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High-temperature reduction of TiO, causes the gradual formation of structural defects, leading to oxygen
vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that
follow the formula Ti,O,,_1, with 4 = n = 9. A high concentration of defects provides several possible
configurations for Ti** and Ti** within the crystal, with the variation in charge ordered states changing
the electronic structure of the material. The changes in crystal and electronic structures of Magnéli
phases introduce unique properties absent in TiO,, facilitating their diverse applications. Their
exceptional electrical conductivity, stability in harsh chemical environments and capability to generate
hydroxyl radicals make them highly valuable in electrochemical applications. Additionally, their high
specific capacity and corrosion resistance make them ideal for energy storage facilities. These properties,
combined with excellent solar light absorption, have led to their widespread use in electrochemical,
photochemical, photothermal, catalytic and energy storage applications. To provide a complete
overview of the formation, properties, and environmental- and energy-related applications of Magnéli
phase titanium suboxides, this review initially highlights the crystal structure and the physical,
thermoelectrical and optical properties of these materials. The conventional and novel strategies
developed to synthesise these materials are then discussed, along with potential approaches to
overcome challenges associated with current issues and future low-energy fabrication methods. Finally,
we provide a comprehensive overview of their applications across various fields, including environmental
remediation, energy storage, and thermoelectric and optoelectronic technologies. We also discuss
promising new directions for the use of Magnéli phase titanium suboxides and solutions to challenges in
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developed and utilised to meet diverse research application needs. By making use of control measures

to mitigate the potential hazards associated with their nanoparticles, Magnéli phases can be considered
as versatile materials with potential for next generation energy needs.
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potential to be used in many other applications.” Various
approaches have been investigated to extend the light absorp-
tion of TiO, into the visible region, including surface modifi-
cation using organic materials, semiconductor coupling,

1. Introduction

Titanium dioxide (TiO,) is one of the most widely used semi-
conductors in industry owing to its high abundance, low cost,

non-toxicity, chemical stability and biocompatibility.** These
properties have made TiO, an excellent candidate for utilisation
in a variety of diverse applications including optics, cosmetics,
photovoltaic devices, photocatalysis and photoelectrochemical
cells.>* However, the large bandgap of TiO, (3.2 eV for anatase),
which confines its light absorbance to the UV region and the
high rate of electron-hole recombination, greatly limits its
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creation of surface defects and oxygen vacancies (Vp), non-
metal doping and transition metal doping.®® Recent studies
on defective titania have shown that the changes in physical and
chemical properties of TiO, such as electrical, thermal, optical
and tribological properties can enhance its performance
towards electrocatalytic and photocatalytic applications.**
The introduction of defects in the lattice structure of TiO,
serves as a platform to tune its physicochemical and surface
properties, making it useful in a wider range of applications.
These defects can be produced by thermal annealing, electron
bombardment, sputtering and via the inclusion of impurities
such as Ca and H." Thermal annealing of TiO, produces its
reduced oxide form, due to the formation of V, and Ti

© 2025 The Author(s). Published by the Royal Society of Chemistry
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interstitials. Low amounts of these vacancies (<10™*) are
considered as point defects within the structure, whereas
higher degrees of reduction form interstitial defects along with
Vo. Increasing the amount of Vo during defect creation changes
the O/Ti ratio in the TiO, crystal structure, leading to the
generation of titanium suboxides.> At elevated temperatures,
these Vp arrange into planar defects known as crystallographic
shear planes (CSPs). As the concentration of CSPs increases, the
planes arrange into regular arrays known as Magnéli phases,
with chemical formula Ti,O,,_;, where n can range from 4 to
9.124 Hence, the structure of Magnéli phases can be visualised
as rutile chains, consisting of n number of unmodified octa-
hedral blocks, interrupted by a CSP.**"

Formation of Vo, or its singly (Vo') or doubly (Vo>") charged
components, result in delocalised electrons within the crystal
structure that improve the electrical conductivity of the defec-
tive material.”> Hence, since their discovery by Arne Magnéli in
1957, Magnéli phase titanium suboxides have been widely
used in the fields of electronics, photocatalysis, tribology,
optoelectronics and thermomechanics due to their desirable
features including excellent electrical and thermal conductivity,
visible light absorptivity and chemical inertness.****** Magnéli
phase titanium suboxides are used in various applications due
to their unique structure, which imparts exceptional properties
such as high electrical conductivity and strong corrosion
resistance. For instance, Ti,O-, the most studied Magnéli phase,
has an electrical conductivity of ~1000 S cm ™!, surpassing that
of graphitic carbon (~727 S em™').?? This high conductivity,
combined with their oxygen evolution potential, makes Magnéli
phases ideal for electrochemical applications like water split-
ting and cathodic protection.>* Additionally, Magnéli phases (n
= 4-6) have been commercialised under the trade name Ebo-
nex® and are utilised as electrode substrates in batteries and as
catalyst supports in fuel cells and water treatment systems.>*>*
Their stability in harsh chemical environments, such as
fluoride-based etchants, hydrochloric acid and aqua regia,
further expands their versatility in diverse electrochemical
environments.>® Applications such as reactive electrochemical
membranes (REMs) also take advantage of the material's ability
to generate hydroxyl radicals (OH") through water oxidation.*®
In battery applications, Magnéli phases are highly valued due to
their excellent electrical conductivity and high specific capacity,
allowing for significant energy storage and release. Their
stability, corrosion resistance, and durability make them reli-
able materials for rechargeable batteries.”””® In optics and
photosensitivity-related applications, these suboxides are used
for their visible light and near-infrared (NIR) photosensitivity,
which results from Vg created during the phase transformation
from rutile to Magnéli.? Furthermore, their high solar-to-
vapour efficiency makes them suitable for photothermal appli-
cations, such as solar steam generation.*® These properties
make Magnéli phases highly versatile, supporting their use in
diverse fields, including energy storage, water treatment and
solar energy harvesting.

Throughout the last few decades, studies have been con-
ducted on various synthesis approaches to produce different
types of titanium suboxides and examine their application in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a range of areas, including for environmental remediation,
energy generation or in optoelectronic devices. These aspects as
well as the changes in TiO, surface upon defect creation and
their effect in catalytic applications have been previously
reviewed."'**'%* Although several reviews have focused on the
literature related to titanium suboxides and defective (or
“black”) TiO,,***** only a few have specifically addressed the
synthesis and potential applications of Magnéli phase titanium
suboxides.**?*%* Some of these reviews not only discuss the
‘Magnéli phases’ but also provide a comprehensive overview of
the synthesis and properties of all titanium oxides up to TiO,
describing their structure, synthesis and performance.
However, these reviews primarily focus on either the environ-
mental remediation or electrochemical applications of Magnéli
phase titanium suboxides, leaving their broader potential in
areas such as thermoelectric and energy storage applications
underexplored. To address this gap, this review provides
a comprehensive overview of the literature on Magnéli phase
titanium suboxides. We discuss the formation, synthesis and
properties of the lower Magnéli phases (Ti,,0,, 1, 4 = n =< 9),
along with recent advances (within the timeframe 2015-2024) in
various fields, including environmental remediation, thermo-
electric applications, energy storage and catalysis. In discussing
the use of these materials across diverse applications, we
explore the fundamental principles and mechanisms that
underlie their performance, drawing connections among
applications to guide readers in tailoring Magnéli phase tita-
nium suboxides for specific uses. This review also highlights the
challenges associated with their application in various fields,
offering insights into potential future developments in the
lesser-explored areas of Magnéli phase titanium suboxides.

2. Structure and properties of
Magnéli phase titanium suboxides

2.1 Crystal structure

2.1.1 Types of defects on the crystal structure of TiO,. TiO,
crystallises in three main phases: anatase (tetragonal, Dyy,"*-I4,/
amd, a = b =3.782 A, ¢ = 9.502 A), rutile (tetragonal, D,,**-P4,/
mnm,a=b=4.584 A, c =2.953 A) and brookite (rhombohedral,
D, "-Phbca, a = 5.436 A, b = 3.782 A, ¢ = 5.135 A)."* Anatase and
rutile phases have been the most investigated phases of TiO,. In
both crystals, the building blocks of their unit cells are made of
slightly distorted octahedra, composed of a titanium atom
surrounded by six oxygen atoms (Fig. 1). Additionally, cotunn-
ite, a high-pressure phase of TiO,, prepared at high temperature
and pressure has also been reported and is considered as one of
the hardest polycrystalline materials.*® However, rutile is iden-
tified as the thermodynamically stable phase of TiO,, stable at
all temperatures, while other phases are considered
metastable."*

Intentional creation of defects in TiO, with precise control of
their position, concentration and distribution tailors the
materials physicochemical properties and reactivity. Different
types of defects introduced into TiO, can be classified as
follows.*"*>*3
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Fig. 1 Bulk structures of rutile and anatase TiO,. Reproduced with
permission from ref. 11. Copyright 2003, Elsevier.

(I) Zero dimensional defects (point defects: oxygen and tita-
nium vacancies and interstitials and substitutional impurities).

(II) One dimensional defects (line defects: edge or screw
dislocations).

(I11) Two dimensional defects (planar defects: grain and twin
boundaries and stacking faults).

(IvV) Three dimensional defects (volume defects: aggregates
of atoms or vacancies to form precipitates or voids).

Defects in the TiO, lattice can be introduced either by
changing the O/Ti ratio or through the incorporation of high
and low valence ions into the lattice to form donors and
acceptors. These defects in titania can be generated during
synthesis or post synthesis of the material.*»** Some approaches
used to induce defects in the TiO, lattice include thermal
annealing, electron bombardment, prolonged oxidation, partial
oxidation, reducing agents (H,, C, metals), UV irradiation, high
energy particle bombardment and vacuum activation.™ Calcu-
lated formation energies of point defects have shown that Ti-
rich conditions favour the formation of Vg and Ti interstitials,
which behave as weak donors, whereas O-rich conditions lead
to Ti vacancies that act as acceptors.*” Defect disorder in TiO, as
a variation of oxygen partial pressure was elucidated by Now-
otny and co-workers. These findings suggested that Ti intersti-
tials and electrons are formed at low oxygen partial pressures
due to reduction of TiO,, whereas prolonged oxidation forms Ti
vacancies and holes. In addition, due to the low formation
enthalpy of Vo and their prevalence across a broad range of
stoichiometry in both reducing and oxidizing conditions, Vo
can be regarded as the dominant type of defect in TiO,.*

Vo in metal oxides can be generated through various
processes, such as thermal treatment in a vacuum or inert
environment, chemical reduction at elevated temperatures, ion
doping or interfacial engineering. When metal oxides undergo
high-temperature treatment, lattice oxygen atoms may either
desorb to release O, (eqn (1)) or react with H, or CO, forming
H,0 and CO,, respectively.*®

2982 | Chem. Sci,, 2025, 16, 2980-3018
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Vo are the most common point defects in semiconducting
metal oxides. This is due to their lowest formation energy
among various types of defects that act as donors.*”** Density
functional theory (DFT) calculations indicate that the formation
of Vo introduces a defect level near the Fermi level, enhancing
photoabsorption and electronic conductivity while reducing
electron-hole recombination, which in turn extends the life-
times of charge carriers. Additionally, Vi can create unsaturated
coordination that are more reactive, facilitating processes such
as H, evolution and CO, reduction.*®

By modifying the local atomic and electronic structures, Vo
act as centres for charge carrier separation, enhancing carrier
separation efficiency. They can also adjust light absorption,
influence the conductivity, and impact separation and surface
reactions in semiconducting metal oxides.*** This results in
changes in their chemical and physical properties including
photocatalytic and photoelectrochemical effects, superconduc-
tivity, ferromagnetism, piezoelectric effect, redox activity and
phase transitions.*® In addition, research has shown that these
vacancies are involved in reactive oxygen species generation and
acting as crucial adsorption and active sites in different
applications.*

2.1.2 Formation of titanium suboxides

2.1.2.1 Structural changes occurring during defect creation. As
shown in Fig. 2, in the rutile crystal lattice structure, each Ti
atom is surrounded by six O neighbours and four Ti next-
nearest neighbours while each O atom is bonded to 3 Ti
atoms. Within rutile TiO,, the (110) surface is the most stable
crystal surface, characterised by rows of titanium and oxygen
atoms along the [001] direction.** The titanium atoms on the
surface exhibit five-fold coordination with one dangling bond

(bridging

[110]

[001]

[170]

Fig. 2 Ball and stick model of the rutile TiO, (110) surface. Large grey
balls represent oxygen atoms and small black balls represent titanium
atoms. Two types of point defects that are prevalent in rutile TiO,,
oxygen vacancies (Oy,c) and Ti interstitials, are shown. Reprinted with
permission from ref. 51. Copyright 2003, Springer Nature.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and those in the bulk, six-fold coordination. Oxygen atoms can
be present in-plane (bulk) or in bridging positions. Those in
bulk are three-fold coordinated whereas the oxygen atoms in
bridging positions are two-fold coordinated. Due to less coor-
dination at the surface, these oxygen atoms are prone to
removal during high-temperature treatments, leading to the
formation of point defects.**

During defect creation, surface oxygen atoms in the TiO,
lattice can be removed as a H,O molecule by a hydrogen
reductant or O, molecule by a non-hydrogen reductant, leading
to the formation of surface Vy.>*** These V5 can cause recon-
struction within the TiO, lattice or if the concentration of Vg is
very high it can eventually lead to lattice disorder.>® An oxygen
vacancy is a double donor, where the position of the absent
oxygen atom in the lattice can be occupied by two electrons
leading to a neutral oxygen vacancy. Resonant photoemission
spectroscopy confirms that these electrons have the ability to
partially occupy the Ti 3d state, resulting in the creation of an
energy state approximately 0.8 eV below the Fermi level.*®
Furthermore, these electrons can also interact with neigh-
bouring Ti** giving Ti** centres and V" or Vo>". Ti** formed on
the lattice surface could react with adsorbed H,O and O,
molecules giving rise to -OH groups and O,  centres.””*® The
rearrangement of atomic positions within the lattice structure
induced by Vo can ultimately result in the reduction in Ti-O
bond length. This in turn, can create a strain on the TiOg
octahedra leading to the formation of Ti-O systems with
different octahedral packing.*®

2.1.2.2 Formation of crystallographic shear planes and struc-
tural changes in TiO,_,. Defective TiO, (TiO,_,) and titanium
suboxides are formed because of Vg and ionisation of these Vg
which at the same time correspond to the reduction of Ti*" to
Ti**.** Depending on the value of x in TiO,_,, the types of
defects present in TiO, , varies, along with their crystallo-
graphic structure, see Fig. 3. Slightly reduced TiO, (TiO,_,, x <
10~%) is considered to only have point defects distributed in the
matrix, where Vo and Ti interstitials coexist in low concentra-
tions.** When the x value in TiO,_, falls between 0.001 and
0.0001, these are known as Wadsley defects. The increasing

Formation of CSPs

Vo, arrange into planar
defects (CSPs)

Point defects
Vo, and Ti interstitials coexist
in low concentrations

Wadsley defects

Defects with various orientations
at different distances

Ti16031'Ti37o73

CSPs in (132) direction
are grouped in bands

Increasmgx in T|02x Tgﬂ
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number of defects increases defect interaction and leads to
defect ordering and structural transformation. Thereby, new
compounds with different crystallographic structures are
formed.

When the nonstoichiometry x in TiO,_, reaches a critical
value of x = 107 it causes Vo, to arrange into planar defects
known as CSPs.*>* Formation of this shear structure can be
considered as a way of eliminating point defects, forming
regularly arranged extended planar defects.®® At CSPs, lattice
planes move relative to each other, causing a collapse in the
lattice structure. Such CSPs are common for d° oxides including
Ti, V, Mo and W." The structure of titanium suboxides with
CSPs is described as a chain of rutile-like TiOg octahedra
interrupted every nth octahedron by a shear plane, where the
octahedra share faces at the shear plane instead of usual edges
and corners within the structure.®?

