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d hydrogen electrode potential
and redox potentials of atoms and molecules:
machine learning aided first principles
calculations†

Ryosuke Jinnouchi, *a Ferenc Karsaib and Georg Kressebc

Constructing a self-consistent first-principles framework that accurately predicts the properties of electron

transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical

electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode

potential, the most fundamental reference for electrode potentials, proves to be extremely challenging.

Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative

predictions when statistically accurate phase-space sampling is achieved via thermodynamic integrations

and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and D-

machine learning models. The application to seven redox couples, including molecules and transition

metal ions, demonstrates that the hybrid functional can predict redox potentials across a wide range of

potentials with an average error of 140 mV.
1 Introduction

The absolute standard hydrogen electrode potential (ASHEP) is
the foundation for the thermodynamic measurement of redox
potentials. It is dened as the chemical potential of electrons,
referenced to the vacuum level, that equilibrates the redox
reaction of hydrogen, 1

2H2 4 H+ + e−, in its standard state
(0.1 MPa for H2 and 1 mol L−1 for H+). In many electrochemical
experiments, the half-cell potential is scaled to a selected
reference electrode, making ASHEP not always a necessary
property. However, the absolute potential is a fundamental
property that becomes essential when comparing redox
potentials to the band edges of metal and semiconductor
electrodes or the chemical potential of electrons calculated in
electronic structure calculations. ASHEP is also closely related
to the absolute value of the real potential of a single ion, which
is dened as the free energy change associated with the
transfer of an ion from the gas phase to the liquid phase under
the standard state. Based on the Born–Haber cycle, the free
energy change (DatG

0) of the hydrogen dissociation reaction,
H2 4 2H, and the ionization potential (DionG

0) of an H atom,
allow ASHEP to be converted to the real potential of a proton
ða0

HþÞ, which is also referred to as the work function of a proton
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(here, we use the notations from ref. 1). The real potential is
further related to the solvation free energy. The real potential
includes the contribution of the electrostatic potential differ-
ence across the vacuum–solute interface; by subtracting this
so-called surface potential contribution, the solvation free
energy can be obtained.2,3 However, in experiments, the
surface potential always exists at the vacuum–liquid interface.
To separate the surface potential contribution from the real
potential, a denition of the solution phase without the
surface potential is required, which has been a topic of debate
for years in the cluster-pair-based approach.2,3 However, since
the effect of the surface potential is always involved in the
ASHEP, which we focus on in this study, we place our emphasis
on the real potential.

Despite its importance, determining the ASHEP is chal-
lenging. The most reliable experimental value is considered to
be −4.44 ± 0.02 V recommended by Trasatti and by the Inter-
national Union of Pure and Applied Chemistry (IUPAC).1 The
value was determined from the potential difference of a voltaic
battery.4,5 However, experimental studies using other methods,
such as the Kelvin work function measurement,6 UHV
measurements,7 and cluster-ion solvation data,2 have reported
scattered results of −4.80 to −4.28 V.

A rst-principles (FP) prediction of the ASHEP is also highly
challenging. The redox potential Uredox is determined by the free
energy difference DA between the reduced and oxidized states:

Uredox ¼ �DA

en
; (1)
Chem. Sci., 2025, 16, 2335–2343 | 2335
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Table 1 Real potential of proton ða0
Hþ Þ (eV), ASHEP (V) and relevant

free energies (eV) calculated by five exchange–correlation functionals
(RPBE+D3, PBE0, PBE0+D3, HSE06 and B3LYP) compared with the
experimental values recommended by the International Union of Pure
and Applied Chemistry (IUPAC).1 DatE and DatG

0 represent the atom-
ization energy and dissociation free energy of the H2 molecule,
respectively. DionG

0 is the ionization potential of an H atom in vacuum.
MLFF denotes the machine-learned force field trained on the
RPBE+D3 data. The specified modeling error bars correspond to 2s,
estimated by block averaging analysis8

