potential energy
landscape

As described in Section 3.4, we find that Grappa reproduces
characteristics of the Amber ff19SB potential energy landscape
with implicit solvent in dihedral scans. Grappa does not require
CMAPs to achieve this, but uses the same MM energy functional
as Amber ff14SB, thus we decided to investigate how different
contributions are combined in Grappa to obtain features such

(b)
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~
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as the diagonal shape and extension of the o, helix basin at (¢,
V) = (—80°, —20°).

We find that next to the dihedrals involved in the scan,
neighboring dihedrals, angles and nonbonded interactions also
contribute to the energy landscape 16.

A.7 Tabulated force field construction

With the intent of constructing a tabulated Grappa protein force
field, we extract MM parameters for each residue from small
peptides that we parametrize with the original Grappa force
field. The resulting force field contains parameters for all
natural amino acids, including protonation states for Lys, Arg,
Asp, Glu, His and Cys and, if possible, terminal variants, the
unnatural amino acids hydroxyproline and DOPA and the
capping groups Ace and Nme. For parameters of an individual
non-terminal amino acid, a BLXLZ sequence is chosen, where B
and Z are the capping groups, L is leucine and X is the amino
acid of interest. For terminal amino acids, the sequences are
BLX and XLZ, respectively. Capping group parameters are ob-
tained from a BLLZ peptide. Inter-residue bonded parameters
are obtained from peptides with the sequence BLXYLZ and
corresponding sequences for terminal amino acids and capping
groups, where Y denotes a second amino acid of interest.

The parameters of these peptides are then extracted and
arranged in the required force field format for OpenMM or

ff2.11
10 ELP 10
8 _ 250 8 _
o o
£ 200 g E
6 © _ 6 ©
< 150 =
= 2 =
43 43
@ 100 9]
C C
0
al°]
J 10 10
8 8
5 S
= E
6 © 6
< v,
48 48
2 2
0 0

100

150
al°]

(a) The 3BPA molecule with the dihedral angles «, 8 and «. (b) Potential energy along the gamma dihedral for fixed « and 8 and relaxed

other degrees of freedom as described in ref. 40. (c) Potential energy on the relaxed 8 = 120° slice. We subtract the minimal energy on the slice

for each force field.
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GROMACS. Per amino acid variant (C-terminal, N-terminal, non-
terminal, protonation states) a single residue type entry with
a unique atom type for every atom is built. Atom types are not
shared between residues. Parameters for intra-residue bonded
interactions are taken from the respective peptide with a single
amino acid of interest. Inter-residue bonded interactions are
parametrized from the peptides containing this specific interaction.

QM

View Article Online

Edge Article

A.8 MD simulations

Molecular dynamics simulations are performed with GRO-
MACS version 2023 (ref. 8) using the Amber ff99SB-ILDN force
field,”® Grappa with Amber ff99SB-ILDN nonbonded parame-
ters and Espaloma-0.3 (ref. 10) with EspalomaCharge® partial
charges. For all three force fields the TIP3P water model*® and

D
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(a) The 3BPA molecule with the dihedral angles «, 8 and v. (b) Potential energy along the gamma dihedral for fixed « and 8 and relaxed

other degrees of freedom as described in ref. 40. (c) Potential energy on the relaxed g8 = 150° slice. We show the states used during the training of
Grappa-finetuned as black dots. As before, the minimal energy on the slice for each force field is subtracted.

Table 6 Energy and force accuracy of Gaff-2.11, Grappa trained on the

extended Espaloma dataset (Grappa), Grappa finetuned on the 300 K

train dataset and 10 states from the 8 = 150° slice (Grappa-finetuned) and grappa finetuned only on the 300 K train dataset (Grappa-finetuned-
300 K), evaluated on the test sets from ref. 40 in kcal mol~* and kcal mol™ A~%, respectively