When the x value in TiO,_, falls between 0.027 and 0.001,
new Ti;;053-TiO; 999 Structures are formed. In these structures,
the CSPs are oriented in the (132) direction.*"*® When x reaches
0.0625-0.027, Magnéli phases from Ti;s03;,-Tiz,03 are formed.
In these structures, the shear planes oriented in (132) are
grouped in bands.®” When x in TiO, , = 0.1-0.0625, higher
Magnéli phases from Ti; (0,9 to Tize0s5; are formed. In these
crystal structures, the shear plane orientation continuously
changes from (132) direction to (121). When the x in TiO,_, falls
between 0.25 and 0.1 (for Ti,O,-Tig0,;), CSPs are oriented in
the (121) plane equidistantly, forming ordered arrays of V.

2.1.2.3 Magnéli phases (Ti,O5,_;, 4 = n = 37). Titanium
suboxides with CSPs in their structure are known as Magnéli
phases and can be denoted by the formula Ti,0,,_1, where 4 =
n = 37.* Based on the concentration of CSPs (value of n), these
Magnéli phases can be classified into two groups: in the series
of suboxides with 10 =< n =< 37 (higher Magnéli phases), the CSP
is introduced in the (132) plane in the structure of rutile TiO,,
whereas the direction of the CSP changes to the (121) plane
when 4 < n < 9 (Fig. 4). In all Magnéli phase suboxides, across
the CSPs, rutile slabs are displaced relative to each other by the

1 .
5[011] vector, also known as the displacement vector.®® Such

Ti,0,-Tiy0,

CSPs oriented in the (121)
direction equidistantly

Ti10049°Ti103
CSPs orientation changes
(132) to (121) direction

Ti,0,-Ti,05
Not based on the rutile-type
structure and not considered
as Magnéli phases

Fig. 3 Formation of different defect induced TiO, and phases with increasing x in TiO,_,.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Crystallographic shear structure of Magnéli phase titanium
suboxides showing the shear plane formation along the (a) (121) plane
and (b) (132) plane. Reprinted with permission from ref. 63. Copyright
2010, AIP Publishing.

displacement requires the removal of an oxygen plane, thereby
making the CSP oxygen deficient in comparison with rutile
TiO,.** Considering the nonstoichiometry of these Magnéli
phases, the y value of TiOj, in higher Magnéli phases can range
from 1.933 =y < 1.972 whereas for the lower Magnéli phases it
ranges from 1.750 =<y < 1.889.%

2.1.2.4 Lower titanium suboxides. In the octahedral unit cell
of TizOs (space group C2/m), Ti atoms are surrounded by O
atoms and are located at three distinct sites in the crystal, two

(a)
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Ti*" and one Ti"" sites.*® The presence of two types of metallic
ions within the unit cell causes a distorted octahedron due to
different Ti-O distances.®® Ti,O; is reported to have the
corundum (a-Al,O3) structure, with its stoichiometry extending
from TiO; 49 to TiO; 5,.**% Its fundamental unit cell comprises
of pairs of Ti*" ions situated in octahedral sites. TiO possesses
a defective NaCl crystal structure (space group Fm3m), wherein
there are an equivalent number of vacancies distributed
randomly on both the cation and anion sites, with its homo-
geneity ranging from TiOg ¢4 to TiO; 56.'**®

2.1.3 Structure of Magnéli phase titanium suboxides. The
crystal structure of TiO, typically contains point defects known
as Wadsley defects. However, the formation of additional Vo, as
described earlier, results in the reorganisation of the crystal
structure into new crystallographic phases and configurations.®”
As mentioned in the previous section, when the n value in
Ti,0,,_1 falls between 10 and 16, the orientation of the CSP
changes from (132) to the (121) plane. Pure (121) plane CSP first
appears for the Ti,,0,,_; Magnéli phase series when n = 9 and
continues in the same plane for all suboxides where 4 = n = 9.
Padilha et al. reports that the model for these oxygen deficient
phases can be derived from rutile phase through a shear oper-
ation that involves the successive displacement of atoms within
the rutile crystal. Specifically, all atoms located above each (121)
plane are shifted n times along the ¢ vector from the origin and
are subsequently dislocated in the [011] direction of the rutile
structure. This direction aligns with a lattice vector of the
oxygen subnet—namely, the vector [011] that connects two
oxygen atoms in the rutile crystal. This allows mapping of the

Face sharin,
g 0 °

. Oxygen
3 ( O Ji 0
@ Titanium ’ o
B> 0—T—0
\; (o] )
Corner sharing
o
o Edge sharing
= 0—Ti—0 o )
L’ 9y @ o
A o ,j o Ti o
& 010 D °°“ %o
o o o]

> Rutile

Corundum

~ Rutile

Corundum

Fig. 5

(a) Edge, corner and face sharing orientations of TiO, octahedra in Magnéli phase titanium suboxides. Reproduced with permission from

ref. 23. Copyright 2010, Elsevier. (b) Corundum Ti, O viewed parallel to the c axis and (c) structure of Ti;O-, showing four-unit rutile chains along
the c direction bounded by corundum structures restricted in the (001) planes. Blue spheres represent the Ti atoms while the smaller red spheres

represent O atoms.®”
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dislocated atoms of that species onto atoms of the same species,
while leaving the lattice positions of the oxygen atoms
unchanged.®”

The rutile phase features an ordered arrangement of both
oxygen and titanium atoms along the [001] direction. In
contrast, the Magnéli phase maintains an ordered arrangement
of oxygen atoms along the [001] direction but exhibits a tita-
nium atomic mismatch along the (121) plane.*®® The lattice
structure of lower Magnéli phases can therefore be understood
as a repeated pattern (block) of edge- and corner-sharing TiOg
rutile octahedra (as illustrated in Fig. 5(a)) that extend in two
directions. However, in the third direction these blocks are
disrupted by a plane of Vg in the (121) direction at every nth
octahedra.”'®* This plane is formed of face sharing TiOs
octahedra, resembling a corundum (Ti,O3) structure (Fig. 5(b)).
The boundaries created by the corundum structures in Magnéli
phases are known as shear planes as illustrated in Fig. 5(c).*”
This layer of face sharing octahedra serves both as the last layer
of one block and the first layer of the adjacent one. This causes
titanium atoms of one block to relate to the unoccupied or
interstitial positions of the adjacent block. As a result, the
symmetry of the structure changes from tetragonal to triclinic
as the size of the unit cell increases.”* Parallel rutile blocks
containing n number of octahedra (referred to as pseudorutile
chains) link together through the terminal face sharing octa-
hedron,**”7® leading to electronic interactions between the
corresponding titanium atoms.*>”* Hence, in Magnéli phase,
there is an ordered arrangement of oxygen atoms along the
[001] direction, while a titanium atomic mismatch occurs on the
(121) plane.”®

Based on crystal structures previously reported for Magnéli
phase titanium suboxides,”>”>”* Bowden et al. calculated X-ray
powder diffraction patterns and compared them with experi-
mental diffraction patterns.” Calculated patterns for n = 4, 5
have shown good representation of the reported crystal data,
though experimental patterns for n > 5 patterns were not pre-
sented due to the difficulty in obtaining their single phases.”™
Crystal structure parameters for these Magnéli phase suboxides
are given in Table 1.7*

2.2 Physical properties of Magnéli phase titanium suboxides

2.2.1 Electrical conductivity. TiO, is recognised as an n-
type semiconductor, and its conductivity is primarily attrib-
uted to donor-type defects, such as Vo and titanium intersti-
tials.” These defects contribute to the nonstoichiometry of
TiO,, leading to an apparent deficiency of oxygen in the form of
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TiO,_,. Hence, the electrical conductivity (o) of such an n-type
semiconductor can be related to the electronic charge (e),
carrier concentration () and carrier mobility (u) as given in eqn
(2):77,78

g = enu (2)

Excellent electrical conductivity demonstrated by Magnéli
phase titanium suboxides is attributed to the presence of shear
planes and Ti**, which serve as platforms for electron delocal-
isation.” Formation of CSPs increases the carrier density and
reduces the carrier mobility. This makes the electron mobility
hopping-driven, where the electron hops between cation sites.”
The change in conductivity from electron conduction in Ti to
a hopping driven mechanism in Magnéli phase titanium sub-
oxides is attributed to the presence of oxygen and to the pres-
ence of both Ti*" and Ti"" in its structure.’>® With the reduction
in oxygen, Ti atoms in the lattice interact electronically leading
to higher conductivity. As shown in Fig. 6(a), variation in elec-
tron conductivity in different n Magnéli phases is related to the
difference in oxygen vacancy content.>***> Ti oxides in the
Ti,0,,—1 homologous series are mixed valence compounds,
with two Ti** and (n-2) Ti** ions per formula unit. Furthermore,
based on electron paramagnetic resonance spectra studied
between 90 and 150 K in Magnéli phase single crystals, Fair-
hurst and co-workers reported that the intrinsic components in
the crystal structure of Ti,O,,_; (n = 5-8) are Ti,”" oxygen-
bridged dimers.*"***

Magnéli phase titanium suboxides have highest conductivity
for lowest n values (n = 4, 5) and exhibit phase transitions with
temperature. Such transitions have been attributed to the
presence of both Ti** and Ti**, which provide possibilities for
electron localisation at these cation sites, leading to different
charge ordered states.* Ti O, the most conductive Magnéli
phase titanium suboxide, is reported to undergo two phase
transitions with temperature. At 130 K it undergoes a semi-
conductor-semiconductor transition and a semiconductor-
metal transition at 150 K."»* Similar observations had previ-
ously been made by Bartholomew et al. in their electrical
property measurement of some titanium oxide Magnéli phases.
They reported that Ti,O; showed metallic behaviour at room
temperature and undergoes a phase transition at 149 + 2 K to
a semiconducting phase, with a reduction in conductivity, fol-
lowed by a significant decrease in magnetic susceptibility. A
second transition has been observed at 125 K with three-orders
of magnitude decrease in conductivity, but with no change in

Table 1 Crystal structure parameters of Magnéli phase (Ti,O5,_1) titanium suboxides (4 = n = 9)

Space group a(d) b (&) c (&) o (A) 8 (A) v (A) Reference
Ti 05 Al 5.593 7.125 12.456 95.02 95.21 108.87 72
Ti5s0q P1 5.569 7.120 8.865 97.55 112.34 108.50 73
TigO11 n 5.552 7.126 32.233 66.94 57.08 108.51 75
Ti;O043 n 5.537 7.132 38.151 66.70 57.12 108.50 75
TigO1s a 5.526 7.133 44.059 66.54 57.17 108.51 75
TigO;7 n 5.524 7.142 50.03 66.41 57.20 108.53 75

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.6 (a) Phase diagram of Magnéli phase titanium suboxides showing

the variation of log of conductivity with oxygen stoichiometry. (b)
Schematic representation of TizO; showing the presence of Tis*,
Ti*5* and Ti** arranged in chains, interrupted by CSPs. At low
temperature, Ti4O is non-metallic and clearly distinguishable Ti** and
Ti** oxidation states are present. Reprinted with permission from ref.
32. Copyright 2022, Taylor & Francis. (c) Electrical conductivity as
a function of temperature for rutile single crystals (sc), nano-rutile,
anatase and different Magnéli phases. Reprinted with permission from
ref. 86. Copyright 2012, Springer Nature.

susceptibility.?* At low temperatures, the Ti** in Ti,O, covalently
bond with each other, forming bipolarons (Ti**~Ti*" pairs) and
occupy alternate pseudorutile chains to form a low temperature
(LT) semiconducting phase. A reordering of these Ti**-Ti**
pairs occurs during semiconductor-semiconductor transition
from LT to intermediate temperature (IT). At high temperature
(HT) all Ti cations are present as Ti*>** with no apparent pairing
leading to highly conductive metallic behaviour (Fig. 6(b)).”>*>*
Watanabe et al measured the Raman spectra of Ti,O, as
a function of temperature and observed a stable charge ordered
state across the electronic phase transition temperatures.®®®*
Magnetic susceptibility measurements conducted for the
material showed a strong increase in paramagnetic suscepti-
bility at 150 K where the semiconductor-metal transition takes
place. However, at temperatures below 150 K, it is
antiferromagnetic.*>**

Such phase transitions have also been observed in TisO,, at
128 K and 139 K. Although LT and IT phases are semi-
conducting, the conductivity of the HT phase increases with
increasing temperature, making it difficult to be classified as
a true metal.*>*"** Electrical conductance measured for higher n
Magnéli phases have shown that two transitions occur for
TigO14 at 147 K and 119 K and one transition for Ti;O,; at 120 K
separating regions showing non-metallic behaviour.>*

2986 | Chem. Sci, 2025, 16, 2980-3018
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However, conductance measurements carried out for TigO;5
and Tiy,0,, have not shown any clear steps between 4 K < T'< 295
K. But a discontinuous change in the first derivative has been
observed at 120 K, which was more evidently observed in
Ti;O43."* Bartholomew et al. reported that higher titanium
suboxides (TigO,5) were found to be semiconducting over the
temperature range 78-295 K.**

Fan et al. compared the electrical conductivities of Ti,O, and
TisO;; samples prepared via hydrogen reduction. The study
revealed that Ti O, has an electrical conductivity of 9.92 x 10* S
m ' at room temperature (RT), which decreases as temperature
rises. This metallic behaviour further confirmed that Ti,O,
becomes a highly paramagnetic metal following a semi-
conductor-to-metal transition above 150 K, due to the delocal-
isation of 3d electrons from Ti** ions. On the other hand, TiyO;
exhibited typical semiconductor characteristics from RT to 817
K, with electrical conductivity nearly an order of magnitude
lower than that of Ti,O; at RT, reflecting a lower level of electron
doping. Furthermore, the carrier concentration of Ti,O, was an
order of magnitude higher than that of TiyO,,, with values of
17.2 x 10*' em™ for Ti,O, and 1.83 x 10*' em ™ for TigO45.
These findings suggested that CSPs do not act as sources of
electron diffraction, since the concentration of CSPs is higher in
Ti,O; compared to TiyO;7.”” Backhaus-Ricoult and co-workers
reported changes in electrical conductivity as a function of
temperature for ceramic powders (TiO, ,, x = oxygen defi-
ciency) containing mixtures of Magnéli phases. TiO; ;5 was
composed of n = 4-5 (in Ti,0,,_1) phases with Ti,O3, TiO; g
with n = 4-6 phases and Ti,03, TiO; g, with n = 6-8 phases and
TiO; o; composed of other (possibly higher) Magnéli phases.
Their observations showed that the electrical conductivity
increased with increasing oxygen deficiency (Fig. 6(c)).
Ceramics with lower deficiency demonstrated semiconducting
behaviour with increasing conductivity with temperature while
those with Ti,O; and TisOy phases showed metallic behaviour
with decreasing conductivity with increasing temperature.®
Adamaki et al. measured the AC electrical properties of Magnéli
phase titanium suboxides up to 375 °C and compared them
with those obtained for TiO,. Low frequency (100 Hz) electrical
conductivities of Magnéli phase titanium suboxide fibres
reduced at 800-1100 °C showed increased conductivity between
10" and 10 S m™" in contrast to the insulating behaviour of
rutile TiO,. Samples reduced at 1200-1300 °C demonstrated
metallic behaviour with 10°-10* S m™' conductivity at low
frequency measurements. When the measurements were con-
ducted at a wider range of frequencies (1-10° Hz), fibres
reduced at 1200 and 1300 °C behaved as conductors showing
that their conductivity was frequency independent across the
frequency range examined.’” The conductivity of titanium sub-
oxides is reported to be significantly higher than that of TiO,, in
a wider range of frequencies from 0.1 Hz to 1 kHz.*”

2.2.2 Thermal conductivity. Thermoelectric efficiency of
a material is evaluated by a dimensionless figure of merit, ZT,
and is related to three physical properties of the material, See-
beck coefficient («), electrical resistivity (p) and thermal
conductivity (1). The dependence of ZT on these physical

© 2025 The Author(s). Published by the Royal Society of Chemistry
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properties and absolute temperature (7) is given as follows (eqn

(3)):

ZT = =T 3)

Thermal conductivity is a combination of two components:
phonon (lattice) contribution (k;) and carrier concentration (k).
Lattice imperfections help in scattering of phonons with
different wavelengths leading to a reduction in «;. Point defects,
grain boundaries, phase boundaries, interfaces and disloca-
tions are some crystal imperfections that act as phonon scat-
tering sources.”* Thereby, a reduction in lattice thermal
conductivity is reported to exhibit enhanced thermoelectric
performance in the material.®*** The large number of Vo
present in Magnéli phase titanium suboxides (in CSPs) serve as
phonon scattering centres that can reduce the mean free path of
phonons.*® This reduction reduces the lattice thermal conduc-
tivity, which in turn can affect the total thermal conductivity
and thermopower.”**The k. is estimated from electrical
conductivity (o) through the Wiedemann-Franz law, k. = LT,
where L is the Lorentz number and T is temperature. Although
the Lorentz number is constant in metals, in semiconductors, it
slightly depends on the carrier concentration.”® However,
carrier concentration does not affect «j, suggesting that

—

a)
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materials with good thermoelectric performance demonstrate
low lattice thermal conductivity.

