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The blood—-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain
that could fight central nervous system diseases such as Alzheimer's disease and strokes. However,
techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with
bioconjugation achieved via bio-orthogonal tetrazine/norbornene click chemistry. A series of
lanthanide—tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal
click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-
barrier. The Gd complexes show higher relaxivities than the clinical standard of Gd(DOTA) at 1.4 T and
phosphorescence is observed from the Eu and Tb complexes via tetrazine sensitization, with supporting
in vitro cytotoxicity and cell imaging. A bio-orthogonal click reaction between a Gd-tetrazine complex
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Introduction

Central nervous system (CNS) diseases such as brain cancers,
Alzheimer's disease, and strokes have increased dramatically in
the 21st century, corresponding to 13% of the global health
burden, exceeding other cancers and cardiovascular diseases.*
In general, attempting to deliver imaging agents or therapeutics
to the brain is challenging and faces a low success rate due to
the blood-brain barrier (BBB).>* The BBB is a semipermeable
membrane made from endothelial, astrocyte and pericyte cells,
forming tight-junctions that restrict cell-to-cell transport from
blood to neural tissues to protect the brain from neurotoxins
(and vice versa).*® This means that most macromolecules,
molecular imaging probes, and therapeutics are unable to pass
through the BBB.” Given this difficulty in penetrating the BBB
safely, several methods have been developed for passing
through the BBB. Molecules can pass through the BBB naturally
via passive diffusion; however, this is limited by molecular
weight (<500 Da) as well as factors such as the lipophilicity and
hydrogen-bonding ability.*® Alternative approaches involve the
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enhanced relaxivity and could potentially act as a peptide shuttle for the Gd MRI agent.

cyclisation of a peptide structure to enhance permeability (such
as stapled peptides) or the use of ‘trojan horse’ peptides which
can be recognised by specific receptors on the BBB surface and
carry through molecules which would not penetrate the BBB by
themselves (peptide shuttles). Cyclic peptides can show
increased cell penetration and binding affinities due to their
enforced bioactive a-helical structure, reduced conformational
freedom, and higher resistance to proteolysis.'®'* The cyclic-
RGD peptide has been used as a targeting group for the integ-
rin o,f; receptor which is up-regulated on endothelial cells
when angiogenesis occurs and overexpressed on the surface of
cancer cells."”" Hence, it is an attractive molecular target for
the early detection and treatment of cancers. The cyclic RGD
peptide has also been shown to be able to cross the BBB and
deliver drug payloads to malignant glioma tumours in vivo, as
well as many radiolabelled-cyclic RGD peptides being tested in
vivo and in clinical trials.""*°

Click chemistry has proven to be a versatile and efficient way
of linking two molecular entities together under facile condi-
tions. The tetrazine/norbornene click reaction has gained much
interest over recent years due to its exceptional kinetics, ability
to proceed without metal catalysts, and its bio-orthogonality."”
The bio-orthogonal reaction between an electron-poor 1,2,4,5-
tetrazine and strained alkene proceeds via an inverse-electron
demand Diels-Alder (IEDDA) reaction, featuring a [4 + 2]
cycloaddition before retro-[4 + 2] cycloelimination and release
of dinitrogen to generate a 1,4-dihydropyridazine." This type of
click reaction has found application in local prodrug activa-
tion," ‘turn-on’ optical imaging probes utilising FRET,***! or in
radiochemistry with a number of PET and SPECT probes being
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developed for a pre-targeting approach or radiolabelling of
peptides with a number of macrocyclic-tetrazine ligands
featuring different linkers being reported in the literature.**”
However, this type of click chemistry has seldom been applied
to lanthanide imaging probes e.g. Gd-containing MRI probes.

Lanthanide complexes can be used for a wide range of
imaging applications. For example, Gd complexes can be used
as MRI contrast agents due to their strongly paramagnetic
nature.”® Eu and Tb complexes can be used as optical imaging
agents for time-resolved microscopy due to their long-lived
phosphorescent nature, large Stokes' shifts, and sharp emis-
sion profiles which can be separated from biological auto-
fluorescence.”**° Despite these promising imaging properties of
lanthanide probes, they have seldom found application for CNS
diseases, where they would have to cross the BBB, due to their
large molecular weight.