Grappa-finetuned-300

Dataset Confs RMSE Gaff-2.11 Grappa Grappa-finetuned K
Slice 8 = 180° 2350 Energy 3.1 2.7 2.5 2.6
Force 11.8 7.1 4.2 4.4
Slice 8 = 150° 2350 Energy 1.3 1.0 0.7 0.9
Force 11.1 6.3 2.6 2.9
Slice 8 = 120° 2347 Energy 1.4 1.3 1.1 1.2
Force 10.7 6.0 3.2 3.5
Test 300 K 1669 Energy 3.1 1.7 1.2 1.2
Force 12.8 8.1 5.4 5.4
Test 600 K 2138 Energy 4.4 2.7 2.4 2.3
Force 14.2 9.9 8.1 8.1
Test 1200 K 2139 Energy 8.5 6.7 6.5 6.4
Force 19.4 16.3 14.9 14.7
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Joung and Cheatham ions,” 2 fs time steps with LINCS
constraints®® on H-bonds were employed. Simulations for the
J-coupling benchmark were run at 300 K, for the folding
simulations, a temperature of 340 K was maintained with v-
rescale thermostat”” and Parrinello-Rahman pressure
coupling® was used to maintain a pressure of 1 bar. We apply
a Coulomb and Lennard-Jones cutoff of 1.0 nm. After system
preparation, energy minimization, NVT and NPT equilibration
simulations are conducted. The code for reproducing the

Small molecules

Dipeptides

View Article Online

Chemical Science

simulations is publicly available at https://github.com/
LeifSeute/validate-grappa.

A.8.1 Folding simulations. For the folding simulations, we
follow the simulation system setup of Shabane et al.** From the
folded structure (PDB entry 5SAWL*), we solvate the system in
a box 20 A around the protein, neutralize it and add 0.1 M NaCl,
then minimize and equilibrate each replicate individually
before simulating for 4 ps. For calculating the folding free
energy

Trinucleotide
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Fig. 19 Test RMSE of Grappa (blue), trained on a fraction of the Espaloma-0.3 train dataset, compared with the RMSE of Espaloma-0.3 (green)

trained on the full dataset and the RMSE of established force fields.
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Fig. 20 MM parameters for the protein ubiquitin, predicted by Grappa and ff99SB-ILDN. The comparison suggests that Grappa predicts more

continuous parameter sets than the tabulated force field ffO9SB-ILDN.
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Fig.21 Comparison of force predictions of (a) Grappa and the established force fields (b) Gaff-2.11, ff99SB-ILDN and RNA.OL3 for test molecules
from Espaloma'’s SPICE-PubChem, SPICE-Dipeptide and RNA-Trinucleotide datasets. For SPICE-PubChem, five molecules were filtered out
because they had unphysically high gradient magnitudes of more than 400 kcal mol™* AL,

Table7 Accuracy of Grappa, trained only on the Espaloma train dataset, Espaloma 0.3 (ref. 10) and established MM force fields on test molecules
from the Espaloma dataset. We report the RMSE of molwise-centered energies in kcal mol™ and the componentwise RMSE of forces
in kcal mol™* A=, Gaff-2.11 (ref. 19) is a general-purpose force field, ff14SB is an established protein force field and RNA.OL3 (ref. 21) is
specialized to RNA. As in Espaloma, we bootstrap the set of test molecules 1000 times and report mean and standard deviation of the RMSEs

Dataset Test mols Confs Grappa Espaloma Gaff-2.11 ff14SB, RNA.OL3 Mean predictor

Boltzmann sampled

SPICE-PubChem 1411 60853 Energy 2.3 £0.1 2.3 £0.1 4.6 18.4
Force 6.1 + 0.3 6.8 £0.1 14.6 23.4
SPICE-DES-Monomers 39 2032 Energy 1.3+ 0.1 1.4+0.3 2.5 8.2
Force 5.2+ 0.2 5.9 £ 0.5 11.1 21.3
SPICE-Dipeptide 67 2592 Energy 2.3 £0.1 3.1£01 4.5 4.6 18.7
Force 54+ 0.1 7.8 £0.2 12.9 12.1 21.6
RNA-Diverse 6 357 Energy 3.31+0.2 4.2+0.3 6.5 6.0 5.4
Force 3.7+0.1 44 +0.1 16.7 19.4 17.1
RNA-Trinucleotide 64 35811 Energy 3.5+ 0.1 3.8+£0.2 5.9 6.1 5.3
Force 3.6 £ 0.1 4.3 +0.1 171 19.7 17.7