Harada et al. measured the variation in thermoelectric
properties of a series of hot pressed Magnéli phase TiO,
powders with change in the x value (Fig. 7(a)). From the results
obtained for TiO,_, powders (x = 0.05, 0.10, 0.15 and 0.20), it
was noted that the value of electrical resistivity and thermal
conductivity decrease when the value of x increases, and the
absolute value of the Seebeck coefficient decreases with an
increase in x. However, the value of lattice thermal conductivity
decreased with increasing oxygen deficiency (x) (Fig. 7(b)).
Based on the dependence of electrical resistivity and lattice
thermal conductivity on oxygen deficiency, it was concluded
that CSPs act as sources for phonon scattering but not carrier
scattering.*

Reduced rutile TiO, and highly deficient Magnéli phase
TiO,_, powders demonstrated a decrease in thermal conduc-
tivity with decreasing O/Ti ratio (i.e., increasing x). Furthermore,
it was also determined that phonon scattering was mostly
affected by planar defects compared to point defects and hence
planar defects play a critical role in the thermal conductivity of
TiO,_, materials.®® Thermoelectric studies conducted by Fan
et al. showed that the thermal conductivity of TigO;, was lower
than that of Ti,O,, demonstrating better overall thermoelectric
performance compared to the latter (Fig. 7(c) and (d)).”” In
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(a) Variation of electrical resistivity (top) and Seebeck coefficient (bottom) with temperature for hot pressed TiO,_, specimens. (b)

Variation of lattice thermal conductivity with the density of CSPs (reciprocals of the spacing of CSPs) at RT and 500 °C. Reprinted with permission
from ref. 63. Copyright 2010, AIP publishing. (c) Variation of thermal conductivity (), (d) electron thermal conductivity (k) (top) and lattice
thermal conductivity (k) with temperature for TizO; and TigO;7. Reprinted with permission from ref. 77. Copyright 2018, Elsevier.
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measurement of thermoelectric properties of plasma spray-
synthesised TiO,_, deposits, Lee et al. found the introduction
of Vg into substoichiometric titanium oxides with the resultant
formation of Ti,O; increases electrical conductivity but reduces
the Seebeck coefficient. It was further observed that the pres-
ence of a porous, defective structure with interfaces in these
deposits caused a significant reduction in through-thickness
thermal conductivities.'*

2.2.3 Optical properties. The optical properties of a mate-
rial, such as its refractive index and absorption coefficient, can
be determined by examining the spectral dependence of
transmittance and reflectance. The spectral dependence of the
absorption coefficient can be used to determine the bandgap
energy, which represents the energy of the fundamental optical
transitions from the valence band (VB) to the conduction band
(cB).»®

As shown in Fig. 8(a), stoichiometric TiO, shows a dramatic
rise in reflectance, in the range 390-420 nm. The change in the
optical reflectance that occurs in this range is associated with
the beginning of the tail of the absorption curve of TiO,. The
optical bandgap of the material is determined from the wave-
length of the inflection point of the absorption curve (edge).
Due to the surface reflectivity of TiO,, the shorter wavelength
region (A <400 nm) of its reflectance curve consists of a region of
constant reflectivity. This is because if the particles are all
absorbing, the absorption coefficient has minimal impact until
it approaches the centre of the main absorption band. However,
the particles become relatively transparent with reducing
absorption coefficient at longer wavelengths (1 > 450 nm). This
in turn increases the net diffuse reflectivity of the sample, due to
numerous reflections and refractions occurring in the bulk of
the material. Hence, when the value of the absorption coeffi-
cient is very low, diffuse reflectivity reaches 1.*

As explained in the previous paragraph, rutile based TiO,
samples show the most significant variation in reflectance
between 390 and 420 nm related to their fundamental absorp-
tion edge. Reflectance on the shorter wavelength side of this is
independent of the oxygen stoichiometry in TiO,, while on the
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long wavelength side, reflectance decreases with increasing
oxygen non stoichiometry."*°* Based on the ionisation state of
Vo in rutile, they can act as single or double electron donors.
Hence, the decrease in reflectance with increasing V, is related
to sample conductivity, which increases when the number of
free electrons in the lattice increases.’® Furthermore, studies
have also reported a less intense broad band at 500-600 nm,
caused by reduction. This band is attributed to the presence of
two-electron centred Vq.'**

The linear region of the slope in the reflectivity vs. wave-
length plot (Fig. 8(a)) was absent for highly reduced non-
stoichiometric samples. This is because the additional states
created during reduction absorb light related to photon ener-
gies within the forbidden bandgap.' Because of this, all
Magnéli phases are known to be highly active under visible
light, extending their absorbance from visible to the near IR
region'29,103,104

Liu et al. made similar observations in the optical properties
of hydrogen reduced rutile TiO, annealed at different temper-
atures (Fig. 8(b)). The absorbance of UV light in the A < 400 nm
region was similar for both pristine and hydrogen reduced TiO,.
This similarity implies that the presence of V on the surface of
the particles has minimal impact on UV absorption. However,
increasing reduction temperature resulted in higher absorption
in the longer wavelength region (1 > 400 nm), attributed to the
creation of oxygen defects that form mid gap states between the
VB and CB. The sample reduced at the highest temperature (800
°C), comprising a mixture of TigO,, with rutile TiO,, showed the
highest visible light absorbance, owing to the presence of the
highest amount of oxygen defects (Fig. 8(c)).**

2.2.4 Electronic structure and properties. In the normal-
ised electron density of states (DOS) for both rutile and anatase,
as reported by Malik et al., CB is predominantly composed of Ti
3d states, while the VB is comprised of O 2p electrons
(Fig. 9(a)).*® Similar observations were made by Niu and
coworkers in the total DOS calculated for anatase TiO,, and the
Fermi level is located just above the VB maximum, confirming
its semiconducting nature.’” But in Magnéli phase Ti,,0,,_; (n

(c)

0 - - - - -
200 300 400 500 600 700 800
wavelength (nm)

(a) Diffuse reflectance spectra of TiO, and reduced TiO,_, showing the variation in light absorbance with changes in oxygen stoichi-

ometry. Reprinted with permission from ref. 19. Copyright 2007, Elsevier. (b) Digital images of untreated and reduced rutile TiO, and (c) UV-vis
absorption (percentage scale) spectra of untreated and reduced TiO, hydrogenated at 500-800 °C. Reprinted with permission from ref. 105.

Copyright 2019, American Chemical Society.
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= 4-9), the Fermi level shifts into the CB, indicating the pres-
ence of free electrons, thus imparting metallic characteristics
and excellent electrical conductivity.”” When studying the
electronic structure of Ti,O- and Tis;Oq, Malik et al. also showed
that for these two suboxides, Vo introduce an intermediate
band formed by pseudo-point defects. This intermediate band
emerges under reduced atmospheric conditions when Ti**
interstitials in the CB are converted into Ti**, which act as
shallow donor states below the CB minimum. As shown in
Fig. 9(a), for both Ti;O, and TisO, the intermediate band
formed by Ti** pseudo-defects lowers the energy of the CB below
the Fermi level, confirming the semi-metallic states of these
Magnéli phases, where electron behaviour resembles that of
metals.'*

Padilha et al. demonstrated that DFT-based calculations
could identify defect levels within the bandgap region for all
Ti,,0,,_1 phases (where 2 <7 < 5). These defects, similar to those
in rutile TiO,, primarily involve Ti 3d orbitals and arise due to
the presence of intrinsic Vo. Improved descriptions of Ti 3d
orbitals were obtained using either the Hubbard U parameter or
hybrid functionals, which shifted these defect levels away from
the CB minimum, depicting them as either shallow or deep
levels.®” Slipukhina et al. conducted first-principles calculations
on TisO4 to investigate its electronic and magnetic properties.
They identified several quasi-degenerate magnetic solutions for
all phases—low, intermediate and high temperatures—making
it challenging to determine the precise charge distribution at
various temperatures. They noted that the charge and orbital
orders across all three phases were non-unique, and the
formation of Ti**~Ti** bipolaronic states was less likely than in
Ti, O, though not impossible. Additionally, they concluded that
phase transitions in TisOq result from complex interrelations
between electronic correlations, electron-lattice and spin-
lattice coupling, rather than structural changes alone.**

© 2025 The Author(s). Published by the Royal Society of Chemistry

Ekanayake et al. used DFT simulations to explore the elec-
tronic and optical properties of Magnéli phase Ti,0,, 1 (n = 5-
9). Their total DOS analysis (Fig. 9(b)) confirmed that the CB
minimum is largely composed of Ti d orbitals, while the VB
consists of O 2p orbitals. Their findings also indicated strong d-
d correlation effects in these titanium suboxides, which led to
the emergence of new bands within the Ti-O gap, thus reducing
the bandgaps from the 3.2 eV observed in TiO,. Spin-orbit
coupling introduced additional bands derived from Ti 3d and O
2p orbitals, especially in TigO;- and TisO,, creating high-energy
mid-gap states near the Fermi level. This in turn led to further
narrowing of the bandgaps of these phases contributing to
metallic behaviour.*

3. Methods to synthesise Magnéli
phase titanium suboxides

Synthesis approaches used to prepare Magnéli phase titanium
oxides can be divided into two groups: partial reduction from
TiO, and incomplete oxidation from low valence titania
species.> Reduction approaches include hydrogen reduction,
argon annealing, metal reduction, reduction with organic
reductants, high energy particle reduction and electrochemical
reduction. Oxidation approaches involve the use of raw Ti
materials including metallic titanium, organotitanium and
inorganotitanium to generate TiO,_, in an oxygen containing
environment.** Fig. 10 summarises the fate of different Ti
sources and the typical strategies employed in each of the
synthesis methods.

3.1 Hydrogen reduction

One of the most commonly used approaches to form Magnéli
phase titanium suboxides is hydrogen reduction, which makes
use of either pure H, gas under low or high pressure, mixtures

Chem. Sci., 2025, 16, 2980-3018 | 2989
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Fig. 10 Different synthesis approaches for Magnéli phase titanium suboxides (TTIP is titanium(v) isopropoxide and T, indicates functional

groups) and a typical process for each method.

of H,/Ar or H,/N, or the use of hydrides such as NaBH, or
CaH,."*"** The reduction reaction occurring in the presence of
hydrogen can be written as shown in eqn (4).*

nTiOy(s) + Ha(g) — Ti,02,-1(s) + H2O(g) (4)

In a typical synthesis, the TiO, source (such as amorphous or
crystalline powders, pellets or membranes) is first placed inside
the reactor, typically a tube furnace. The furnace is then heated
to a high temperature, usually between 900 and 1200 °C, under
a stream of pure H, or a mixture of H, and an inert gas.

The reaction is maintained for a specific duration (typically
2-8 h), after which the resulting product—whether in powder,
pellet, or membrane form—is collected for further testing and
characterisation. When different precursors, such as hydrox-
ides, alkoxides, nitrates or MXenes, are used as the Ti source,
they are first converted into TiO, through methods like hydro-
lysis or hydrothermal treatment. In some cases, these precursor
forms can be directly subjected to a hydrogen stream to form
the desired Magnéli phases.

Table 2 summarises various studies that have made use of
hydrogen reduction to prepare Magnéli phase titanium sub-
oxides using different titanium precursors.

The types of Magnéli phases obtained from each method
indicate that the key factor in hydrogen reduction is the
temperature at which these phases are generated. Generally,
higher temperatures and/or longer heating times result in Ti O,
and other lower-n Ti,O,,_; phases, whereas mixed phases tend
to appear at lower temperatures or with shorter heating times.
Additionally, some studies have explored the mixing of different
Ti sources, solvents and carbon sources before H, reduction.
For example, Krishnan et al. examined the influence of poly(-
vinyl alcohol) (PVA) on Magnéli phase formation. They investi-
gated mixtures of TiO, and PVA (25-75% PVA by weight) and
subsequently annealed the samples under a hydrogen atmo-
sphere. PVA was utilised to reduce the agglomeration of
Ti,O,,-1 and enhance the surface area. Their findings showed
that the highest reduction in agglomeration and the largest
surface area (25.3 m* g~ ') were achieved with 75 wt% PVA.'*
You et al. mixed TiO, powder with water and isopropanol (1:1,
v/v) before hydrogen treatment to reduce the capillary force
within the powder. The resulting sample consisted of Ti O;

2990 | Chem. Sci., 2025, 16, 2980-3018

however, their study did not explore the effect of varying the
water-to-isopropanol ratio on the formation of Magnéli pha-
ses.”® Furthermore, while many studies employed a specific H,
stream flow rate, none have discussed its impact on particle size
or the types of Magnéli phases formed. Therefore, the synthesis
temperature, as well as the use of dispersants and solvents, are
crucial design considerations for H,-based reduction methods
to achieve the desired phase and particle size.

As shown in Table 2, hydrogen reduction is a popular
method for synthesising Magnéli phases due to its ability to
operate at lower temperatures (as low as 800 °C)**® and shorter
reduction times (such as 1 h)"****°, thereby saving both time and
energy. This method also offers the potential to obtain Magnéli
phase titanium suboxide nanoparticles, depending on the
precursor used. Despite these advantages, hydrogen reduction
has significant drawbacks, primarily due to the high risk of
explosion associated with working with hydrogen, as well as the
higher costs involved in the H, storage and transportation.'** As
a result, alternative methods have been developed for synthe-
sising Magnéli phase titanium suboxides.

3.2 Carbothermal reduction

Reduction of TiO, using carbon or an organic polymer under an
inert atmosphere is termed carbothermal reduction and occurs
according to the following reaction (eqn (5)).*

nTiO,(s) + C(s) = Ti,04,-1(s) + CO(g) (5)

Carbothermal reduction has been widely used in recent
studies owing to the safety and low cost of the method
compared to other approaches. Furthermore, contact between
the reactant and the reductant has shown an increased reaction
rate compared to gas-solid reactions.” It is reported that
during carbothermal reduction, Vo in the TiO, lattice are
initially increased followed by lattice reconstruction in the final
stage.”®® The ratio between TiO, : carbon plays a critical role in
the phase of the final product, since an over stoichiometric ratio
can lead to the formation of TiC or TiO,C,."**"*® Furthermore,
the kinetics of the TiO, carbothermal reduction depends heavily
on the reaction temperature, initial bulk density, gas atmo-
sphere and TiO, grain size."**'%”
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Titanium ethoxide and PEG mixed with ethanol
to form a gel followed by heating at 100 °C for 4-

absolute dry ethanol) mixed with polyethylene
6h

imine (PEI) or polyethylene glycol (PEG) were
prepared followed by electrospinning the

Hybrid solutions of titanium ethoxide (in
solutions

Synthesis/treatment of the precursor

(Contd.)