Herein, the synthesis of a series of Gd, Eu, and Tb lantha-
nide-tetrazine complexes is described, which can be used in
bio-orthogonal click chemistry with peptide BBB delivery
vectors. The relaxivity of the Gd complexes is evaluated and
compared to the clinical standard of Gd(DOTA). The analogous
Eu and Tb complexes are studied via UV-vis, fluorescence, and
phosphorescence spectroscopy. Bio-orthogonal tetrazine-nor-
bornene click reactions using a cyclic-RGD peptide are then
reported and the relaxivity of the clicked probes evaluated.

Results and discussion
Synthesis of lanthanide complexes

Two sets of lanthanide complexes were synthesised, containing
either an acetyl linker or direct attachment between the tetra-
zine and macrocycle. To synthesise complexes 7-9, 4-(amino-
methyl)benzonitrile hydrochloride was first Boc-protected
following the procedure by Hernandez-Gil et al. to give 1
(Scheme 1).** The formation of the tetrazine scaffold was
accomplished following the one-pot, Ni-catalysed procedure
reported by Yang et al. to give 2 as a bright pink solid.** The Boc-
group in 2 was then deprotected using trifluoroacetic acid (TFA)

View Article Online

Chemical Science

to give the TFA salt of 3, before the free-amine tetrazine 3 was
produced after stirring with saturated potassium carbonate
solution. The amino-tetrazine 3 was reacted with chloroacetyl
chloride to give 4 as a dark pink solid in quantitative yield. Next,
4 was attempted to be attached to the “*"DO3A-HBr macrocycle,
which had been synthesised following the procedure by Jagad-
ish et al.*® Initially, this was attempted at reflux in acetonitrile
with potassium carbonate or caesium carbonate. However, this
caused decomposition of the tetrazine, with the loss of the
aromatic protons at 8.5 ppm in the *H-NMR spectrum. This
decomposition was most likely thermally induced, with several
related examples in the literature involving the entropically-
favoured release of dinitrogen gas and generation of organic
nitrile species.>*** A successful reaction occurred when using
potassium carbonate at 50 °C for 4 hours, where 5 was obtained
as a dark pink solid. To produce the free-ligand 6, 5 was
deprotected using TFA before the lanthanide complexations for
either Gd, Eu, or Tb were performed following a general
procedure (Scheme 1). The free ligand 6 and a slight excess of
the lanthanide chloride hexahydrate salt (1.1 equivalents) were
dissolved in water and the pH adjusted to 5.5 using 0.1 M
sodium hydroxide and allowed to stir at room temperature.
After 24 hours, an additional equivalent of the lanthanide salt
was added, and the pH readjusted to 5.5. After 3 further days,
the solvent was removed in vacuo before purification was ach-
ieved via reverse-phase column chromatography. After
removing the solvents via lyophilisation, the lanthanide-tetra-
zine complexes 7-9 were isolated as pink solids in good yields.
The expected molecular ions were found via ES" mass spec-
trometry (MS) for complexes 7-9, with the expected isotope
patterns being observed. Purity was confirmed by LCMS, with
a single peak in the UV-trace for complexes 7-9, showing that no
free-ligand 6 remained. A xylenol orange test was also per-
formed on each sample to confirm that no free-lanthanide ions
were present. The "H-NMR spectrum of the Eu complex 8 in D,0
showed the expected large range of broad signals due to the
paramagnetic nature of the complex, with 4 main peaks being
observed in the 30-35 ppm region, indicating that the square-
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Scheme 1 Synthesis of target complexes 7-9.
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Scheme 2 Synthesis of target complexes 15-17.

antiprism (SAP) isomer is dominant in solution, with no peaks
being observed in the twisted-square-antiprism (TSAP) region of
10-14 ppm. The same effect is observed in the 'H-NMR spec-
trum of the Tb complex 9, with no peaks observed in the TSAP
region. A similar synthetic strategy was employed to synthesise
the complexes 15-17 (Scheme 2). Firstly, the hydroxy-tetrazine
10 was synthesised following the procedure by Yang et al.**
Initially, 10 was attempted to be tosylated using toluenesulfonyl
chloride following the procedure by Da Pieve et al.*®* However,
the chloro-tetrazine 11 was always obtained instead (details in
the ESIt).” Tetrazine 10 was instead reacted with phosphorous
tribromide to give the bromo-tetrazine 12. Reactions of 11 or 12
with “P'DO3A-HBr using potassium carbonate at room
temperature overnight were unsuccessful, with tetrazine
decomposition observed, potentially decomposing via photol-
ysis.** Successful reactions were achieved by heating 12 at 50 °C
for one hour to give 13. The free ligand 14 was then obtained
following TFA deprotection and the lanthanide complexation
reactions for 15-17 with Gd, Eu, and Tb were then performed
following the same standard procedure as for 7-9 (Scheme 2).
After 4 days, the solvent was removed in vacuo and product
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formation in the crude samples was confirmed for 15-17 with
the expected molecular ions and isotope patterns being
observed by ES" MS. However, after purifying via reverse-phase
column chromatography, only the free ligand 14 was obtained
for each sample, with the lanthanide ions dissociating from the
chelate on the column due to the acidic pH. The complexes 15—
17 were then successfully isolated via reverse-phase chroma-
tography under neutral conditions. Purity was established via
LCMS with one single peak being observed in the UV-trace for
each complex, showing that no free-ligand 14 remained. A
xylenol orange test was also performed on these complexes,
showing that no free-lanthanide ions remained.