DatE DatG
0 DionG

0 a0
Hþ ASHEP

MLFF 4.58 4.04 13.75 −10.98 � 0.05 −4.78 � 0.05
RPBE+D3 4.58 4.04 13.75 −11.02 � 0.06 −4.75 � 0.05
PBE0 4.53 3.99 13.64 −11.06 � 0.09 −4.58 � 0.09
PBE0+D3 4.53 3.99 13.64 −11.12 � 0.09 −4.52 � 0.09
HSE06 4.53 3.99 13.63 −11.06 � 0.09 −4.57 � 0.09
B3LYP 4.78 4.25 13.67 −10.94 � 0.08 −4.86 � 0.09
Exp. 4.73 4.21 13.62 −11.28 � 0.02 −4.44 � 0.02
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where e is the elementary charge, and n is the number of elec-
trons involved in the reaction. Here, we replace the Gibbs free
energy with the Helmholtz free energy, supposing that the
changes in volume during the electron-transfer half reaction are
negligible. The free energy difference DA can be precisely
determined by thermodynamic integration (TI).9,10 In cases
where there are signicant structural changes from the oxidized
form to the reduced form, such as in the hydrogen redox reac-
tion involving solvation and diffusion of the proton, many
timesteps are required to accurately determine the free energy
difference. Hence, applying the FP calculation directly entails
a huge computational cost to achieve good statistical accuracy.
Difficulties also arise when evaluating the real potential of
a proton in solution. ASHEP is measured with respect to the
vacuum level, a quantity that is not directly accessible in
simulations using periodic boundary conditions. Furthermore,
as demonstrated in previous studies,11–13 the accurate calcula-
tion of redox potentials oen requires computationally inten-
sive non-local hybrid functionals that would necessitate several
hundred million core hours when complete plane-wave basis
sets are used. Therefore, most past calculations have been
carried out using approximate methods containing empirical
parameters, such as the quantum mechanical molecular
mechanical (QM/MM) method,14 static FP calculations
assuming water hexamers,15 and continuum solvation
models.16–18 Because of the different approximations used the
reported simulation values vary from −4.56 to −4.18 V.

To mitigate the problems, Sprik and co-workers12,19–21 intro-
duced a restraining potential that xes protons to specic water
molecules during short, approximately 5–20 picosecond, FPMD
simulations to achieve stable and convergent results through TI
calculations. They also used localized Gaussian basis sets22 and
norm-conserving pseudopotentials.23 Ambrosio and co-
workers24,25 used a similar approach with the rVV10 van der
Waals functional26,27 to calculate the ASHEP at −4.56 V, a value
that closely matches the Trasatti's experimental results.
However, the use of localized basis sets can introduce basis set
superposition errors. Additionally, the restraining potential
used to suppress diffusion in solution might also introduce
errors in the entropy of the protons. Finally, the long rst
principles calculations remain even today computationally very
demanding, limit the statistical accuracy, require state of the art
parallel computing facilities, and make routine calculations
challenging.

Recently, methods have been proposed to accelerate time-
consuming TI using machine learning (ML) surrogate models
to calculate free energy changes and redox potentials. For
example, Wang and co-workers28,29 proposed a method to train
deep neural network potentials during TI calculations.
Although they still employed restraining potentials and local-
ized Gaussian basis sets, they devised a way to calculate free
energy changes and redox potentials via TI using these poten-
tials. Additionally, we13 developed a method that utilizes
machine learning force elds (MLFFs) to achieve highly accu-
rate statistical averaging and further corrects the errors in
MLFFs through TI. We reported that this approach can accu-
rately predict the redox potentials of electron transfer reactions
2336 | Chem. Sci., 2025, 16, 2335–2343
for three transition metal redox couples, Fe3+/Fe2+, Cu2+/Cu+,
and Ag2+/Ag+, using the PBE0 functional with 25% exact
exchange, the all-electron projector augmented wave (PAW)
method, and plane waves.30–33 However, there are no reports on
calculating ASHEP using the PAW method with plane-wave
basis sets, without applying restraining potentials. This is the
main goal of the present work.

To achieve sufficient statistics for accurate predictions, we
extend the machine learning (ML)-aided thermodynamic inte-
gration (TI) developed in our previous study,13 which enabled
electron insertion into aqueous solutions, to also allow for
proton insertion into aqueous solutions. Using a hybrid func-
tional that includes 25% exact exchange and dispersion
corrections (PBE0+D3),34–36 this method predicts the ASHEP and
the real potential of the proton as −4.52 ± 0.09 V and −11.12 ±

0.09 eV, respectively. These values are very close to the IUPAC
recommended values of −4.44 ± 0.02 V and −11.28 ± 0.02 eV,
as shown in Table 1. In addition to the ASHEP and the three
redox couples Fe3+/Fe2+, Cu2+/Cu+, and Ag2+/Ag+ from our
previous study,13 we extend applications to the electron transfer
reactions of three redox couples, V3+/V2+, Ru3+/Ru2+, and O2/
O2