Torsion scan

Gen2-Torsion 131 21890 Energy 1.7 £0.2 1.6 = 0.3 2.7 4.7
Force 4.0£04 4.7 £0.6 9.4 5.5

Protein-Torsion 9 6624 Energy 2.2+04 1.9 £0.2 3.0 3.5
Force 3.8+ 0.5 3.5+£03 9.7 5.1

Optimization

Gen2-Opt 154 40055 Energy 1.8 £ 0.2 1.7 £ 0.5 3.0 3.9
Force 3.8+ 0.2 4.5+0.8 9.7 5.1

Pepconf-Opt 55 14 884 Energy 3.2+03 2.8+ 0.3 5.1 4.1 6.3
Force 3.6 £ 0.2 4.0+£0.4 10.2 10.2 5.3
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p<RMSD >1.5 A)

4G = —og -
p<RMSD >4.5 A

We follow the ref. 59 by defining three separate states: fol-
ded, intermediate and extended. The backbone RMSD
compared to the experimental structure was binned in 0.2 A
steps.

A.8.2 J-Coupling benchmark. For benchmarking Grappa's
capability of predicting J-couplings, we follow Takaba et al.*® in
using the OpenFF infrastructure® for benchmarking against
experimental observables.f} The benchmark dataset consists of
the peptides Alas, Ala,, Alas, Glys, Vals;, GAG, GEG, GFG, GKG,
GLG, GMG, GSG and GVG with a total of 121 experimental
observables relating to backbone dihedral statistics with the
respective empirical parameters for the Karplus equation.
1JN,CAy39 2JN,CAy37 3.]HA,C736 3JHN,CB738 SJHN,C,S'8 3.]HN,HAy38 3]HN,CA35
with a modified Karplus equation, are analyzed.

A.8.3 Ubiquitin simulations. The simulations of ubiquitin
(PDB ID: 1UBQ) are evaluated by calculating a moving average

View Article Online
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over 0.05 ns of the C-alpha RMSD to the initial structure
(Fig. 7b). We also calculate the statistics of the C-alpha RMSD as
function of time difference between two states. To this end, we
sample 1000 states from the trajectory for each time difference
and calculate the mean C-alpha RMSD between the states. For
the simulation of STMV, we use the same structure files as ref. 1.
We use partial charges and Lennard-Jones parameters of Amber
ff99SB-ILDN? for the proteins and of RNA.OL3 (ref. 21) for RNA.

A.8.4 STMV virus. For the simulation of STMV in Section
4.5, we use nonbonded parameters from Amber ff99SB and
RNA.OL3 respectively.

Fig. 14b shows the RMSD of protein C-alpha and RNA carbon
atoms during 30 ns of MD simulation with Grappa parameters
for protein and RNA, which indicates that Grappa keeps the
virus stable. For large scale conformational changes or artificial
viral capsid disruption, higher RMSD values would be expected .

A.9 Finetuning Grappa on 3BPA

As described in Section 4.4, we observe that, if finetuned on the
300 K training set of the 3BPA dataset and 10 states from the
B = 150° slice, Grappa can capture features of the dihedral

Table 8 Accuracy of Grappa, Espaloma 0.3 (ref. 10) and established MM force fields on unseen test molecules. The reported Grappa model is
trained on the Espaloma dataset, extended by peptide radicals and the SPICE-Dipeptide and Protein-Torsion datasets with nonbonded
contributions not only from openff-2.0.0 and AM1-BCC, but also from Amber FF99SB-ILDN and CHARMM36. Errors are obtained by boot-
strapping the test dataset 1000 times. We report the RMSE of molwise-centered energies in kcal mol™* and the componentwise RMSE of forces
in kcal mol™t A=, For peptide datasets we indicate the nonbonded parameters used in parentheses; for all datasets where no nonbonded method
is specified, we use openff-2.0.0 for Lennard-Jones parameters and AM1-BCC for partial charges