Absorbance and emission spectroscopy

To study the photophysical properties of the lanthanide-tetra-
zine complexes, exemplar tetrazines 2 and 10 were investigated
by absorbance and emission spectroscopy (Fig. 1). The tetra-
zines were dissolved in DMSO/H,O mixtures (1:1 for2and 1:9
for 10) before being diluted in PBS (pH 7.4) to make 20 pM
solutions. Both tetrazines show similar absorbance profiles,

400

200

Emission (a.u)

T T T T T
300 400 500 600 700
Wavelength (nm)

Fig.1 Absorbance (left) and emission (right) spectra for tetrazines 2 and 10 (20 pM, slits 10 nm, PBS buffer, x-axis cut to remove 214 absorbance).
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with the major excitation present at around 265 nm, corre-
sponding to a -* transition (S,-S, transition, where n is an
excited state greater than 1, which differs for different tetrazines
depending on their substituents).*® It is known in the literature
that the substituents on the tetrazine can dramatically affect
their absorbance and emission profiles, with the Sy-S,, absor-
bance being particularly affected.®*® An additional, much
weaker m-7* transition is also seen at around 330 nm as
a shoulder. Finally, a weak absorption is observed at around
528 nm, corresponding to a n-m* transition (So-S;), which is
responsible for the pink colour of the tetrazines. This transition
is formally forbidden, hence the weak oscillator strength.*® This
type of n—t* transition is observed in only three other organic
molecules: 1,2,4-triazines, 1,2-diketones, and azobenzenes.*
The extinction coefficients for the 265 nm absorbance for both
tetrazines are similar at around 20000 M~ ' ¢cm ' and are
roughly 80-100 times greater than the extinction coefficient for
the 528 nm absorption (around 250 M~' ¢m™'), matching
related examples in the literature.®® Solutions (20 uM) of free-
ligands 6 and 14, and complexes 7-9 and 15-17 were then
prepared in PBS. All ligands and complexes showed similar
absorption profiles, matching the simpler tetrazine profiles
(Fig. 2). The extinction coefficients for the main absorption
range from around 8000 to 30 000 M~ ' cm™ ", with complexes
15-17 demonstrating higher values than complexes 7-9. The
fluorescence emission spectra for 2 and 10 were then recorded
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(Fig. 1). Following excitation at 265 nm, four main emission
peaks are seen with a sharp, weak emission at 290 nm, broad
weak emission at around 350 and 450 nm, and a much stronger
emission at around 580 nm. The emission at 580 nm is due to
the S;-S, transition, while the emission peaks at lower wave-
lengths are due to the S,-S, transitions. The emission from the
S; state at 580 nm is clearly stronger in intensity, showing
effective internal conversion from higher excited states.

The fluorescence emission spectra were then recorded for
the free-ligands and lanthanide complexes (Fig. 2). For species
6, 7 and 9, the major emission peak is now at 350 nm,
demonstrating effective fluorescence emission from the higher
excited states (S,~So) and reduced internal conversion to the S;
state, with a much weaker intensity peak observed at 580 nm.
Since the oscillator strength for the Sy-S,, transition is approx-
imately 100 times stronger than that for the So-S; transition, the
radiative decay rate from S,-S, is now comparable to the
internal conversion rate from S,-S;.** For Eu complex 8, the
trend is reversed, with a weaker emission at 350 nm than
580 nm, demonstrating significant internal conversion. While
the emission intensities of the 350 nm emission (S,-S,) differ
significantly between each species, the intensities of the S;-S,
transition at 580 nm are consistent. For ligand 14, the S,-S,
emission at 350 nm is much higher in intensity than the S;-S,
580 nm emission. However, for the complexes 15-17, a different
profile is observed. Weak emission is seen at 290, 350, and
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450 nm, with a more intense emission observed for the S;-S,
transition at 580 nm. This emission profile closely matches
tetrazine 10. It is likely that the weak emissions at 290 and
450 nm are also present for other species, however they are not
clearly observed when the emission at 350 nm is much stronger
in intensity. Once again, while the emission intensities of the
S.—S transition vary between species, the intensities of the S;—
S emission at 580 nm are similar. Clearly the emission inten-
sities and kinetics of internal conversion and fluorescence are
strongly influenced by not only the tetrazine substituents but
also the particular lanthanide ion.