−. The redox couple Ru3+/Ru2+ forms a rigid rst solvation
shell composed of six water molecules, similar to the Fe3+/Fe2+

couple. Past density functional theory calculations using
a continuum solvation model37 have shown that the calculated
redox potentials vary by more than 1 V depending on whether
the second solvation shell is explicitly included or not,
demonstrating the challenges in non-empirically determining
solvation structures through static calculations. The redox
couple V3+/V2+ is involved in a half-cell reaction of the redox ow
battery.38 The non-catalytic electron transfer reaction, O2 + e−

/ O2
−, serves as a foundation for elucidating the formation

mechanism of the superoxide ion, which is considered the
initial precursor in the oxygen reduction reaction in alkaline
conditions.39–41 Thus, their FP modeling is considered to be of
practical importance. The calculations across these seven redox
potentials over a wide range of potentials are expected to
demonstrate that our ML-assisted FP method provides
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a universal framework for accurately predicting redox
potentials.
2 Overview of method
2.1 ASHEP and real potential of proton

We provide a brief overview of our computational methodology
for ASHEP. Details are given in Section S1.† To facilitate the
calculation of the free energy, we divide the hydrogen oxidation
reaction into three steps, as in previous studies:20,42 dissocia-
tion, H2(g) / 2H(g), ionization, 2H(g) / 2H+ + 2e−(g), and
solvation, 2H+(g) / 2H+(aq), where (g) and (aq) denote species
in vacuum and in the aqueous phase, respectively. The corre-
sponding free energy changes are DatG

0 in the dissociation,
2DionG

0 in the ionization, and 2a0
Hþ in the solvation. The free

energy of the entire redox reaction per electron (dened as−DA)
is written as follows:

�DA ¼ DatG
0

2
þ DionG

0 þ a0
Hþ : (2)

Among the three free energies, DionG
0 can be easily calcu-

lated by a single-point FP calculation. The dissociation free
energy DatG

0 can also be easily computed using the ideal gas
model. The remaining quantity, the real potential of the proton,
a0
Hþ , can be computed by a TI simulation from the non-

interacting proton in the gas phase to the interacting proton
in the aqueous phase:

a0
Hþ ¼

ð1
0

�
vH

vl

�
l

dl: (3)

Here, h.il means evaluation of the expectation value using an
ensemble created by the Hamiltonian at coupling l. This inte-
gral seamlessly connects the proton in the vacuum (l= 0) to the
one in the aqueous phase (l = 1) along a coupling path. Simi-
larly to the case of the electron insertion method developed in
the previous study,13 the Hamiltonian can be written as:

H ¼
XNa

i¼1

jpij2
2mi

þUl; (4)

Ul = l(U1 + eDf) + (1 − l)U0, (5)

where U1 and U0 denote the potential energy for the aqueous
system containing the proton under a periodic boundary
condition (PBC) and the one for the pure water and the proton
in vacuum under a PBC, respectively. In any calculation using
periodic boundary conditions, the energy changes due to
removal (or addition) of charged species are not entirely well
dened. To correct for this, the potential gap Df is introduced.
The potential gap essentially species the potential of the
vacuum level just outside a water surface, which is the common
reference point in electrochemistry for any charged species (be
it electrons or protons). There are two alternative views, both of
which give the same correction. The potential gap accounts for
the chemical potential of the electrons that we move from the
gas phase to a reference point just above the surface slab
© 2025 The Author(s). Published by the Royal Society of Chemistry
(electron addition to reservoir), or it accounts for the movement
of the proton from a reservoir just above the water surface into
liquid water.13,19–21 Essentially this term xes the electrostatic
reference point of charged species to a point just above the
surface of the liquid water. Consequently, eqn (3) can be
rewritten as:

a0
Hþ ¼

ð1
0

hU1 �U0ildlþ e

ð1
0

hDfildl: (6)

In practice, computing Df and the TI in eqn (3) is highly
challenging, as relaxation times in water are slow and require
expensive ns-scale FP MD simulations that consume millions to
tens of millions of core hours. Here, we address these issues by
extending the ML-aided scheme developed in our previous
study13 from electron insertion to proton insertion.
2.2 Local potential gap