Table 3

Ti precursor
Titanium
ethoxide
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In a typical synthesis, TiO,, in the form of powder or pellets,
is mixed with a carbon-based reductant such as carbon black,
activated charcoal, or a polymer like PVA or polyethylene glycol
(PEG). The mixing of the TiO, and the carbon source is usually
a physical process involving techniques such as ball milling,
ultrasonication or manual mixing. The resulting mixtures are
then heated in a tube furnace under an inert atmosphere at
temperatures ranging from 850 to 1300 °C for 1 to 24 h,
producing a series of products with various combinations of
Magnéli phases. Table 3 summarises some research conducted
on synthesising Magnéli phase titanium suboxides using the
carbothermal reduction. The overall trend indicated that
increasing the treatment/reduction time resulted in a higher
proportion of lower Magnéli phases being formed.

The main trend in the materials formed via carbothermal
reduction is that lower Magnéli phases are more prevalent when
higher temperatures and longer durations are used for the
reduction. However, for carbothermal reduction, the next most
important consideration is the ratio between the Ti source and
the carbon source. Toyoda et al. synthesised carbon-coated
Magnéli phase titanium suboxides by heat-treating mixtures
of rutile TiO, and PVA.?® A 95/5 ratio of TiO,/PVA at 1100 °C for
1 h resulted in a mixture of rutile and TiyO,,. However, upon
reducing this ratio, lower Magnéli phases were obtained,
including TisOe and TigO;; at an 80/20 ratio, and complete
Ti,O; was achieved at a 50/50 ratio. Further reducing this ratio
resulted in lower titanium oxides, including Ti,O; and TizOs,
implying the ability to control the generated titanium suboxide
phase with the reductant ratio. Similar studies were conducted
by Huang et al., where glucose was used as the carbon source to
reduce titanium hydroxy oxide (Ti(OH),0,).**° The C/Ti ratio was
varied from 6.49 to 1.07. At the highest C/Ti ratio, TiO was ob-
tained in the product heat-treated at 1000 °C for 4 h; at a 2.17
ratio, TiO, was obtained as the product after annealing at 1000 °©
C for 2.5 h; and at a 1.07 ratio, Ti,O, was obtained as the
product under the same conditions. These studies demonstrate
that in carbothermal reduction, the temperature of heat treat-
ment, time of annealing and the C/Ti ratio are the most
important design considerations for obtaining a desired
product. However, similar to hydrogen reduction, no studies
have been conducted on the effect of gas flow rate, highlighting
further research opportunities in this area.

As mentioned earlier, carbothermal reduction addresses
many concerns associated with hydrogen reduction, particu-
larly the high costs and safety risks related to the use and
storage of hydrogen gas. However, the main drawback of car-
bothermal reduction is the extensive pretreatment required,
involving time-consuming mixing of the TiO, source with the
carbon reductant. In addition, direct contact between TiO, and
the carbon source could also yield in unwanted byproducts such
as TiC and TiO,C,, which need to be separated from Magnéli
phases prior to their use. To address these issues, our group
introduced a novel carbothermal reduction method that elimi-
nates the need for pretreatment or mixing with a carbon source.
Instead, this method relies on COg generated under low-
oxygen conditions to reduce TiO, and form Magnéli phases.*
While the method successfully produces the desired Magnéli
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phases, the resulting particle sizes were in the micrometre
range, limiting their potential applications. Therefore, further
development of a carbothermal reduction approach that
requires less/no precursor pretreatment while achieving nano-
particulate Magnéli phases remains an area of opportunity.

3.3 Metallothermic reduction

To eliminate post-synthesis purification steps for the removal of
any unreacted metal oxides or carbonaceous by-products
resulting from conventional reduction methodologies, metal-
lothermic reduction has been used to synthesise titanium
suboxides. This method makes use of metals or metal hydrides
to reduce TiO, at high temperatures."® In this method, TiO, is
mixed with a reductant (either a metal or metal hydride) and the
resulting mixture is heat-treated at high temperatures (typically
500 °C or above) for a certain duration, usually under an inert
atmosphere, to obtain Magnéli phases. While metallothermic
reduction minimises most of the post-synthesis purification
compared to carbothermal reduction, the byproducts vary
depending on the reductant used. When metal hydrides are
used, H, is evolved as a byproduct during the reaction. However,
when metals are used as reductants, metal oxides are formed as
byproducts along with the Magnéli phases. Additionally, metals
like Ti and Zr, though effective as reductants, are expensive,
making them unsuitable for large-scale synthesis due to the
high associated costs. Therefore, there is still room for
improvement in metallothermic reduction methods that do not
rely on costly metals as reductants.

Strobel et al. obtained TisO,; crystals and smaller crystals of
TigO;5 and TigO;; upon the reaction of TiO, with Ti powders in
a two-zone furnace using Cl, as the transporting agent. Here it
was observed that the oxygen pressure is a critical parameter in
crystal growth and the temperature gradient not only influences
the growth rate but also the nature of the growing phase.”
Nagao et al reported the synthesis of Magnéli phase titania
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(Ti4O; and TigO;s), lower titanium suboxides (TiO, Ti,O3; and
Tiz05) and metallic Ti, in solid phase reaction of rutile TiO, with
TiH, using varied TiO,/TiH, ratios, treatment times and
temperatures (Fig. 11(a)).*** The presence of TiH, causes the
generation of metallic Ti by evolving H, at higher temperatures
(~500 °C) (eqn (6)). This metallic Ti then rapidly reacts with
TiO, in the mixture to give titanium suboxides of varied defi-
ciencies (eqn (7)).

T1H2 — Ti+ H2 (6)

Ti + (2}’1 - ])TIOZ - 2Ti,102,1,1 [7)

Using these conditions, Ti,O; has been prepared with a TiO,/
TiH, ratio of 3, by treating at 600 °C for 48 h, whereas for TigOs,
a ratio of 5 has been used at 600 °C for 72 h.'* Geng et al
synthesised Ti,O, through in situ hot-pressed sintering of Ti
and TiO, in a single-step process. A mixture of anatase TiO,,
nano P25 and Ti powders in various ratios was prepared using
ethanol as the solvent. After ball milling, a ceramic slurry was
obtained, which, upon drying, yielded ceramic powders. These
powders were compacted into green bodies through uniaxial
pressing to ensure proper loading into graphite molds. The
green bodies were then hot-press sintered under a 30 MPa load
at varying temperatures (900-1200 °C) for 2 h under vacuum
(Fig. 11(b)). The optimal sample, with a Ti/TiO, weight ratio of
0.09, sintered at 1000 °C, exhibited superior mechanical prop-
erties and an excellent electrical conductivity of 1129 S cm™*.**

Anatase TiO, monoliths have been reduced using a zirco-
nium getter to form single phase TigO14, Ti,O7, Ti;O5 and Ti,O3
with varied amounts of Zr between 1000 and 1180 °C at a heat-
ing rate of 100 °C h™* for 1 day reaction time (Fig. 12(a)-(c)).**
The formation of porous Ti,O,,_; monoliths is expressed in eqn

(8)-

l—“ Vacuum line
Quartz tube \

Heated in

-

Electric furnace

Precursor /

=

Hot press sintering
30 MPa, 900-1200°C, 2 h

Uniaxial pressure

=

(a) Schematic representation of the experimental route for the synthesis of titanium suboxides in an electric furnace under vacuum and

(b) schematic diagram of the in situ hot press sintering technique used to synthesise Ti4O.
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(a) Digital image of anatase TiO,, TigO11, Ti4O5, TizOs and Ti,Oz monoliths (left to right) prepared using a sol-gel approach. SEM images

of macroporous monoliths of (b) anatase TiO, and (c) TizO;. Reprinted with permission from ref. 81. Copyright 2012, American Chemical Society.
(d) SEM images (top left and bottom left) and TEM images (top right and bottom right) of TiO, and Ti4O,; microspheres, respectively. Reprinted
with permission from ref. 145. Copyright 2021, Elsevier. (e) Schematic illustration of the vapour—solid mechanism used for the growth of TigO15
nanowires and (f) SEM image of the cross section of the TigO15 nanowires. Reprinted with permission from ref. 146. Copyright 2015, Royal Society

of Chemistry.

2nT102 +7Zr — ZTinOQn,I + Zl'Oz (8)

Liu et al. made use of a mixture of mesoporous TiO, and Ti
powder (7:1 mol%) to synthesise Ti,O, microspheres by heat
treating at 850 °C for 3 h under Ar (Fig. 12(d)).*** A mixture of
anatase TiO, and Ti,O, was obtained when CaH, was used as
the reductant to reduce P25 TiO, (Degussa) when reacted at
500 °C for 5 h.*” Gusev et al. prepared single and multi-phase
Ti,O; and TigO;;, oxides by reacting rutile TiO, with Ti. Ball
milling was used for mechanical activation of the starting
materials followed by annealing under Ar atmosphere at 1060-
1080 °C for 4 h to obtain highly conducting ceramics."® He et al.
reduced TiO, powders with the use of chemically polished Ti
foil. The Ti foil substrate was placed 6 cm away from the quartz
reactor containing TiO, in a tube furnace followed by heating at
1050 °C under H, flow for 2 h. During the reaction, reduction of
TiO, by H, forms H,O (g), which together with H, (g) react with
Ti to form a layer of compact TigO;5 nanoparticles on the
substrate (Fig. 12(e) and (f))."*

3.4 Other synthesis approaches

3.4.1 Using NH;. Decomposed NH; was used as the
reducing agent to synthesise a series of multi-phased Magnéli
titania by using rutile TiO, as the starting material. It has been
observed that highly conductive Ti O, TisOy and TigO;; have
been obtained when the reactant was reduced under a mixture

2996 | Chem. Sci, 2025, 16, 2980-3018

of N, and H, gases (obtained from instantaneously decomposed
NH;) at temperatures between 1000 and 1100 °C.'** Further-
more, Gou et al. reports the identification of TigO;; as a by-
product in reducing TiO, powders under an NH; atmosphere
at 1000 °C.**°

3.4.2 Using plasma as the energy source. Zhang et al. used
spark plasma sintering (SPS) to densify 1-2 pm sized Ti O,
powdered particles to full density.*** Ti,O, electrodes with
a relative density of 70.3% were synthesised using spark plasma
sintering at 700 °C and 30 MPa."*> Complete densification of
Magnéli phase titania using flash spark plasma sintering (FSPS)
was performed on titanium suboxide powders with agglomer-
ates of 50-500 um size. Results revealed that compared to
conventional spark plasma sintering, FSPS was more reliable for
densification since rapid sintering contributed to the retention
of original phases Ti,O, TisOg and TigO;; without any oxidation
afterwards. The XRD pattern of the FSPS sample (Fig. 13(a)) was
similar to that of the raw powder, whereas in the patterns of the
SPS samples, the characteristic Ti,O, peak at 26 = 20.7° had
disappeared.’®

Wang et al. also used SPS to fabricate Magnéli phase tita-
nium oxides via in situ reduction with carbon powder and
observed that the reduction can be easily achieved at low pres-
sure and temperatures above 1200 °C and pointed out that
a stable sintering environment without any pressure change
due to gas reaction is vital for the reaction.*** SPS has been used
as a densification method for Ti,O, and TigO;5 nano-powders by
Conze and co-workers, in which the samples were heated at

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) XRD patterns of raw powder, FSPS sample and samples prepared by conventional SPS at different temperatures.’>* (b) Preparation of

TiO, nanoparticles using radiofrequency (RF) induction thermal plasma method (left) and heat treatment of the samples after synthesis to

improve their electrical conductivity (right).”®

1300 °C for 5 min at a heating rate of 100 °C min~"' under
60 MPa pressure using graphite dies lined with carbon foil.**®
Lee et al. made use of an atmospheric plasma spray process to
fabricate Magnéli phase titanium oxide deposits (n = 4-9),
using TiO;o as the feedstock powder and by varying the
hydrogen gas ratio to allow the tunability in nonstoichiometry
and phase content.’ Xu et al. synthesised Magnéli phase tita-
nium suboxides and lower suboxides (n = 2, 3) using flash
synthesis by thermal plasma by varying the input power, feeding
rate of the precursor H,TiO3, and the H,/Ar ratios in the gas
mixture, which was used as the carrier gas.”® A radiofrequency
(RF) induction plasma method was used by Arif and co-workers
to form nanoparticles composed of TiO,, TigOss, Ti4O; and
lower titanium oxide phases. In their synthesis, a mixture of
rutile TiO, and water-isopropyl alcohol mixture was fed into the
plasma reactor that made use of Ar both as the plasma and the
carrier gas. To improve the conductivity of these samples, the as
synthesised samples were pelletised and annealed in a vacuum
furnace under 3% H, (Ar) atmosphere (Fig. 13(b)).*

3.4.3 Further synthesis approaches. Ertekin et al. used
cathodic electrochemical deposition to form a Magnéli phase
titanium oxide film on indium tin oxide glass. Deposition was
conducted using a peroxo-titanium solution bath containing
TiOSO, and 30% H,0, in acetonitrile at different temperatures,
ranging from —10 to 40 °C."” Langlade et al. made use of UV
laser irradiation to form titanium oxide films with Magnéli
structure. In a typical synthesis, a pure Ti substrate was dipped
in a solution of titanium(iv) isopropoxide (which was used as the
metal precursor) in isopropanol and heated at 850 °C for 1 or4 h
after deposition. These coated materials were then moved in
front of a frequency tripled Nd:YAG laser, emitting 355 nm, at
different speeds to form Magnéli phase titanium suboxide
coated metallic surfaces.”® Matsuda et al. made use of an
oxidation approach to synthesise Magnéli titanium oxide films
using Ti metal as the precursor. The method they used involved
heating a thick foil of titanium metal in air at a temperature of

© 2025 The Author(s). Published by the Royal Society of Chemistry

700 °C for a duration of 3 h, and then heating it to a temperature
of 900 °C without any intervening period of rest under an
oxygen partial pressure of 1.0 x 10~ '® atm. This resulted in
a Ti,O; film on a Ti metal foil, capable of absorbing visible and
near IR light.*” Sun et al. introduced controlled amounts of
Magnéli phase suboxides (TigO;5 and TigO4;) and lower oxides
(Ti30s) into titania nanotubes by anodizing Ti sheets in a two-
electrode system followed by annealing at 450 °C in a N,
atmosphere. Formation and existence of Magnéli phases at
such low temperatures have been ascribed to two potential
reasons. Firstly, the annealing process in N, atmosphere, which
is considered more favourable for Ti*" reduction over an Ar
atmosphere. Secondly, the presence of nonstoichiometric tita-
nium oxides during anodisation is another plausible explana-
tion, as these oxides may retain their structure during
subsequent thermal treatment.'*

4. Potential applications of Magnéli
phase titanium suboxides

Magnéli phase titanium suboxides have been studied for their
potential application in a variety of fields: as electrocatalysts
and photocatalysts for environmental remediation, electrodes
for oxygen and hydrogen evolution and as support materials in
electronic and optoelectronic devices Fig. 14, as will be dis-
cussed in the following sections. Ebonex® is the registered
trademark for a range of electrically conducting and corrosion
resistant suboxides of titanium, mainly Ti,O, and TisOy. Ever
since its discovery and commercialisation, Ebonex® has been
widely used in applications that require high electrical
conductivity, corrosion resistance and oxidation resistance.*”
Due to the presence of highly conducting Magnéli phases, its
electrical conductivity reaches up to 300 S cm ™', comparable
with that of carbon. It is projected that at room temperature in
a 4 mol dm™ H,SO, solution, the half-life of Ebonex® is 50
years.?® Due to the unique structure of Magnéli phase titanium

Chem. Sci., 2025, 16, 2980-3018 | 2997
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Fig. 14 Potential applications of Magnéli phase titanium suboxides in environmental remediation and energy storage.

suboxides, the TiO plane at the edges connect with the TiO,
plane via sharing faces, producing a conductive band that is
enclosed by TiO,. Hence, the conductivity in Ebonex® is as
a result of the TiO layers while the chemical resistance is
attributed to the TiO, planes that shield the TiO layer.”” Ebo-
nex® is widely used as an electrode owing to its electrochemical
stability in both acidic and basic media, high electrical
conductivity and high overpotentials for O, and H, evolu-
tion.***'*> However, Ebonex® itself possesses several disadvan-
tages that make it impractical for use without alteration. One of
the drawbacks is its tendency to undergo passivation through
anodic polarisation, leading to an increase in the oxygen
content beyond the stoichiometric value, forming titanium(wv)
oxide over time. Furthermore, the material demonstrates slow
transfer kinetics, necessitating surface modification or deposi-
tion of foreign materials such as noble metals and conductive
oxides, for it to be used as an efficient catalyst support.***>*®