Phosphorescence spectra

The phosphorescence spectra for the Eu complexes 8 and 16
and Tb complexes 9 and 17 were then recorded, following a 0.1
ms delay for 20 uM solutions in PBS (Fig. 3). This removed the
short-lived organic tetrazine fluorescence signals and standard
sharp phosphorescence emission peaks were observed for both
the Eu and Tb complexes via the antenna effect following
excitation of the tetrazine fluorophore antenna at 265 nm. The
emission was significantly stronger for the Tb complexes
compared to the Eu complexes, most likely due to the better
energy match between the tetrazine triplet excited state and the
typical Tb excited state energy. While the tetrazine triplet state
energy was not determined, the singlet excited state lies at
around 28 500 cm ™, hence the triplet excited state is likely to lie
much closer to the typical Tb excited state than Eu. The phos-
phorescence emission from the Eu complex 8 is much weaker
than that of Eu complex 16, most likely due to the reduced
distance between the tetrazine antenna and Eu centre. This
effect is much less apparent in the Tb complexes 9 and 17,
however, with the emission intensities being similar for both
complexes. No phosphorescence was observed when the Eu and
Tb complexes were excited at 520 nm or for the free-ligands or
Gd complexes when excited at 265 nm, as expected. While some
related examples in the literature have not found evidence of
long-lived triplet states for tetrazines, they are clearly present
here due to lanthanide phosphorescence being observed.*® To
the best of our knowledge, this is the first example of lanthanide
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sensitization from a tetrazine antenna which is not directly
coordinated to the lanthanide ion.

Relaxivity data of tetrazine complexes

The relaxivity (1) of the Gd complexes 7 and 15 were investi-
gated using a 0.25 T Fast Field Cycling NMR relaxometer at
frequencies from 0.01 to 10 MHz, with the effective Gd*" ion
concentration determined using the Evans' NMR method. The
R, values (1/Ty) were acquired at 25 °C and 37 °C and converted
into r; values using the equation in the ESI.t The r; measure-
ments at 60 MHz (1.4 T) were performed via a Tj-inversion
recovery experiment (details in the ESIT). The NMRD profiles are
shown in Fig. 4 and the key data summarized in Table 1. Both
Gd complexes 7 and 15 display the typical shape for a small
molecular-weight complex, with a constant relaxivity below 1
MHz, and a decrease in relaxivity with "H Larmor frequencies
above 1 MHz. The relaxivity for 15 is higher than 7 at all
frequencies, due to the increased hydration number of the
complex. From hydration number calculations (details in the
ESIt) complexes 7-9 are g = 1, while complexes 15-17 are ¢ = 2.
A much less intense decay in relaxivity at higher frequencies is
observed for 15 compared to 7 too, most likely due to the
difference in hydration number for these complexes. The
complexes show lower relaxivities at higher temperature as ex-
pected due to the faster rotational correlation time due to their
increased kinetic energy.*® The relaxivities for 7 and 15 are
comparable at lower frequencies, but differ more drastically as
the frequency increases, with the relaxivity for 15 being almost
twice the relaxivity of 7 at 60 MHz. The value of relaxivity for 15
is not exactly twice the value for 7 at 60 MHz due to the effect of
the outer-sphere water molecules also affecting the value. The
relaxivities were also compared to the clinical standard of
Gd(DOTA) which is a ¢ = 1 complex of similar molecular weight
and size to the tetrazine complexes 7 and 15.*%** At lower
frequencies, the relaxivity of Gd(DOTA) is higher than
complexes 7 and 15, however at higher frequencies the relaxivity
becomes comparable to complex 7. Gd(DOTA) shows a higher
relaxivity at lower frequencies due to the higher symmetry of the
complex and hence, slower electronic relaxation.** The relaxivity
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Fig. 3 Phosphorescence spectra for Eu complexes 8 and 16 (left) and Tb complexes 9 and 17 (right) (20 uM, slits 10 nm, PBS, 0.1 ms delay).
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Fig. 4 NMRD profiles for Gd complex 7 (left) and 15 (right) vs. Gd(DOTA) at 25 and 37 °C.404