The local potential gap Df needs to be determined to correctly
x the reference potential for charges to a point just outside
a water surface. This reference level is usually determined in
a separate slab calculation involving an interface between water
and the vacuum. But then, how does one align the so deter-
mined vacuum level with the periodic slab calculation? There
are several conceivable options for this procedure. Considering
the procedures generally used for semi-conductors,43,44 one
might be inclined to use the valence band edge (highest occu-
pied orbitals) of water as reference. This choice is not ideal, as
the valence band edges are global quantities and might be
difficult to identify unambiguously in a nite system. The
averaged local potential19–21,42 has also been suggested as refer-
ence level. However, a natural point of alignment are the O 1s
levels far from the reactant in the considered periodic cells at
any coupling and at the middle of water slabs, respectively.13

Similar procedures—reference points far away from defects—
were also suggested to account for most of the nite size
effects,43 oblivating the need for additional nite size correc-
tions. We also note that the chosen concentration almost agrees
with the experimental proton concentration (1 mol L−1 for H+).
As depicted in Fig. 1 (see the green arrow), the local potential
gap hDfil is then determined by:

ehDfil = m − h31s,slabi + h31s,bulkil, (7)

where m is the vacuum level. Although the equation is simple,
statistically accurate computations of the potential gap across
the water–vacuum interface require expensive million-step MD
simulations to yield thousands of uncorrelated water slab
structures (see details in Section S4†). This problem was solved
in the previous study13 by employing machine-learned (ML)
force elds (FFs)45 that allow for orders of magnitude faster MD
simulations while retaining the accuracy of the FP method.
2.3 Thermodynamic integration

The TI in the rst term on the right-hand side of eqn (6) is
performed by the modied l-MLFF scheme, which allows for
Chem. Sci., 2025, 16, 2335–2343 | 2337
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Fig. 1 Aligning energy levels to the real potential of proton a0
Hþ . During

thermodynamic integration, when a particle with charge e is removed
from the slab, the value m must be added to account for the fact that
the particle is moved to the vacuum level with the electrochemical
potential m. However, this value needs to be aligned with the bulk
water calculation. In principle, any reference point can be chosen for
the slab and bulk calculations. In periodic boundary codes, it is
common practice to set the average electrostatic potential to zero. All
eigenvalues and energy changes upon altering the charge state are
implicitly referenced to this zero potential point. To correct for the
difference in reference points between the slab and bulk calculations,
we use the O 1s levels as a common reference point for both systems.
The final alignment correction is then obtained as ehDfil= m− h31s,slabi
+ h31s,bulkil.
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insertion of atoms and molecules.46,47 As in our previous study,
the TI is decomposed into two steps: (1) TI using the MLFFs
from the non-interacting proton and pure liquid water to the
fully interacting aqueous solution containing the proton (or vice
Fig. 2 Results of TI and TPT calculations: (a) schematic of two TI steps f
a repulsive potential creating a cavity for proton placement (lI = 1 and lII
and lII = 1), (b) integrands of these TI steps along the coupling paths, (c) ra
oxygen atoms, (d) integrands in TI simulations along the coupling path h

difference DUDML
k between PBE0+D3 and RPBE+D3 used in the TPT calcu

in the direction from the non-interacting proton to the interacting proto
gaseous proton [H+] and [water], and k = 1 corresponds to the solvated

2338 | Chem. Sci., 2025, 16, 2335–2343
versa), and (2) TI from the MLFF potential to the FP potential.
Step (1) is further decomposed into two steps (I) and (II) as
shown in Fig. 2(a) to yield a reversible thermodynamic pathway
between two endpoints. In the rst step, a Gaussian so-
repulsive potential is gradually introduced between the proton
and other atoms along the coupling parameter lI to form
a cavity in water similar to the previous FP calculation of
solvation free energies of Li+ and F− ions.48 Subsequently, in the
second step, the so-repulsive potential is replaced with the full
interaction represented by the MLFF model along the coupling
parameter lII. A point worth noting is that, unlike the TI
approach used by Sprik and co-workers,19,20 no restraining
potential is introduced in the nal state where the MLFF is
applied. For a system with 64 water molecules, we estimate that
the neglected entropy contribution with a restraining potential
is typically 1/b ln(64) z 100 meV. In our simulations, the free
energy of the freely diffusing protons is accurately represented
in the nal state. It has been found that achieving a good
convergence in the TI leading to fully diffusing protons requires
simulations on the nanosecond scale. The MLFF makes this
possible by accelerating these MD simulations by several orders
of magnitude. Details of these two TI simulations are explained
in Section S2.† We refer to this improved method as the so
landing l-MLFF scheme.