4.1 Oxygen evolution and hydrogen evolution reactions

Photoelectrochemical water splitting is regarded as a highly
desirable approach for generating sustainable hydrogen fuel, as
it allows for the direct decomposition of water into hydrogen
and oxygen through the absorption of sunlight.’** Electro-
chemical or photoelectrochemical water splitting occurs
through two half reactions: oxygen evolution reaction and
hydrogen evolution reaction occurring at the anode and
cathode, respectively. Depending on the reaction conditions,
these two half reactions are as follows.'*
In acidic solution:

Cathode: 2H™ + 2¢~ — H,% + 2¢
Anode: H,O — 2H" +10, + 2¢~
In neutral solution:
Cathode: 2H,O + 2¢e~ — H, + 20H™

Anode: H,O — 2H" +10, + 2¢~

2998 | Chem. Sci, 2025, 16, 2980-3018

In alkaline solution:
Cathode: 2H,O + 2¢ — H, + 20H™

Anode: 20H™ — H,O" + 10, + 2¢~

Hence, in photoelectrocatalytic water splitting, electrons
facilitate the reduction of water molecules, leading to the
formation of H,, while holes participate in the oxidation of
water, resulting in the formation of O, simultaneously.**®

Conventional catalysts used in water splitting in acidic
medium include iridium and ruthenium-based catalysts for
oxygen evolution and Pt based materials for hydrogen evolution.
Due to the scarcity and high cost of these materials, attention has
been drawn to the development of cost effective alternatives.'® In
all catalysts involved in oxygen and hydrogen evolution, the
supporting material must have high electric conductivity and
corrosion resistance. While carbon or graphite are commonly
employed as catalyst support materials, there is emerging
interest in considering Magnéli phase titanium suboxides such
as Ebonex®, as catalyst supports. This is due to their notable
properties including excellent oxidation resistance, high elec-
trical conductivity (approximately 10° Q' ¢cm™'), high over-
potentials for oxygen and hydrogen evolution in both acidic and
basic environments, and remarkable electrochemical stability.
These physicochemical properties make Magnéli phase titanium
suboxides promising candidates for catalytic applications.””***

4.1.1 Oxygen evolution reaction. The oxygen evolution
reaction is the anodic reaction of water electrolysis. Studies
have shown that the presence of Vg in transition metal oxides
could favour the oxygen evolution reaction due to changed
surface and bulk electronic structures that can in turn, change
the surface adsorption properties and bulk conductivity.”
Owing to the presence of Vy in its structure, Magnéli phase
titanium suboxides (or its commercial form, Ebonex®) have
been used as a common candidate in these reactions.

Slavcheva et al. showed that PtCo/Ebonex® synthesised via
a borohydride reduction method demonstrated better

© 2025 The Author(s). Published by the Royal Society of Chemistry
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performance in the oxygen evolution reaction in alkaline
medium, compared to Pt/Ebonex® and unsupported PtCo. The
catalytic efficiency of these three electrodes was demonstrated
by normalising the anodic current relative to the Pt content in
the active layer, presented as mass activity (mA mgp; '). The
curves showed that the electrochemical behaviour of PtCo/
Ebonex was significantly superior to the other two electrodes,
despite containing the lowest amount of Pt (0.83 mg cm™>). This
facilitated the oxygen evolution reaction to a greater extent
compared to pure Pt/Ebonex (5 mg cm ?) and unsupported
PtCo (3.3 mg cm ), proving the positive influence of the
support on catalytic activity. The enhanced activity of the
bimetallic catalyst was attributed to surface oxide formation
and electronic interactions between the metals and the catalyst
support material.”” Similarly, compared to polycrystalline Pt,
a Pt/Ebonex® thin film loaded Au disk showed enhanced cata-
lytic activity for the oxygen reduction reaction in acidic solution,
due to the interaction of O, with the active sites on the surface
of the catalyst.'® They conducted rotating disk electrode
measurements to compare the behaviour of Ebonex/Pt and pure
Pt electrodes during the oxygen reduction reaction in 0.5 mol
dm 3 HCIO, solution. The obtained polarisation curves showed
that the onset of O, reduction and the half-wave potentials were
significantly shifted to more positive potentials in the case of
the Ebonex/Pt electrodes, indicating higher catalytic activity for
O, reduction compared to pure Pt. Stoyanova et al. measured
the water splitting electrocatalytic activity of Pt-Fe/Ebonex®
and Pt-Co/Ebonex® catalysts using cyclic voltammetry and
steady state polarisation. Results revealed that these two cata-
lysts show enhanced performance for the oxygen evolution
reaction in polymer electrolyte membrane water electrolysis
compared to pure Pt. Best catalytic properties were observed in
the 2Pt : 3Co/Ebonex® (2 : 3 = weight ratios of precursors) with
the oxygen evolution reaction reaching current densities of 230
mA cm~? at 1.9 V. Higher activity for bimetallic-Ebonex® cata-
lysts is attributed to the solid solution formed between the two
metals causing changes in the electron density in the atoms and
surface intermediate bond strength and stability of Ebonex® at
high anodic potentials.'®® Won et al. developed a bifunctional
oxygen catalyst using Ti O, capable of both oxygen reduction
reaction and oxygen evolution, to enhance the efficiency of
a unitised regenerative fuel cell. The optimised oxygen catalyst,
synthesised by depositing PtIr on a Ti O, support (60 wt% metal
catalysts on Ti O;) using the borohydride reduction method,
showed the highest specific activity of 1.50 mA cm ™2 at 1.5 V,
compared to Pt/Ti,O, and Pt/C, which exhibited specific activ-
ities of 0.26 and 0.15 mA cm ?, respectively. Moreover, Ptlr/
Ti,O, demonstrated the lowest Tafel slope of 82.3 mV dec™,
compared to 104.5 and 107.3 mV dec ' for Pt/Ti,O, and Pt/C,
respectively, highlighting its significantly superior oxygen
evolution reaction activity. The enhanced performance was
attributed to the synergistic effect of the PtIr phase that had
a suitable composition for both oxygen evolution and oxygen
reduction reactions and high stability of the Ti,O; support in
acidic medium.**®

With the intention of developing non-platinum electro-
catalysts for water splitting, Paunovic and co-workers developed

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a Co/Ebonex® catalyst and tested it for oxygen and hydrogen
evolution. The activity of the catalyst for hydrogen evolution was
less than that of other electrocatalysts such as Vulcan XC-72 +
TiO, or activated multi-walled carbon nanotubes, due to the low
surface area of the Magnéli phase titanium suboxides in Ebo-
nex®. However, the Co/Ebonex® electrode showed better
performance for oxygen evolution compared to CoPt/Ebonex®
catalytic systems. The observed improvement is attributed to
the formation of oxides on the surface of the catalyst and metal-
support interaction, causing Ebonex® to act as the support
material and as an active oxide electrode.'” Jovi¢ et al. studied
the use of electrodeposited Ni-(Ebonex®/Ir) coatings as anode
materials for the oxygen evolution reaction in alkaline solution.
They observed that the pure Ni coating exhibited a drastic loss
of activity after 24 h of continuous oxygen evolution atj = 50 mA
em™ > (AE = 395 mV), despite initially showing higher intrinsic
catalytic activity for the oxygen evolution reaction compared to
the composite coatings. In contrast, the oxygen evolution reac-
tion overpotential of the Ni-(Ebonex/Ir) coatings showed only
negligible changes after the stability test (AE = 22 mV). The OH
species that were adsorbed by the active sites in Ni were trans-
ferred to the less active IrO, particles, causing both the inherent
activity and improved retention of catalytic activity of Ni-(Ebo-
nex®/Ir) coatings."”* An amorphous TiO, , layer containing
Ti,O, and lower titanium oxides (Ti,O;) was employed to
fabricate a photoanode of black BiVO,@amorphous TiO,_, that
showed a remarkable photocurrent density of 6.12 mA cm ™2 at
1.23 Vgyg for water oxidation and 2.5% applied bias photon-to-
current efficiency for solar water splitting. The ability of the
TiO,_, layer to act as an oxygen evolution catalyst, a protection
layer to catalyse the water oxidation reaction and to prevent
dissolution of BiVO,, promotes the efficient water splitting
demonstrated by the BiVO,/TiO,_, photoanode (Fig. 15(a)-
(C)).172

Huang et al. synthesised a series of titanium suboxides
(Ti,03, TizO0s, Ti,O,) with high surface areas (between 260 and
120 m* g~ ") via a combined sol-gel and carbothermic processes.
The highest specific capacitance of 140 F g~ ' was observed for
the Ti O electrode, with a high oxygen oxidation current above
0.5 V (Fig. 15(d) and (e)). A higher specific capacitance
demonstrated the outstanding pseudocapacitance behaviour of
Ti,O7, making it a promising electrochemical electrode mate-
rial.»* Kolbrecka et al. studied the effect of porosity on the
properties of Ti,O5 electrodes. Results revealed that the porosity
of the electrodes affects the anodic current densities and the
course of oxygen evolution, which is irreversible on Magnéli
phase titanium suboxide electrodes. Furthermore, they also
observed that the more reproducible results and high anodic
current densities are obtained for the ceramic electrodes that
have a high number of large pores.*’

4.1.2 Hydrogen evolution reaction. Similar to other evolu-
tion reactions, the hydrogen evolution reaction requires
a significant overpotential, making it crucial to identify suitable
electrocatalysts to maximise efficiency. Noble metals like Pt, Pd
and Ru are among the most effective electrocatalysts for
hydrogen evolution due to their low overpotential. Out of these,
Pt is currently regarded as the best material, due to its ability to

Chem. Sci., 2025, 16, 2980-3018 | 2999
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Fig. 15 (a) Energy diagram for the transit and transfer of photogenerated charges on the b-BiVO,/TiO,_, photoanode. (b) H, and O, generated
by the b-BiVO,4/TiO,_, photoanode at 1.23 Vrye and calculated H, and O, amounts evolved from the photocurrent assuming 100% faradaic
efficiency. (c) Applied bias-to photocurrent efficiency (APBE) of the b-BiVO,/TiO,_, photoanode obtained for solar water splitting. Reprinted
with permission from ref. 172. Copyright 2019, John Wiley and Sons. (d) Specific capacitance vs. scan rate for the Ti4O; electrode and Black Pearls
2000 carbon black electrode (BP 2000). (e) Linear sweep voltammetry curve for TizO; electrodes in 0.1 M KOH solution. Reprinted with
permission from ref. 140. Copyright 2018, American Chemical Society. (f) Photocatalytic hydrogen evolution from powders synthesised at
temperatures 500-1000 °C under 365 nm LED and AM 1.5 solar simulator illumination. Inset: experiment conducted for anatase and powders
obtained by the same synthesis method but without Pt. (g) Schematic diagram showing the band alignment between TiO,, Magnéli phase
titanium suboxides and Pt. Reprinted with permission from ref. 173. Copyright 2019, American Chemical Society.

optimally adsorb hydrogen, which facilitates both the adsorp- irradiation and UV light (A = 365 nm) was attributed to the
tion of active hydrogen species and the desorption of hydrogen synergy of charge carrier formation by anatase and charge
molecules. However, the high cost and limited catalytic stability ~carrier separation and mobility by Magnéli phase titania
of these materials in acidic and alkaline electrolytes have (Fig. 15(f) and (g)).*”® Nanoscopic inserts of Magnéli phase
prompted the search for alternative catalysts.”*'" titanium suboxides in anatase TiO, nanocrystals have shown to

Weirzbicka et al. reported the use of anatase TiO, and work as efficient cocatalysts in H, generation when suspensions
Magnéli phase titanium suboxides loaded with Pt nanoparticles  of these nanoparticles were used in H,O/methanol solutions.
for photocatalytic H, evolution. The optimal mixed-phase The mixed-phase particles optimised at 900 °C, consisting of
particles, containing 32% anatase, 11% rutile and 57% 30% anatase, 25% Ti,O; and 20% TisOs, achieved a direct
Magnéli phases, loaded with 290 ppm of Pt, exhibited a highly ~photocatalytic H, evolution rate of 145 pmol h™' ¢! under AM
efficient photocatalytic H, evolution rate of ~5432 pmolh™' g~ 1.5 solar-simulated light, without the use of a cocatalyst. In
under UV light and 1670 umol h™* ¢~ " under AM 1.5 conditions. comparison, pure anatase or Magnéli phases exhibited signifi-
This was approximately 50-100 times more efficient than cantly lower photocatalytic H, evolution performance. The
anatase with similar Pt loading. The enhanced photocatalytic —researchers further elaborate that the activity in these mixed
performance of the optimised nanoparticles under both solar particles is due to the synergistic effect of anatase TiO, acting as

3000 | Chem. Sci, 2025, 16, 2980-3018 © 2025 The Author(s). Published by the Royal Society of Chemistry
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the light absorber and Ti,O; as the mediator for charge sepa-
ration, transport and transfer, leading to significant H, gener-
ation without the need of an external cocatalyst.”* A Au(111)
@Ti¢0;; heterostructure synthesised via photoreduction
showed excellent hydrogen evolution activity with a low over-
potential of 49 mV at 10 mA cm ™2 current density. Furthermore,
it also showed 18 times higher mass activity (9.25 A mga, " vs.
0.51 Amgp, ') and similar stability in acidic media compared to
commercial Pt/C (20 wt%). Successful heterostructure forma-
tion enabling Au nanoparticles to better adsorb H', increasing
the number of active sites on the catalyst and the conductive
TisO0;; support material were determined as factors that lead to
better performance in the Au(111)@TisO;; catalyst.'”