Dataset Test mols Confs Grappa Espaloma Gaff-2.11 ff99SB-ILDN  Mean predictor
SPICE-PubChem 1411 60 853 Energy 2.3 £0.1 2.3 +0.1 4.6 £ 0.1 18.8
Force 6.1 + 0.3 6.8 £ 0.1 14.6 £ 0.3 41.3
SPICE-DES-Monomers 39 2032 Energy 1.3 £0.1 1.4 £ 0.3 2.5+ 0.2 8.6
Force 5.3 £0.2 5.9 + 0.5 11.1 £ 0.6 37.4
SPICE-Dipeptide 67 2592 Energy 2.4 +0.1 3.1+0.1 4.5+ 0.1 19.1
Force 5.6 £ 0.1 7.8 £0.2 12.9 £ 0.3 38.4
SPICE-Dipeptide (FF99SB) 67 2592 Energy 2.3 £ 0.1 4.5+ 0.1 19.1
Force 5.6 = 0.1 12.8 £ 0.3 38.4
SPICE-Dipeptide (CHARMM36) 67 2592 Energy 2.5+ 0.1 19.1
Force 5.5+ 0.1 38.4
RNA-Diverse 6 357 Energy 3.24+0.2 4.24+0.3 6.5 = 0.1 6.1
Force 3.7 £ 0.0 44 +0.1 16.8 £ 0.1 30.2
RNA-Trinucleotide 64 23811 Energy 3.5+ 0.0 3.8+0.2 6.0 £ 0.1 6.1
Force 3.6 £ 0.0 4.3 +0.1 17.0 = 0.0 31.2
Radical-Dipeptides (ff99SB) 28 272 Energy  3.3+0.3 8.7
Force 6.8 + 0.2 41.3
Optimization
Gen2-Opt 154 29055 Energy 1.7 £ 0.1 1.7 £ 0.5 2.8 £0.2 4.2
Force 4.5+ 0.2 4.5+ 0.8 9.8 £ 0.3 8.7
Pepconf-Opt 55 9084 Energy 2.9 £0.2 2.8+ 0.3 47 +0.3 6.5
Force 3.9+0.2 4.0+ 0.4 10.4 £ 0.3 9.4
Torsion scan
Gen2-Torsion 131 19290 Energy 1.7 £0.1 1.6 £ 0.3 2.6 £ 0.1 4.7
Force 42 +0.2 4.7 £ 0.6 9.5+ 0.4 8.9
Protein-Torsion 9 6024 Energy 2.0 £0.2 1.9 £0.2 29+0.2 3.5
Force 5.3+ 0.3 3.5+0.3 9.8+ 0.4 9.0
Protein-Torsion (FF99SB) 9 6024 Energy 2.4 +0.2 3.5
Force 6.2 £ 0.3 9.0
Protein-Torsion (CHARMM36) 9 6024 Energy 2.3 +0.2 3.5
Force 6.0 £ 0.3 9.0

© 2025 The Author(s). Published by the Royal Society of Chemistry
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energy landscape on another slice (8 = 180°). In Fig. 17, we
show the potential energy prediction across another unseen
slice, 8 = 120° and in Fig. 18, we show Grappa's performance on
the § = 150° slice it was trained on. We also report accuracies
for Grappa, Grappa finetuned, and Grappa finetuned only on
the training set of 300 K states in Table 6. From the table we see
that by including states from the relaxed 8 = 150° dihedral slice,
Grappa's performance on unseen slices is improved further. We
note this necessity of including partially relaxed states for
training as limitation of Grappa if compared to more flexible
E(3) equivariant models MACE, where this is not necessary, but
as advantage over tabulated MM force fields like Gaff-2.11.

A.10 Learning curve

We provide a learning curve for Grappa trained on subsets of
the Espaloma dataset in Fig. 19.

A.11 Grappa's MM parameters

In Fig. 20, the MM parameters predicted by Grappa and ff99SB-
ILDN for the protein ubiquitin are visualized.

A.12 Force accuracy

In analogy to Fig. 4, Grappa's accuracy for predicted force
components is visualized in Fig. 21.

A.13 Extensive tables

We provide tables with errors for the full Espaloma dataset and
the Grappa extension with ff99SB and CHARMM36 nonbonded
parameters and radical peptides in Tables 7 and 8.
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