While the TI step (1) provides a statistically accurate free
energy for the MLFF, the MLFF model may introduce a non-
negligible error. This error is corrected by the TI step (2). In
this step, the potential energy transitions seamlessly from the
MLFF to the FP potential. One of the main advantages of our
rom the non-interacting system (lI = 0 and lII = 0) to the system with
= 0), and then to the fully interacting system described by MLFF (lI = 1
dial distribution functions between an oxygen atom in H3O

+ and other
from MLFF to RPBE+D3, and (e) probability distributions of the energy
lation. In (b), the red circles and blue triangles represent the integrands
n and vice versa, respectively. In (d) and (e), k = 0 corresponds to the
system [H+ + water].

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ML-aided scheme is that the initial TI step from the non-
interacting to the interacting system is done using the MLFF
model. This initial step, which requires the use of an inni-
tesimally small interaction between the inserted atom and other
atoms, becomes extremely challenging as the yet non-
interacting atom approaches or even overlaps with other
atoms and hence experiences a signicant repulsive potential.
Additionally, it is highly challenging to perform adequate
congurational sampling of the proton, which diffuses through
the Grotthuss mechanism, requiring multiple ns to tens of ns of
simulations along the coupling parameter with the FP method.
The MLFF accelerates these computations by several orders of
magnitude. Another major advantage is that the accurate
reproduction of FP structures by the MLFF results in small and
nearly linear integrands with respect to the coupling parameter
for the TI step (2), facilitating the convergence of this integral
aer a few tens of ps of MD simulations, thus reducing the high
computational costs associated with FP calculations.

However, directly applying the nal TI step (2) to an expen-
sive FP method, like the hybrid functional used in this study,
remains highly costly. Therefore, as in our previous study,13 we
correct the free energy calculated with the computationally
inexpensive FP method, that is a semi-local functional in our
case, through using thermodynamic perturbation theory (TPT)
and a scheme akin to D-ML.49–56 Specically, the free energy
difference is calculated using:

DA ¼ A1 � A0 ¼ �1

b
ln
�
e�bDU

�
0
¼ �1

b
ln
�
ebDU

�
1
; (8)

where the symbol DU denotes the potential energy difference
between the expensive and inexpensive FP methods. Eqn (8) is,
in principle, exact, but if the ensembles generated by the two
potentials are too different, it may be necessary to evaluate the
potential energy difference for thousands or even many ten
thousands of congurations. Crucially, we suggest to calculate
the difference between the expensive and inexpensive method
DU using a ML representation. Since the difference between any
two rst-principles methods is very smooth, only a few dozen
structures are required to learn the difference (D-ML), as
demonstrated in our previous study,.13 Hence the ensemble
averages in eqn (8) can be calculated using thousands of
congurations at little cost.
2.4 Correction to vibrational free energy

Another obstacle in computational studies is the integration of
nuclear quantum effects, which cannot be accounted for in the
classical thermodynamic integration (TI) and thermodynamic
perturbation theory (TPT) simulations described previously.
Specically, the contributions of zero-point energy cannot be
neglected due to the high frequency of the O–H bond.19,20,24,25 In
this study, nuclear quantum effects were estimated to be 0.30 eV
by calculating the free energy difference between the quantum
harmonic oscillator model and the classical model for three
experimentally measured vibrational frequencies of 1250, 1760,
and 3020 cm−1,57 which were attributed to the solvation of
a single proton by water (details in Section S3†). Our estimated
© 2025 The Author(s). Published by the Royal Society of Chemistry
value is slightly smaller than the previously reported value of
0.36 eV,24 which was calculated solely from the contribution of
zero-point energies, excluding entropy contributions and the
subtraction of classical vibrational contributions. The discrep-
ancy, as explained in Section S3,† stems from whether these
additional contributions are accounted for. To examine the
sensitivity of the correction to the model and frequencies, the
correction was also calculated for H3O

+ and H2O molecules in
vacuum. The results indicate that the correction is insensitive to
details of the model and frequencies (see also Section S3†).