4.2 Wastewater purification

4.2.1 Electrooxidation of organic pollutants. Electro-
oxidation, an advanced oxidation method, has emerged as
a promising approach for degrading organic contaminants in
wastewater due to its high mineralisation efficiency, mild
treatment conditions, relatively simple equipment and envi-
ronmentally friendly nature.”” In electrooxidation, organic
contaminants are removed in a two-step process. First, a direct
electron transfer occurs from the contaminant (R) to the anode
(eqn (9)) followed by generation of high amounts of highly
active OH' through water discharge at the surface of the anode
material (M), which has a high O, overpotential (eqn (10)).
Generated OH" actively participate in degrading a diverse range
of organic compounds, as given in eqn (11).7%*7°

R—> R) +e” 9)
M+ H,0 > M(OH)+ H" + e~ (10)
R + M (OH") — degradation by-products (11)

Boron doped diamond (BDD) has been a common anode
material in such reactions but has high fabrication cost. This
has moved attention to the use of materials such as Magnéli
phase titanium suboxides, which have low fabrication costs,
high oxygen evolution potential (>2.5 V vs. standard hydrogen
electrode (SHE)) and chemical inertness.’”*'*® Magnéli titania-
based electrodes have been used to successfully degrade and
inactivate various organic compounds including per- and pol-
yfluoroalkyl substances (PFASs), perfluorooctanoic acid (PFOA),
phenol, N-nitrosodimethylamine, antibiotics and
pathogens.*®** However, studies have shown that the yield of
OH' radicals generated by Magnéli phase titania-based elec-
trodes is lower compared to that by conventional electrodes
such as BDD and PbO,, due to its low interfacial charge transfer
rate. To overcome this issue and to gain better performance,
pure phase titanium suboxides such as Ti,O; were introduced
with the inclusion of varying amounts of foreign elements such
as C, amorphous Pd clusters and Ce®* (Fig. 16(a)—(c))."s*#

You et al. studied the use of monolithic porous Ti,O; elec-
trodes for the electrochemical oxidation (degradation) of
organic pollutants in industrial dyeing and finishing waste-
water. Their results confirmed that the Ti,O5 electrode removed

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the chemical oxygen demand (COD) and dissolved organic
carbon (DOC) by 66.5% and 46.7% respectively, at 8 mA cm >
current density after 2 h of reaction. Furthermore, the
bioavailability of wastewater was improved, with the ratio
between the five-day biological oxygen demand: COD increasing
from 0.029 to 0.28 after treatment, making it a more cost
effective and environment friendly material for electrode prep-
aration compared to PbO, and SnO, based electrodes.”> Wang
et al. investigated the successful degradation and deactivation
of antibiotics, antibiotic resistant bacteria and antibiotic resis-
tance genes present in raw wastewater via electrooxidation
using a Magnéli phase Ti,O, anode. Multidrug-resistant
Salmonella enterica serotype Typhimurium DT104 was fully
inactivated, achieving a 6.2 log reduction within 15 minutes at
a current density of 10.0 mA cm °. Additionally, antibiotic
resistance genes such as TetG, floR and sul1, along with the class
1 integron gene (intl1) and virulence genes (invA and spvC)
within the pathogen, were reduced by 99.65% to 99.94%. In the
same electrochemical oxidation treatment system, the model
antibiotics tetracycline and sulfadimethoxine were degraded by
97.95% and 93.42%, respectively, within 3 h.'®® When used for
electrochemical oxidation of perfluorooctanesulfonic acid
(PFOS), the nano-Ti,O, anode showed a better PFOS degrada-
tion rate and energy efficiency in both batch and REM opera-
tions compared to a micro-Ti;O;, anode and commercial
Ebonex® (Tiy0;5) anode due to its favourable pore size distri-
bution and composition. The study found that the electroactive
surface area of the anodes is linked to pores larger than 1.03
um, suggesting a pore size threshold that limits electrochemical
accessibility in Magnéli phase porous titanium suboxide
materials. As a result, anodes with pore sizes just over 1 pm are
likely to offer the most effective surface area for electrochemical
reactions.'®

A Ti,O, anode was also used for the effective removal of
tetracycline by electrochemical oxidation, due to the high
conductivity and chemical stability of the material. For tetra-
cycline removal, applying current densities between 0.5 and 3
mA cm 2 achieved over 90% removal across initial concentra-
tions ranging from 1 to 50 ppm, with half-lives of 28 to 75
minutes. They further found that hydroxyl radicals generated
on Ti O, at a rate of 2 x 10~° mol cm > min~" under 0.5 mA
em™?, contributed to at least 40% of the total tetracycline
removal. Tests on Escherichia coli (E. coli) cultures confirmed
that electrooxidation by the Ti O, anode reduced tetracycline's
antimicrobial activity to undetectable levels."®* A film contain-
ing a 1:1 TiO,: TiyO; mixture prepared on polymethyl-meta-
acrylate spectroscopy cuvettes showed effective photoanodic
performance in decolourising methylene orange dye compared
to TiO, and Ti,O, separately. The photoelectrochemical dye
degradation tests indicated that TiO, and Ti,O, achieved
decolourisation values of 35% and 46% respectively, while the
TiO,/Ti;O; mixed film achieved 53% decolourisation. The
enhancement in composite film performance is attributed to
the synergistic effect of photocatalytic and electrochemical
activities shown by TiO, and Ti O, respectively."® Geng et al.
synthesised highly ordered Ti,O, nanotube arrays and exam-
ined their electrooxidation ability. In electrooxidizing phenol,
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(a) Hydroxyl radical yield at different potentials and (b) oxidation of oxalate under anode polarisation at 2.0 V vs. saturated calomel

electrode by Ti4O7 and (Tiy_»Ce, )40 electrodes. Reprinted with permission from ref. 181. Copyright 2021, American Chemical Society. (c)
Pseudo first order kinetics of PFOA degradation with pristine Ti4O5, Ti4O5/amorphous Pd and Ti4O/crystalline Pd electrodes. Reprinted with
permission from ref. 184. Copyright 2020, American Chemical Society. (d) High resolution TEM (HRTEM) image, (e) high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) image, (f) and (g) HRTEM-STEM energy dispersive X-ray spectroscopy (EDS) mapping
images of Pt/TigO;5 nanowires. Reprinted with permission from ref. 146. Copyright 2015, Royal Society of Chemistry.

Ti,O; nanotube arrays showed a 1.7 times higher degradation
coefficient compared to BDD, demonstrating their suitability
for electrooxidation applications.”® Ti,O; nanotube arrays
achieved a 95.3% removal of phenol chemical oxygen demand,
outperforming Ti O, particles (79.4%). This enhanced perfor-
mance was attributed to the presence of Ti,O, particulates in
the nanotube arrays and their higher surface area (11.7 m”> g~ ")
compared to Ti,O, particles (4.7 m* g~ '). When used for the
electrochemical methanol oxidation reaction, Pt loaded TigO45
nanowires prepared by an electrodeposition method showed
a peak current density of 28.2 mA cm™> compared to 20.5 mA
em 2 and 17.2 mA cm 2 for Pt/C and Pt/TiO, electrodes,
respectively, demonstrating the best performance for the
Magnéli titania supported electrocatalysts (Fig. 16(d)-(g)).*® A
Sc,03-Magnéli phase titanium composite electrode was
prepared by Bai and co-workers using a sintering-pressing
technique that demonstrated 90.16% degradation of methyl
orange after 120 min of electrolysis. Optimal electrocatalytic
activity was determined with a current density of 10 mA cm 2,
solution pH 3 and temperature of 25 °C."®

The interaction of Ebonex® with the deposited metal could
alter the activity or nature of the metal electrocatalyst, as
studied by Dieckmann and Langer. When tested for electro-
generative oxidation of aliphatic and aromatic alcohols and
formaldehyde, Pt/Ebonex® showed higher activity for methanol
oxidation compared to Ni/Ebonex®, while the latter showed
significant activity for formaldehyde oxidation and was slightly
more polarised for benzyl alcohol.”® Chen et al. investigated the
use of an Ebonex® ceramic anode for electrolytic oxidation of

3002 | Chem. Sci, 2025, 16, 2980-3018

trichloroethylene and observed that CO, was primarily formed
with traces of CO, and no other carbon containing products.™’
Under an anodic potential (E,) of 2.5 to 4.3 V vs. silver-silver
chloride electrode, trichloroethylene degradation followed first-
order kinetics with respect to its concentration. The oxidation
rate was pH-independent between pH 1.6 and 11. Trichloro-
ethylene oxidation occurred exclusively on the anodic surface
and became mass transport-limited at higher potentials (E, >
4.0 V). Despite the strong anodic performance of Magnéli phase
electrodes, Jing et al™' observed a decline in the electro-
chemical activity of Ti,0,, ;1 electrodes during anodic polar-
isation. This was attributed to be dependent on the type of
electrolyte, either due to the formation of a surface TiOSO,
passivating layer or by the loss of charge carriers. Though this
surface deactivation can be reversed during the discharge
process, the associated ohmic drop requires pre-conditioning of
the cell.*****

4.2.2 Photocatalytic degradation of wastewater pollutants.
Semiconductors have been widely used in the photocatalytic
degradation of wastewater pollutants, including waterborne
pathogens, antibiotics, pharmaceuticals, dyes and other
industrial effluents. This is due to the low cost of semiconductor
materials, their high pollutant degradation rate, low toxicity
and the ability to completely mineralise organic contaminants
into non-toxic products such as H,O and O,. In semiconductor
photocatalysis, when light with energy greater than the bandgap
of the semiconductor is absorbed, it excites electrons from the
VB to the CB, generating electron-hole pairs. These electrons
and holes participate in a series of oxidation and reduction

© 2025 The Author(s). Published by the Royal Society of Chemistry
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reactions, producing reactive oxygen species, which degrade the
organic contaminants in wastewater.">'* TiO, is a regularly
used semiconductor in photocatalytic wastewater purification
due to its high abundance, non-toxicity, strong oxidising ability,
low cost and chemical stability. Photocatalytic degradation of
organic contaminants occurs with absorption of UV light by
TiO,, which eventually leads to the formation of highly active
superoxide (O, ) and hydroxyl (OH") radicals. These radicals
along with photogenerated holes oxidise organic contaminants
resulting in less toxic by-products.*»'*> Unlike UV light-active
TiO,, Magnéli phase titanium suboxides demonstrate visible
light photosensitivity, due to the Vo induced during phase
transformation from rutile to Magnéli.?® However, as described
above, most Magnéli phase titanium suboxides synthesis
approaches require high temperature annealing, resulting in
micrometre-sized particles with poor surface area having less
adsorption capacity, thus limiting its photocatalytic activity.****®
To address this issue, Magnéli titania has been combined with
different materials such as C, Pt or g-C3N, to improve the
surface properties.>*'%®

Si et al. synthesised gradient titanium oxide nanowire films
composed of Ti,,0,,_; (composed of TisOy, Ti,O; and TizOs) and
TiO,_, (anatase TiO, with traces of rutile TiO,) (Fig. 17(a)) by an
electrostatic spinning method and gradient temperature
annealing, which showed excellent photothermal conversion
efficiency and high photodegradation ability against simulated
sewage (Fig. 17(b)). The film completely degraded 0.02 g L™*
methylene blue dye in 90 min under 2 suns and achieved
a water evaporation rate of 1.833 kg m~> h™" under 1 sun.*”
Similarly, Fujiwara et al. showed that TiO, nanostructures
containing layers of Ti,O, and lower titanium suboxides (Ti;0s)
with different Ag loadings demonstrated high photoactivity in
Cr®" reduction and methylene blue degradation under visible
light (A > 400 nm) (Fig. 17(c)). The improved performance
compared to pristine materials has been attributed to the strong
visible light activity of the composite due to the sub-bandgap
energy tails generated from the suboxides.'® Li and co-
workers synthesised TiO,-TisOy nanostructures via a one-step
laser ablation in liquids approach, using varying pulse energy
densities during synthesis. The optimised TisO¢-TiO, hetero-
junction formed between the metal oxide phases exhibited
enhanced visible light photocatalytic degradation of rhodamine
B dye (A = 420 nm), nearly completely removing the dye within
three hours of light irradiation. This improved performance was
attributed to efficient charge separation at the phase junction
and increased light absorption across a broader wavelength
range."”

Zhao et al. synthesised a high surface area carbon layer
coated Ti O, and g-C3N, composite via a wet chemical and high
temperature treatment route (C@Ti,0,/g-C3N,), with its surface
area 5 times higher (72.97 m® ¢ ') than pristine Ti O, (14.83 m”
g™ "). Photocatalytic degradation studies on rhodamine B,
methylene blue and methyl orange under visible light showed
that the activity and cyclability of C@Ti,0,/g-C;N, out-
performed that of pristine Ti,O,, C@Ti,O, and anatase TiO,/g-
C;N, catalysts. The superior activity of the core-shell structured
composite catalyst was attributed to inherent Vo, efficient light
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absorption, a large specific surface area and enhanced charge
carrier separation efficiency.**® Carbon-coated Magnéli phase
titanium suboxides, prepared by heat-treating rutile TiO, with
PVA at 1100 °C under N, flow, were studied for the photo-
catalytic decomposition of iminoctadine triacetate and phenol
under visible light (2 > 400 nm). However, results showed that
lower titanium suboxides, Ti,O3; and Ti;Os, had better photo-
catalytic activity compared to higher n Magnéli phases (n = 4, 5,
6, 9), implying that the presence of a higher concentration of Vo
is favourable for the photocatalytic activity under visible light.*

4.3 Reactive electrochemical membranes

Traditional membrane filtration faces several challenges, such
as relying solely on physical separation for removing toxic
pollutants, membrane fouling, decreased permeate flux,
chemical usage and high energy consumption. In contrast,
reactive electrochemical membranes (REMs) integrate electro-
chemical advanced oxidation processes (EAOPs) with physical
filtration, creating a single, multifunctional water treatment
system. REMs generate reactive oxygen species through EAOPs
to disinfect organic contaminants without producing harmful
by-products.””® Similar to the electrooxidation of organic
pollutants discussed in Section 4.2.1, water in reactive electro-
chemical membranes is oxidised to produce OH" radicals on the
anode surface, as shown in eqn (12) below.
H,0 >OH +H" + ¢~ (12)
These OH" engage in oxidative reactions with various organic
contaminants, leading to their complete degradation or
conversion to different byproducts. However, for certain recal-
citrant compounds that exhibit low activity towards OH" (such
as fluorinated organics), direct oxidation can also take place
during anodic oxidation. In this process, an electron is trans-
ferred from the contaminant (R) to the anode, as was shown in
eqn (9).*°
REMs can effectively remove waterborne pathogens and
heavy metals from drinking water. Their use minimises the
need for pretreatment, simplifies operation, reduces chemical
consumption and lowers both process and operational costs.””*
By combining EAOPs and microfiltration, REMs also mitigate
membrane fouling during filtration or backwashing, enhancing
flux recovery.>
Given the similarity in the working principles of anodic
oxidation for organic pollutants, as discussed in Section 4.2.1,
and REMs, the types of materials commonly employed are also
similar. The efficiency of the process is highly dependent on the
choice of anode material. Several anode materials, such as BDD,
Ti/RuO,, SnO, and PbO,, have been extensively explored for
REMs. Among these, BDD has demonstrated the highest effi-
ciency and lowest energy consumption (65 kW h kg per COD").
However, due to the high production costs involved with BDD,
there has been a search for alternative anode materials for
REMSs.2? Magnéli phases, particularly Ti,O,, have attracted
attention in this regard due to their excellent stability, high
oxygen evolution potential and superior electrical conductivity.
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oxygen. Reprinted with permission from ref. 198. Copyright 2014, Elsevier.

Zaky and Chaplin demonstrated the potential use of porous
and tubular Ti,O, as REMs through the removal of a series of p-
substituted phenolic pollutants. Their studies showed that
these REMs were effective for both anodic oxidation and OH"
generation, facilitating efficient removal of the phenolic
compounds. Their cross-flow filtration studies, supported by
DFT calculations, revealed that p-benzoquinone was mainly
removed through reactions with electrochemically produced
OH'. In contrast, the removal of p-nitrophenol and p-methox-
yphenol was mainly influenced by the anodic potential applied
during the process.”***** To improve the flexibility of REMs,
Santos et al. used an electrospinning and electrospraying
method that resulted in highly porous and flexible REMs,
composed of polysulfone fibres and Ti,O; particles. Membrane
filtration experiments showed that the observed first order rate
constant for phenol oxidation was 2.6 times higher in filtration
mode compared to cross flow mode at a 1.0 mA cm > current
density.** Studies have shown that the use of REMs as cathodes
prevents the formation of halogenated organic compounds that
are typically produced during electrochemical oxidation and
advanced oxidation processes. Magnéli phase titania samples
have been investigated as suitable candidates for this purpose
because of the low cost of porous monolithic structure forma-
tion and their ability to form OH" via water oxidation.>®

As discussed above, Ti O is the most conductive Magnéli
phase, generating the highest amount of OH'.**® However, to
further improve OH" generation, many studies have focussed on
modifying Ti O, either by increasing the electrochemical
surface area or by doping or forming composites with other
electrocatalysts.” Jing et al. synthesised a ceramic, asymmetric,
ultrafiltration REM composed of TiO; and TigO;; Magnéli
phases and tested their activity using humic acid and poly-
styrene beads as model foulants. Membrane fouling was char-
acterised using an electrochemical impedance spectroscopy
technique. A backwash mode chemical-free electrochemical
regeneration process was developed based on the results of the
above analyses and enabled complete recovery of a fouled