2.5 Redox potentials of other electron transfer reactions

Finally, to demonstrate that the hybrid functional consistently
predicts the redox potentials of a wide range of redox couples
with high precision, we calculated the redox potentials for
electron transfer reactions, Ox + e− 4Red, of three redox
couples, V3+/V2+, Ru3+/Ru2+, and O2/O2

−, in addition to the three
redox couples, Fe3+/Fe2+, Cu2+/Cu+, and Ag2+/Ag+, that were
calculated in our previous study.13 The redox potentials were
calculated from the free energy changes computed via the ML-
aided TI and TPT calculations from the oxidized state to the
reduced state. Details of the computational method are
explained in our previous publication.13 Details of the models
are described in Section S1.†

2.6 Computational method

All simulations were carried out using the Vienna Ab initio
Simulation Package (VASP).31–33 For the MLFF models, we
utilized the algorithm described in our previous publica-
tions.45,58 Similar to the pioneering ML approaches,59,60 the
potential energy is approximated as a sum of local energies,
which are further approximated as a weighted sum of a sparse
set of kernel basis functions. The Bayesian framework allows for
accurate predictions of energies, forces, and their uncertainties,
enabling efficient on-the-y sampling of reference structures
during FPMD simulations of target systems. For the proton
insertion calculations performed to compute ASHEP, a single
MLFF was trained on both the reactant and product states.
Additionally, to generate a stable and reversible thermodynamic
pathway, the MLFF was also trained on the y during the TI
simulation along the coupling constant lII prior to the
production run. For other electron transfer reactions, individual
MLFF models were trained separately on the reactant and
product states and were further trained on the y during the TI
simulation along the coupling constant. Exchange–correlation
interactions between electrons were modeled using the modi-
ed Perdew–Burke–Ernzerhof semi-local functional,61

augmented with Grimme's dispersion interaction with zero-
damping (RPBE+D3).35,36 Details of the equations, parameters,
and training conditions are summarized in Section S1.† The
same formulation was applied to the D-ML model. A D-ML
model was generated for each reactant and product state. The
training was conducted based on the differences in energies
and forces between the semi-local RPBE+D3 functional and
a selected functional from among the following: a non-local
hybrid functional with 25% exact exchange (with or without
Chem. Sci., 2025, 16, 2335–2343 | 2339
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Fig. 3 Radial distribution functions between (a) O in H3O
+ and other

oxygen atoms in the H+ + 64H2O system, (b) V and O in the V3+/V2+ +
64H2O systems, (c) Fe and O in the Fe3+/Fe2+ + 64H2O systems, (d) Cu
and O in the Cu2+/Cu+ + 64H2O systems, (e) Ru and O in the Ru3+/
Ru2+ + 64H2O systems, (f) Ag and O in the Ag2+/Ag+ + 64H2O systems,
and (g) O in O2/O2

− and other oxygen atoms in the O2/O2
− + 64H2O

systems. Solid and dashed lines are the RDFs obtained by the MLFF
models and the FP method, respectively. Black and gray lines in (b) to
(g) show the RDFs of the oxidized state and reduced state, respectively.
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Grimme's dispersion interaction, PBE0+D3 or PBE0),34 a hybrid
functional with screened exchange (HSE06),62,63 and the B3LYP
functional.64 Among the ve functionals, we primarily focus on
the RPBE+D3, PBE0, and PBE0+D3 functionals, guided by
previous calculations of redox potentials,11–13,28,29 band align-
ments,25,65 and structural properties of liquid water.66–68 As re-
ported in previous studies,11,12 incorrectly aligned band edges of
liquid water can hybridize with redox levels, leading to signi-
cant errors in redox potentials. A previous study25 showed that
the PBE0 functional with 25% exact exchange [PBE0 (x = 0.25)]
provides a band gap closer to experimental results than the
HSE06 functional, and that even better agreement can be ach-
ieved by increasing the exact exchange to 45% [PBE0 (x = 0.45)].
However, it is also known that thermochemical properties are
calculated with better balance at x = 0.25,34 and our previous
study13 demonstrated that for three redox couples—Fe3+/Fe2+,
Cu2+/Cu+, and Ag2+/Ag+—PBE0 (x = 0.25) achieves more
balanced accuracy in redox potentials than PBE0 (x = 0.50).
Furthermore, a recent evaluation of common density func-
tionals68 showed that, while better functionals do exist,
RPBE+D3 and PBE0+D3 yield reasonable isobaric density
proles for water. As described below, we focus on the results
from these three functionals; however, for reference, we also
performed calculations using the HSE06 and B3LYP func-
tionals, which are commonly used in the elds of solid-state
physics and quantum chemistry.