3004 | Chem. Sci., 2025, 16, 2980-3018

membrane without the need for any chemical reagents
(Fig. 18(a) and (b))."** Degradation of sulfamethoxazole using
electrochemical reduction and oxidation in single pass, flow
through mode using Ti,O; REMs and Pd-Cu doped Ti,O; REMs
were studied by Misal and co-workers. An impressive 96.1 +
3.9% of sulfamethoxazole was removed by the Pd-Cu/Ti O,
REM via electrochemical reduction at —1.14 V/SHE, higher than
that observed for Ti,O; and Pd/Ti,O, REMs. However, in elec-
trochemical oxidation, the Ti,O, REM showed the highest
removal, removing 95.7 + 1.0% sulfamethoxazole at 2.03 V/
SHE."* Adsorption and electrochemical reduction of N-nitro-
sodimethylamine by carbon-Ti,O;, composite REMs was
studied by Almassi and co-workers. Upon the addition of multi-
walled carbon nanotubes or activated carbon to the REM, the
residence times of N-nitrosodimethylamine in the REM
increased by a factor of 3.8 to 5.4, leading to higher degrada-
tion."™ To study the electrochemical inactivation of E. coli at
different current densities, Liang et al. studied a REM system
with two highly conductive, stable and porous Ti,O, membrane
electrodes, working in dead-end filtration mode (Fig. 18(c)).
Their studies showed that as the current density increased, the
bacterial concentration decreased, with severe damage to the
cells. Moreover, it is reported that the E. coli concentration
decreased from 6.46 to 0.18 log CFU mL ™" after passing through
the membrane filter (Fig. 18(d)).>” To treat agriculturally
contaminated water, Gayen and co-workers modified Ti,O,
REMs by depositing B-doped SnO, to provide high overpotential
in oxygen evolution. When atrazine and clothianidin were used
as the model contaminants and terephthalic acid as the OH"
probe, complete mineralisation of all compounds was achieved
at 3.5 V/SHE in a single pass in the reactor with a 3.6 s residence
time.***

4.4 Electronic and optoelectronic applications

The operation of resistive random-access memory (ReRAM) is
based on the dielectric breakdown of an insulator, mostly metal

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 (a) Normalised permeate flux under different operational conditions for the anodic chemical-free electrochemical regeneration in

backwash mode of 150 mg L~ humic acid fouled REM and (b) electron impedance spectra obtained in the complete frequency range. Reprinted
with permission from ref. 124. Copyright 2016, Elsevier. (c) REM system containing Ti;O; ceramic membrane design and setup. (d) Effect of
different current densities on the removal of E. coli by the Ti;O; membrane filtration system. Reprinted with permission from ref. 207. Copyright

2018, Elsevier.

oxides, which shows resistive switching phenomena. In the
structure of a ReRAM, the insulator/semiconducting material is
sandwiched between two metal electrodes. In the resistive
switching process of an ReRAM, by applying pulsed voltages,
the resistance of the cell can be changed significantly.>**>*
Hence, devices in which the resistive switching mechanism
occurs demonstrate bipolar behaviour, wherein the conducting
and insulating states are alternated by applying opposite bias
polarities.

Kwon and co-workers probed the nanofilaments in a Pt/TiO,/
Pt system during resistive switching directly by HRTEM. They
observed that TisO; conducting filaments formed in TiO,
implying that the formation of Magnéli phase filaments
induced the observed switching (Fig. 19(a)).>** Similarly, Stra-
chan et al. observed a Ti O, crystallite in the TiO, matrix,
showing that the resistance switching demonstrated by a Pt/
TiO,/Pt memristor is due to TiO, reduction and crystallisation
of a metallic conducting network. They further explained that
within a TiO, matrix, the formation of Magnéli phases is ther-
modynamically favoured over a high concentration of randomly
distributed vacancies in the material, depending on the elec-
trochemical potential within the device (Fig. 19(b) and (c)).***
Kim et al. prepared a cross-bar type Pt/TiO,/Pt structure with
improved electrical endurance characteristics and uniform low
resistance state and high resistance state distribution in fila-
mentary resistive switching. Ti,O, and TisOo conducting fila-
ments were observed in the TiO, thin film that lead to a stable
memory window.**?

© 2025 The Author(s). Published by the Royal Society of Chemistry

Banerjee et al. demonstrated the resistive switching and
complementary resistive switching behaviours in a TiO,/Al,O3-
based 3D vertical crossbar ReRAM device. Stable resistive
switching mechanisms in these devices were confirmed and
attributed to the observation of TisO, nanofilaments by
HRTEM.>"® As observed in these studies, formation of titanium
suboxide Magnéli phases via generation of shear planes in TiO,
is related to the valence-change memory effect, which states
that the reduction of transition metal ions is caused by migra-

tion of Vi driven by the electrochemical potential gradient of
V0‘62,2107214

4.5 Batteries

Rechargeable batteries, a type of electrochemical energy
storage, have garnered significant attention over the past few
decades due to their higher energy efficiency compared to
mechanical and chemical storage systems.*® Among various
rechargeable batteries, commercial lithium-ion batteries have
become particularly popular thanks to their high energy
density, cyclic stability and energy efficiency. Recently, sodium
and potassium have also gained similar interest as potential
alternatives, due to their comparable chemical properties to
lithium.>*® Magnéli phase titanium suboxides are used in
batteries as electrodes because of their unique electronic and
electrochemical properties. These materials have high electrical
conductivity and high specific capacity, suggesting that they can
store and release a significant amount of energy per unit mass.
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Fig. 19

(@) HRTEM image of a nanocrystalline Ti4O; filament (outlined in blue) in a Pt/TiO,/Pt system used in a resistive switching device.

Reprinted with permission from ref. 217. Copyright 2020, Springer Nature. (b) Scanning Transmission X-ray Microscopy image of the device
junction area, showing absorption contrast within the junction and (c) chemical and structural mapping of the three observed phases in the
junction. Region (i) corresponds to amorphous TiO,, Region (i) is anatase TiO, and Region (iii) is reduced titanium suboxides TiO,_,. Reprinted

with permission from ref. 211. Copyright 2010, John Wiley and Sons.

In addition, Magnéli phase titanium suboxides are highly
stable, corrosion resistant and durable, making them excellent
candidates in rechargeable batteries.””*®* They have also
demonstrated excellent cyclability, enabling them to undergo
many charge-discharge cycles without a decline in electro-
chemical performance. Furthermore, their high thermal
stability allows these materials to withstand high temperature,
improving the safety and reliability of batteries and preventing
overheating and short circuiting.>****'® As discussed in Section
4.1, Magnéli phase titanium suboxides are commonly used as
catalyst supports for oxygen and hydrogen evolution reactions,
primarily due to their high electrical conductivity and excep-
tional corrosion resistance, which ensure stability in both
highly acidic and basic environments and provide significant
electrochemical durability. Given that similar properties are
desirable for battery applications, it is likely that Magnéli phase
titanium suboxides developed for catalytic purposes could be
adapted and optimised for use in battery technologies as well.

Ti,O; has been investigated as a suitable host material for
sulfur loading in lithium sulfur batteries due to its high
conductivity and high binding affinity towards lithium poly-
sulfide.* In lithium sulfur batteries, the shuttle effect and the
uncontrollable deposition of lithium sulfides have been iden-
tified as factors that can result in low coulombic efficiency and
capacity decay. To find a solution to this challenge, Tao et al.
used a sublimation and deposition method to fabricate a high
performance Ti,O,-S cathode composite by thermal diffusion
of S into the Ti,O, matrix. Results revealed higher cycling
performance and reversible capacity compared to the TiO,-S
cathode, due to more effective binding of Ti,O, with S species.
The Ti,O,-S cathode demonstrated high specific capacities at
different C rates, achieving 1342, 1044 and 623 mAh g~ " at 0.02,
0.1 and 0.5C, respectively, along with impressive capacity
retention of 99% at 100C and 0.1C (Fig. 20(a) and (b)).>** Sab-
baghi and co-workers developed highly conductive Magnéli
Ti,O; nanotube arrays supported by a carbon-coated separator,
to enhance the energy density and enable rapid charging and
discharging in Li-S batteries. The battery demonstrated
a reversible discharge capacity of 723 mA h g~ " after 500 cycles

3006 | Chem. Sci., 2025, 16, 2980-3018

with a capacity fading rate of 0.07% per cycle at 0.5C.** Han and
Wang reported the use of graphitic carbon coated TiyO,; as
anodes for Li-ion batteries and in hybrid electrochemical cells.
These materials have shown excellent cyclic stability giving
a pseudocapacitive lithium-storage behaviour with a reversible
capacity of 182 mA h g~ '.>>* Additionally, Lee et al. presented the
TisO;,/carbon nanotube composite electrode as a promising
anode material for K-ion batteries. This electrode exhibited an
extended cycling life of over 500 cycles at a current rate of
200 mA g ', with a capacity retention of 76% and an impressive
coulombic efficiency of 99.9%.%>>

Wei et al. developed a sulfur cathode hosted on mesoporous
Ti O, microspheres (70 wt% sulfur) that exhibited a high
discharge capacity of 1317.6 mA h g~ ' at moderate current
density, with 88% capacity retention after 400 cycles, exhibiting
excellent cyclability. Excellent stability attributed to the Ti-S
interactions between low-coordinated Ti,O, and lithium poly-
sulfides, facilitated sulfur redeposition during the charging
phase. Additionally, the porosity and the high electronic
conductivity of the electrodes contributed to the high perfor-
mance of the material.®*® Furthermore, Li et al. successfully
studied the feasibility of Ti,O, for use as air-cathodes in zinc-
air batteries under strong alkaline conditions due to its elec-
trochemical durability and stability. The stability of the Ti,O,
electrode was evaluated in an O,-saturated alkaline solution
through cyclic voltammetry within a potential range of —0.7 to
+0.7 V vs. Hg/HgO. The Ti,O; electrode successfully survived
5000 cycles without any significant loss in the oxygen reduction
reaction peak current."™ Yao et al. used Ti,O; as the conductive
additive in a sulfur electrode and showed that sulfur/Ti,O, had
improved electrochemical properties compared to a sulfur/
acetylene black electrode, in both its polysulfide absorption
and its catalytic activity towards the Li/S redox reaction.*

Franko and co-workers utilised Ti,O; as a stabilising additive
for simple carbon paper cathodes to limit NaO, degradation in
sodium-oxygen batteries. Results revealed that Ti,O, serves as
a stable nucleation point for NaO, formed in the solution,
resulting in a reduced rate of NaO, degradation. Consequently,
Ti,O,-coated cathodes exhibited significantly longer -cell

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc04477k

Open Access Article. Published on 20 January 2025. Downloaded on 7/29/2025 10:31:50 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Review Chemical Science

(a) (b)

3.0 - - 1800— - 100
Ti,0-S 5 et D A AP
= 287 Z 11"07-3 ]? ¢ o Pan im0 B
o 26 O 11.0,‘-‘8 ” I o o e S, o e et 80 3’
= 28] c
] ,{ :’ 70§
@ 60 S
> ‘é =
> E 50 ©
(2]
° 2 I L
g 8 0 E
= a g )
. ] 20 3
> o 10 O
15 /3 2 o
0 200 400 600 800 1000 1200 1400 1600 20 40 60 80 100
Capacity (mAh g*') Cycle number
(c) (d)
1800
14004 Anpwss | : ; : ; J
: : H ; 100
< : - 15004 RONTTNr P a
"o 12004 Anvr2ss ‘o o -]
= : = MM-1/S lso =
= 10004 ‘TE mm-ww, ) g
2 2 sty T
z 8004 Z op0d “teo 2
z z 2
2 6004 = [
] g 600 rws o
2 4004 o G
L=} & -
2 2004 ; : : E 3004 20 <
n ool st oer to1c b o2c tono] @
0 5 10 15 20 25 30 0 50 100 150 200 250 300 350 400
Cycle number Cycle number
Fig. 20 (a) Initial charge—discharge curves of composite cathodes formed with TiO,, Ti;O; and TigOy; at a rate of 0.02C. (b) Cyclic performance

and coulombic efficiency of the cathodes for 100 cycles at 0.1C rate.

Reprinted with permission from ref. 219. Copyright 2014, American

Chemical Society. (c) Rate performance from C/10 to 2C of rutile TiO, microspheres infiltrated with S (RM/S) and Ti4O; microspheres infiltrated
with S (MM-x/S) (The molar ratio of TiO, : C during synthesis varied across the samples, with a ratio of approximately 3 : 2 for MM-1, and 3 : 4 for
MM-2, depending on the volume of resol solution used) and (d) cyclability with calculated coulombic efficiency of RM/S and MM-1/S at C/5.
Reprinted with permission from ref. 223. Copyright 2017, John Wiley and Sons.

lifetimes over many cycles compared to cathodes cast with
commercial SuperP carbon black. When the Ti O, content in
the cathode slurry (comprising Ti O, poly(vinylidene fluoride)
and SuperP carbon in acetone) was increased to up to 90%, the
cell lifetime significantly improved to 37 cycles before any
notable degradation was observed.*** To evaluate the possibility
of replacing carbon in electrodes, Lee et al. synthesised
RuO,@Ti,0;, nanospheres that could enhance the performance
of Li-O, batteries. With Ti,O, supporting the activation of
catalytic performance of RuO, nanoparticles during discharge-
charge processes, these carbon-free RuO,@Ti,O; nanosphere
electrodes are considered as potential candidates for superior

oxygen reduction and oxygenation reactions.”**

4.6 Photothermal applications

Solar-driven steam generation is becoming an important
approach for harnessing solar energy, as it directly converts
solar energy into heat for water evaporation and facilitates
energy storage.”* The photothermal materials used in solar
steam evaporators can effectively capture solar energy and
generate heat, which is then transferred to bulk water for water
vapour generation.”” The performance of a solar steam evapo-
rator partially depends on the photothermal material employed.
Among the various types of photothermal materials, such as
plasmonic nanoparticles, carbon-based materials, polymers
and inorganic semiconductors, semiconductors are increas-
ingly being modified and utilised due to their abundance and

© 2025 The Author(s). Published by the Royal Society of Chemistry

low cost.*® Magnéli phase titanium suboxides, with their
excellent light absorbance across the solar spectrum and
desirable thermal conductivity, have demonstrated high solar-
to-vapour efficiency, making them suitable photothermal
materials for solar steam generation.*

The ability for Magnéli phase titanium suboxides to absorb
solar light has been used in solar steam generation via a self-
floating Ti O /yttrium stabilised zirconia (YSZ) membrane
(Fig. 21(a)). While the insulating YSZ layer is conducive to water
transportation, the upper Ti, O layer was used for photothermal
conversion, so that the bilayered membrane showed a remark-
able water evaporation rate of 1.86 kg m~> h™" under one sun
(Fig. 21(b) and (c)).>* Si et al. synthesised gradient titanium
oxide nanowire films composed of TiO,_, and Ti,O,,_1, which
exhibit both photocatalytic and photothermal properties. The
Ti, 0,1 component of the film (containing Ti,O, and Tiz;Os)
demonstrated a water evaporation rate of 1.833 kg m > h™*
under one sun irradiation, with an energy conversion efficiency
of 88.96%."7 Xu et al. prepared TiO,-PVA nanocomposite
hydrogels that exhibit a narrow bandgap of approximately
0.81 eV for highly efficient solar steam generation. Under one
sun irradiation, this hydrogel achieved an evaporation rate of
approximately 4.45 kg m > h™' with an energy efficiency of
around 90.69%. Additionally, the hydrogel demonstrated
impressive stability, maintaining an evaporation rate of up to
approximately 4.03 kg m > h™" until day 20. Further experi-
ments conducted on seawater desalination revealed negligible
salt accumulation on the hydrogel's surface, enabling its use in
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Fig. 21 (a) SEM image of fibrous Ti;O; membrane after calcination. (b)
Rate of water evaporation from the Ti4O; membrane with and without
YSZ. (c) Temperatures on the surface of water recorded for TiO,, Ti;O;
and TizO7/YSZ membranes by an IR thermometer. Reprinted with
permission from ref. 229. Copyright 2022, American Chemical Society.

stable purification of sewage or desalination of seawater con-
taining multiple organic contaminants.?*® Since most Magnéli
phase titanium suboxides used in solar steam evaporators are
based on Ti O, in one of our previous studies, we investigated
Magnéli phases other than Ti,O, in a solar steam evaporator
and monitored its performance. We utilised a graphene oxide-
based aerogel and incorporated Magnéli phase titanium sub-
oxides (comprising 2.8% Tis;Oq, 81.8% TigO11, 30.7% Ti;Os3,
3.8% TigO15 and 0.9% TigO;5) to form a solar steam evaporator.
The composite aerogel (radius 2.25 cm) demonstrated a water
evaporation rate of 0.832 kg m~> h™" under 1.0 sun with an
optimised weight of 50 mg of Magnéli phase titanium suboxide
particles. The calculated energy conversion efficiency for the
optimised aerogel was 56.5%, which is over three times that of
water without the aerogel under the same conditions.*