All aqueous solutions were modeled using a unit cell con-
taining 64 water molecules, which is close to the ion concen-
tration at the standard state (56 water molecules per ion). Our
previous study13 on the size effect demonstrated that the impact
of this slight deviation in concentration is negligible.

3 Results and discussion
3.1 Accuracy of MLFF and D-ML models

The MLFF models for seven redox couples achieve root mean
square errors (RMSEs) of 1–2 meV per atom, 40–80 meV Å−1,
and 0.40–1.1 kbar, as shown in Table S3† (error distributions
are also presented in Fig. S2 to S8†). These RMSEs are compa-
rable to those of MLFFs in previous studies.45,46,69,70 Due to their
accuracy, the MLFFs reproduce the solvation structure
surrounding the redox couples, as demonstrated by the radial
distribution functions (RDFs) shown in Fig. 3. Consistent with
the previous FPMD simulation,71 H+ forms an H3O

+ ion coor-
dinated by three water molecules on average. Similarly, Fe and
Ru form rigid rst solvation shells composed of six water
molecules, regardless of the oxidation state, in alignment with
previous computational results.37,72–74 Vanadium also forms
a rigid rst solvation shell composed of six water molecules. In
contrast, as reported in previous studies,13,75 the coordination
number for Cu changes from 5–6 in the oxidized state (Cu2+) to
1–2 in the reduced state (Cu+), and for Ag, it changes from 5–6 in
the oxidized state (Ag2+) to 4–5 in the reduced state (Ag+).
Notable H-bonds are not formed between the neutral O2 and
other water molecules, while its reduced state, O2

−, is coordi-
nated by roughly three water molecules on average. Although
the MLFF models reproduce the solvation structures observed
2340 | Chem. Sci., 2025, 16, 2335–2343
in our FPMD calculations and previous calculations, non-
negligible deviations are present in the RDFs calculated by the
MLFF models compared to those calculated by the FP method.
The error in the MLFF models can be corrected through the TI
simulation from the MLFF potential to the FP potential, as
illustrated by the transition of the radial distribution function
(RDF) shown in Fig. 2(c).
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Redox potentials: (a) comparison of the absolute redox
potentials of seven redox couples determined by three functionals
with their experimental values76 and (b) RMSE. Data for transition
metals, Fe3+/Fe2+, Cu2+/Cu+, and Ag2+/Ag+, were taken from our
previous publication.13
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Thanks to the smooth energy difference between the semi-
local and hybrid functionals, the D-ML models accurately
represent the energy difference with only 40 congurations,
achieving RMSEs more than an order of magnitude smaller
than those of the MLFFs, as shown in Table S4 and Fig. S2 to
S8.† Due to this remarkable accuracy, the D-ML models can
provide exceedingly accurate free energy changes via TPT
calculations without further correction.13

3.2 Real potential of proton

As illustrated in Fig. 2(b), thermodynamic integration (TI)
simulations using the MLFF trained on the semi-local
RPBE+D3 functional generate smooth and reversible inte-
grands along the coupling parameters, within the range of
statistical errors. At the endpoint of TI (lI = 1 and lII = 1), as
shown in Fig. 2(c), the MLFF well reproduces the RDF calcu-
lated using the RPBE+D3 functional. Owing to this high
precision, as shown in Fig. 2(d), TI fromMLFF to the RPBE+D3
functional yields nearly linear and relatively small integrands
along the coupling path h. Consequently, this TI induces only
slight modications to the real potential of the proton ða0