4.7 Other applications

Hydrovoltaics is a novel electricity generating technology that
harnesses the ability of nanomaterials to respond to waves or the
flow, dropping or evaporation of water.>*® To enhance the electric
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power generation in a material used in hydrovoltaics, its interac-
tion with water needs to be improved with a reduction in its
internal resistance. Since Vg increase the carrier concentration and
attract cations, Si et al. used Magnéli phase nanocrystal film as the
active material for hydrovoltaic power generation. They observed
that the open circuit voltage (Voc) and short circuit current (Isc)
increased with increasing oxygen vacancy concentration (which
correlated to increasing annealing temperature during material
synthesis). They demonstrated the use of their energy generation
devices by capturing rainwater and observed that a ~600 mV Voc
was maintained for over 2.5 h (Fig. 22(a)—(c)).**

Qing et al. synthesised a Ti,O,/polyimide composite using
a heat pressing technique, which exhibited tunable dielectric
properties and excellent absorbance in the high-frequency
range of the GHz band. In addition, the study also demon-
strated the potential of these composites as flexible absorbing
coating materials. When the polyimide matrix was backfilled
with 60 wt% Ti, O particles, the minimal reflection loss reached
—49.3 dB at 13.7 GHz with a thickness of 1.25 mm. This finding
further confirmed that the tunable and unique dielectric
properties of Ti,O; make it an excellent candidate for designing
absorbers and for other electromagnetic applications.**' The
gas sensing behaviour of a Magnéli phase containing a metal
oxide layer (rutile TiO,, TigO,, and TigO;5) coated on a flexible
polymeric thin film was tested using NH3(g) at 12.5-100 ppm.
Positive results observed in the sensing experiments were
attributed to the high concentration of Vi and porosity of the
active layer, which can increase gas adsorption capacity and the
surface for interaction.”®* Fan et al. demonstrated the possibility
of using TigO;7 as a non-toxic n-type thermoelectric material,””
while Canillas et al. explored the use of TisOo as a candidate
electrode material in neuron growth stimulation due to its low
impedance and high chemical stability.>*

5. Challenges and prospects
5.1 Stability and durability

Magnéli phases are well known for their excellent chemical and
electrochemical stability, making them appealing to electro-
chemists and electrochemical engineers. Because of these
properties, Ebonex® materials have been employed both as
standalone electrode materials and as substrates for various
electrocatalysts.
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Fig. 22

(a) Measured open circuit voltage (Voc) and (b) short circuit current (Isc) for Magnéli phase nanocrystal films prepared at different

temperatures (800-1000 °C) and (c) average peak values of Voc and Isc. Reprinted with permission from ref. 129. Copyright 2021, American

Chemical Society.
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Research conducted by Smith et al. explored the stability of
titanium suboxides in the Magnéli phase under harsh condi-
tions. The study found these materials to be more durable than
traditional electrodes used in large-scale electrochemical
processes, including both Ti and TiO,. Magnéli phases
remained stable when exposed to aggressive chemicals like
fluoride-based etchants, hydrochloric acid and aqua regia.
However, they experienced some degradation in more extreme
environments, such as boiling phosphoric acid, concentrated
HF and highly concentrated NaOH solutions (concentration >
12 M).*® Liu et al. investigated the electrochemical stability
windows of Ti,O electrodes across acidic, neutral and alkaline
aqueous solutions. Their findings demonstrate that the stability
windows in all three types of solutions exceed 3.5 V, enabling
the production of significant amounts of "OH radicals. Notably,
the Ti,O, electrode exhibited its widest stability window of
4.19 V in a 1 M NacCl solution, while the narrowest window,
3.53 V, was observed in a 1 M H,SO, solution.>**

Magnéli phase titanium suboxides show better stability in
various aspects compared to carbon-based materials. Ceramics
produced at high temperatures tend to be in their most stable
and fully oxidised state, meaning they are less likely to oxidise
further, unlike metals and carbon. In addition, in applications
like electrolysis, Ebonex® electrodes demonstrate greater
stability than carbon electrodes, particularly at high pH levels,
where carbon materials tend to decompose.> Li et al. investi-
gated the stability of Magnéli phase Ti,O; electrodes for oxygen
reduction in zinc-air rechargeable batteries, as carbon mate-
rials tend to degrade due to corrosion from O, and H,0,, and at
high electrode potentials. Ti O, with its excellent conductivity
and electrochemical stability, emerged as a strong candidate for
air-cathodes in these batteries. Cyclic voltammetry and chro-
nopotentiometric tests confirmed its stability. Raman and XPS
analysis before and after testing revealed the formation of a thin
TiO, layer on the Ti O, surface, which likely protects the bulk
material from further oxidation, enhancing its long-term
stability.***

Krishnan et al. describe the use of Magnéli phase titanium
suboxides as durable catalyst supports capable of withstanding
high potentials in PEM fuel cells. These materials demonstrate
remarkable corrosion resistance, even under very high potential
conditions. The electrochemical stability of the Pt/Ti,O,, 1
catalyst (with Ti,O, as the dominant phase in Ti,0,, ;) was
investigated through cyclic voltammetry at a scan rate of 50 mV
s~ . Their research highlighted that Ti,0,,_, exhibits excellent
stability over the potential range of —0.25 to 2.75 V vs. SHE.*"
Owing to their resistance to corrosion and resilience against
polarity reversal, Ebonex® electrodes are also used in electro-
phoresis. Their chemical inertness, especially in the presence of
organic electrolytes, provides flexibility in the choice of gel types
. Their large surface area allows for efficient voltage and current
distribution, and they perform exceptionally well in reverse or
pulsed electrophoresis, due to their high stability under polarity
reversal.”®

These findings suggest that, despite being synthesised
through the creation of Vi, Magnéli phase titanium suboxides
remain stable at room temperature and in oxygen-rich

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

environments over time. Instead of instability, they exhibit
remarkable stability and durability across diverse chemical
conditions, reaffirming their suitability for various applications.

5.2 Cost-benefit analysis

As detailed in the synthesis section, TiO, is the primary feed-
stock for many synthesis methods of Magnéli phases.
Depending on the method, different reducing agents such as
hydrogen gas, carbon or metals are used. Since these reduction
processes typically require high temperatures over extended
periods, cost considerations largely depend on the choice of raw
materials and reductants, assuming operational and energy
costs remain comparable.

In most reduction methods for forming Magnéli phases,
TiO, is the primary raw material, priced at approximately USD 3/
kg globally in 2022.*** Considering the various reduction
methods used to form Magnéli phases, the high cost of metals
such as Ti (over USD 10/kg)*** and Zr (with an average import
price of USD 28/kg in the United States in 2023) makes large-
scale synthesis via metallothermic reduction highly impractical.

Due to the high costs associated with the storage and
transportation of hydrogen, carbothermal reduction emerges as
a more cost-effective method for large-scale synthesis of
Magnéli phase titanium suboxides, including commercial
Ebonex®. This approach is particularly advantageous as it uses
activated charcoal as the reductant, which is priced at around
USD 5.6/kg, based on both literature and commercial sources.””
Consequently, the relatively low cost of raw materials for
producing Magnéli phase titanium suboxides offers these
materials a significant cost-benefit advantage over more
commonly used electrode materials like BDD in electro-
chemical applications.

5.3 Challenges related to the synthesis and use of Magnéli
phase titanium suboxides

In the last decade, Ti** self-doped Magnéli phase titanium
suboxides have attracted much interest in diverse fields due to
their outstanding optoelectronic, photochemical and photo-
catalytic properties. The main current issues in the synthesis
and use of Magnéli phase titanium suboxides are the high
temperatures and extensive sintering required, which lead to
particle coalescence and the formation of microparticles that
are unsuitable for applications requiring high surface areas.
Issues related to microparticle formation have been resolved by
using diverse titanium precursors, such as Ti(NOjs),, and
various polymeric reducing agents combined with microwave
irradiation, leading to the synthesis of nanoscale Ti,O,."*"***
However, these methods still require expensive, extensive and
time-consuming precursor treatments and high-temperature
synthesis. To address this, several novel techniques have been
developed to synthesise titanium suboxides without the need
for such intense sintering. One such approach, described by Arif
and co-workers, involves a thermally induced plasma process.>**
While this method successfully produces Magnéli phase tita-
nium suboxides with relatively higher surface area (52.9 m* g™ )
the use of plasma is expensive and limits its scalability.
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Moderate-temperature synthesis methods for Magnéli phase
titanium suboxides have also been explored, but these often rely
on costly reductants, such as metals and metal hydrides,
making them impractical for large-scale production.*® This
indicates that none of the current synthesis approaches fully
meet all criteria, including nanoparticle formation, the use of
low cost reductants/raw materials and the elimination of sin-
tering. Therefore, there is a clear opportunity to develop inno-
vative methods for synthesising nanostructured Magnéli phases
at moderate temperatures without relying on costly raw
materials.

Recently, Ma et al. made use of 3D printing technique to
synthesise a porous Magnéli phase electrode composed of
Ti509, TicO;1; and traces of Ti;O;3, from a TiO, powder mixture
and aqueous binder (Fig. 23(a) and (b)). This 3D TiO, electrode
showed enhanced degradation kinetics for the probe molecules
oxalic acid, terephthalic acid and paracetamol, lower accumu-
lation of toxic by-products (hydroquinone and benzoquinone)
and higher mineralisation yield compared to commercial BDD
and Ti/TiO, plate anodes.**® This study demonstrates the
potential of 3D printing for creating low-energy, feasible
approaches for Ti,0,,_1 preparation, offering an alternative to
conventional methods requiring high temperatures or expen-
sive raw materials.

In addition to the challenges associated with the synthesis of
Magnéli phase titanium suboxides, a lesser-known aspect is the
potential health risks and concerns related to these materials. It
is reported that Magnéli phase materials are generated as
incidental nanoparticles during industrial coal combustion
causing these nanomaterials to be widespread in the environ-
ment.>***** Analyses of coal ash samples obtained from power-
plants in USA and China have shown that all Magnéli phases (n
= 4-9) are generated during coal burning with TigO4; being the
most frequent.”*

Toxicity tests on Magnéli phase nanomaterials report that
they have potential toxicity pathways that are biologically active
without photostimulation.*** These studies report that exposure
and accumulation of Magnéli phases cause abnormalities in
macrophages due to increased oxidative stress and mitochon-
drial dysfunction and also result in reduced lung function
impacting airway resistance and elastance.**> Kononenko et al.
studied the hazard potential of Magnéli phase titanium sub-
oxides on A549 human lung cells. Although some potentially
adverse effects of Magnéli phase nanoparticles were observed
due to their cellular internalisation and biopersistance, they

Fig. 23 (a) Porous structure and pore size of 3D printed TiO, electrode
and (b) morphology of 3D TiO, as observed from SEM. Reprinted with
permission from ref. 240. Copyright 2023, Elsevier.
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were considered as non-hazardous, with no increase in intra-
cellular reactive oxygen species levels upon exposure.*** Jemec
Kokalj et al. conducted a study on hazard characterisation of
Magnéli TiO, using a set of ecotoxicological test organisms and
human lung and liver cell lines. Since exposure to these test
organisms and cell lines did not induce any biological response,
Magnéli TiO, particles were considered as acutely non-
hazardous.”*® To mitigate the harmful effects of these nano-
particles, some countries use particle traps to capture these
nanoparticles before final emission of the exhaust gas. Further
assessment regarding the impact of Magnéli phase titanium
suboxide particles is required to determine the feasibility of
using them in large scale applications.

5.4 Potential improvement strategies and prospects

As previously discussed, the 3D printing of Magnéli phase
titanium suboxide electrodes offers a promising synthesis route
due to its relatively low cost and time efficiency compared to
conventional approaches, which often require significant
energy and extensive processing time. To date, there has been
only one documented instance of Magnéli phases being syn-
thesised through additive manufacturing. This represents
a significant opportunity for further research and development,
particularly in the creation of Magnéli phase electrodes for
various electrochemical applications. Advancing this area could
lead to more sustainable and scalable production methods for
energy storage and conversion technologies.

Due to the high production costs of BDD for electrochemical
applications, Magnéli phase titanium suboxides and their
doped counterparts are actively being investigated as alternative
anode materials for the electrooxidation of organic pollutants
and in REMs. While their use in these applications is currently
mostly limited to the laboratory scale, we believe that electro-
chemical applications will soon present a promising direction
for Magnéli phase titanium suboxides.

The authors of this review identified several areas related to
these materials that offer significant opportunities for further
development and clarification. As discussed in Section 4, pho-
tocatalytic pollutant degradation using Magnéli phase titanium
suboxides has been investigated in numerous studies, with
most approaches focusing on heterojunction formation
between Magnéli phase Ti,0,, ; and other materials. However,
comprehensive studies on heterojunctions involving both
organic and inorganic semiconductors are limited, revealing an
evident research gap. Moreover, the charge transfer mecha-
nisms in these heterojunctions, which are currently understood
in terms of Z-scheme or semiconductor-to-metal charge transfer
mechanisms, require deeper investigation. Integrating these
experimental studies with theoretical insights could provide
a broader understanding of charge transfer dynamics and open
new avenues for utilising these materials in photocatalysis.

Further research could also explore the potential of Magnéli
phases as standalone catalysts in photocatalytic water purifi-
cation or with dye sensitisation. A key challenge in these
applications is the narrow bandgap of Magnéli phases, which
may limit their ability to generate reactive oxygen species.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc04477k

Open Access Article. Published on 20 January 2025. Downloaded on 7/29/2025 10:31:50 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

Additionally, the low surface area of these materials may hinder
dye adsorption, thus reducing their efficacy. Our research has
demonstrated the possibility of bandgap tuning to overcome
this limitation, allowing Magnéli phases to reach the potentials
required for the formation of superoxide and hydroxyl radicals,
thereby enabling them to participate in photocatalytic reac-
tions. Developing Magnéli phases with higher surface areas
could further expand their applications, enhancing their utility
in environmental and energy-related technologies. Implement-
ing in situ characterisation could offer critical insights into the
catalytic and oxidation mechanisms occurring on the surface or
interface of the material across various applications. This
approach may clarify real-time structural and chemical
changes, thereby advancing our understanding of how Magnéli
phase titanium suboxides perform under operational
conditions.

Two lesser-explored applications of Magnéli phase titanium
suboxides are gas sensing and hydrovoltaics. These areas hold
considerable potential for industrial applications and sustain-
able energy generation, particularly using low-cost raw mate-
rials. Further investigation into these applications could
significantly broaden the scope of Magnéli phases in environ-
mental remediation and energy storage, contributing to the
development of advanced, cost-effective solutions for global
challenges.

6. Conclusion

This review has highlighted the numerous opportunities that
Magnéli phase titanium suboxides present across various fields,
including catalysis, batteries, REMs, and electronic and opto-
electronic devices. The performance comparisons with the most
common materials used in these applications indicate that
Magnéli phases not only match but often exceed the perfor-
mance of traditional materials for similar tasks.

Despite the challenges associated with synthesising these
materials for large-scale applications, innovative approaches,
such as 3D printing, hold great promise. If these methods can
be developed and optimised to be cost-effective, Magnéli phase
materials could effectively replace conventional materials due
to their excellent thermoelectric properties, optical character-
istics, corrosion and oxidation resistance, and their ability to
form reactive oxygen species on their surfaces.

Given their rising popularity, it is anticipated that research
efforts will focus on developing higher surface area Magnéli
phases through low-cost synthesis strategies, thereby broad-
ening their use in a variety of applications. This continued
exploration may address current challenges and unlock new
functionalities and markets for Magnéli phases, solidifying
their role as a transformative material in advanced
technologies.
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