HþÞ
(40 meV). The calculated value shown in Table 1 (−11.02 ±

0.06 eV) is already close to the experimental result (−11.28 ±

0.02 eV) and also closely matches a previously calculated value
of −11.00 eV. This earlier calculated value was derived by
adding 0.08 eV to the tabulated value of WH+ = −11.08 eV re-
ported by Ambrosio et al.25 This adjustment was made to
account for the dilution of the hydrogen atom in the gas phase
from a concentration of 1 mol L−1 to 0.1 MPa (1/
24.45 mol L−1), to make it comparable with Trasatti's value.
The agreement with experiment is further improved through
hybrid functional calculations (PBE0 and PBE0+D3) facili-
tated by TPT calculations utilizing the D-ML scheme. The TPT
calculations demonstrate that the probability distributions of
energy differences between the hybrid functional (PBE0 or
PBE0+D3) and RPBE+D3 are accurately represented by
Gaussian distributions, as depicted in Fig. 2(e). This implies
that the second cumulant expansion equation [eqn (S9)†]
provides a reasonable approximation. The computed value for
PBE0+D3 (−11.12 ± 0.09 eV) is in very good agreement with
the experimental results. In addition to these hybrid func-
tionals, HSE06 produces an accurate real potential nearly
identical to that of the PBE0 functional. In contrast, the
B3LYP functional provides relatively less stabilization for
protons in water.

3.3 ASHEP and other redox potentials

The ASHEP values calculated by RPBE+D3, PBE0, and PBE0+D3
are−4.75± 0.05,−4.58± 0.09, and−4.52± 0.09 V, respectively.
While error cancellation between the hydrogen dissociation free
energy DatG

0 and the other two properties is a partial cause, the
PBE0+D3 functional shows excellent agreement with the IUPAC
recommended experimental ASHEP value of −4.44 ± 0.02 V.
Furthermore, the PBE0+D3 functional accurately reproduces
experimental values of the redox potentials of ve transition
metal redox couples, Ag2+/Ag+, Fe3+/Fe2+, Cu2+/Cu+, V3+/V2+,
© 2025 The Author(s). Published by the Royal Society of Chemistry
Ru3+/Ru2+, and the molecular redox couple O2/O2
− as shown in

Fig. 4 (all relevant data are in Fig. S9 and Table S6†). Compar-
ison with experimental data demonstrates that the PBE0+D3
functional consistently reproduces experimental redox poten-
tials across a broad range of potentials with a small RMSE of
140 mV. The HSE06 functional also yields accurate redox
potentials almost identical to those calculated by the PBE0
functional. In contrast, the B3LYP functional leads to the largest
error among the ve functionals. These results suggest that, for
calculating redox potentials in extended systems with explicit
treatment of both solute and solvent, the hybrid functionals
PBE0 or HSE06 are preferable. The B3LYP was designed to
optimally reproduce experimental atomization energies, elec-
tron and proton affinities, and ionization potentials of atomic
and molecular species composed of light elements taken from
Pople's G2 test set.64 However, it was not calibrated for proper-
ties of heavy elements as well as properties of condensed
matter, such as band alignments in extended systems. In
addition, B3LYP fails to attain the exact homogeneous electron
Chem. Sci., 2025, 16, 2335–2343 | 2341
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gas limit.77 On the other hand, while PBE0 and HSE06 also have
parameters optimized to reproduce experimental values, they
satisfy certain constraints met by the PBE functional.34,62,63 For
instance, these functionals fulll the uniform electron gas limit.
These properties of PBE0 and HSE06 may contribute to the
accurate calculation of redox potentials.
4 Conclusions

We have developed an ML-aided FP method that allows for
statistically accurate computation of the free energy change
associated with proton insertion into aqueous solutions
through TI and TPT calculations. In this approach, most of the
energetic contributions to the free energy change were obtained
through TI simulations using MLFF models trained on semi-
local exchange–correlation functionals. Small residual errors
in the MLFF models were corrected via subsequent TI simula-
tions transitioning from the MLFF potential to the FP potential.
Moreover, the D-ML model, which learned the potential energy
difference between semi-local and hybrid functionals, enabled
efficient TPT calculations of free energy changes for the
expensive hybrid functional. Overall, our scheme accelerates
free energy computations by about two orders of magnitude,
enabling the calculation of redox potentials for seven redox
couples on an absolute scale, including the ASHEP. This
application has shown that when combined with a hybrid
functional (PBE0), the method can predict redox potentials with
an exceptional average accuracy of 140 mV. In condensed-
matter, highly accurate beyond density functional theory
methods, such as the random phase approximation78,79 and
coupled-cluster approaches,80 are being adopted, and these
methods may achieve accuracy surpassing that of PBE0 used in
this study. The ML surrogate models we propose, which enable
proton and electron insertions, are expected to provide a ex-
ible, accurate, and efficient framework for predicting free
energy changes and redox potentials on an absolute scale for
any proton and electron transfer reactions, utilizing such high-
precision electronic structure theories.
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