for complex 15 is higher than Gd(DOTA) at higher frequencies
due to the increased hydration number. At the clinically-
relevant frequency of 60 MHz (1.4 T), the relaxivities for both
7 and 15 are higher than Gd(DOTA) at 37 °C.** The presence of
an amide arm has been shown to lower relaxivity, however this
effect does not seem to be significant in complex 7.** Both
Gd(DOTA) and 7 are ¢ = 1 complexes of similar molecular
weight and hence, the increase in relaxivity could be due to the
decrease in rotational correlation time of the slightly larger
molecular weight complex 7. The presence of the tetrazine could
also hydrogen bond to water molecules, affecting the exchange
kinetics or definition of the second hydration sphere. There also
appears to be less temperature dependence on relaxivity for
complexes 7 and 15 compared to Gd(DOTA), demonstrating
that the rotational motion of the Gd(DOTA) chelate is affected
more significantly by temperature.

Click chemistry

Following the successful synthesis of Gd complexes 7 and 15,
bio-orthogonal click reactions between a cyclic-RGD-
norbornene conjugate 18 and Gd complexes 7 and 15 were
attempted. The cyclic RGD peptide is known to be a cell-
penetrating-peptide (CPP) which could allow it to act as
a peptide shuttle for allowing the Gd complexes through the
BBB. The cyclic-RGD-norbornene conjugate 18 was synthesised
following a standard amide coupling reaction and product

formation was confirmed by ES* MS with 2 isomers detected via
HPLC due to the exo/endo isomers of the norbornene (details in
the ESIT). Complex 7 (0.2 mM) and 18 (1 mM) were mixed in
HEPES buffer and acetonitrile (95:5 v/v) at 37 °C (Scheme 3).
After 16 hours, the complete conversion of 7 was observed by
HPLC, with the introduction of 4 new peaks, corresponding to 4
diastereoisomers of the clicked product 19, as observed for
related literature examples.** The clicked product 19 was
successfully isolated via HPLC and confirmed by MALDI MS,
with the expected molecular ion and Gd isotope pattern
observed (Fig. 5). No molecular ion for 7 was observed in the
mass spectrum, showing complete consumption of 7. From the
UV-trace over time, the loss of the tetrazine absorption at
265 nm and the appearance of a new absorption at 310 nm is
clearly observed (Fig. S73, ESIf). A similar click reaction was
also attempted between Gd complex 15 and 18, however the
expected clicked product was not observed by MS, with only
isomers for the free-ligand clicked product 20 being observed
(Scheme 3, details in the ESIT). It is clear that the Gd is being
lost from the chelate during the reaction, most likely due to the
reduced denticity of the 7-coordinate ligand in 15 and hence,
reduced stability of the Gd complex. It appears that the loss of
Gd occurs during the click reaction, as there is no difference in
the retention time of the clicked product peaks in the crude
sample compared to after HPLC purification. A second group of
isomers were also observed in the click reaction between 15 and

Table 1 Summary of relaxivity data for complexes 7, 15, and 19 at 25 and 37 °C

Complex 1 0.01 MHz (mM ' s7%) r; 10 MHz (mM ' s77) r1 60 MHz (mM ' s7)
7 (25 °C) 9.24 6.00 5.14
7 (37 °C) 8.44 5.36 3.91
15 (25 °C) 10.80 9.02 8.82
15 (37 °C) 9.18 7.53 6.13
19 (25 °C) 10.77 7.80 9.87
19 (37 °C) 10.24 7.18 8.29

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Successful bio-orthogonal click reaction between complex 7 and cyclic-RGD-norbornene 18 to give the clicked product 19 (top) and
unsuccessful click reaction between complex 15 and cyclic-RGD-norbornene 18 to give free-ligand clicked products 20 and 21 (bottom).

18 with a slightly longer retention time, corresponding to the probes with significantly reduced rotational correlation time.*®
free-ligand clicked product 21 with a fully aromatised pyr- The clicked product 19 also shows higher relaxivity than the
idazine ring (Scheme 3, details in the ESIT).* It is unclear why clinical standard of Gd(DOTA) at the clinically relevant
this fully aromatised product is not observed for the clicked frequency of 60 MHz at 37 °C with a near 3-fold increase in
product 19, but it is clearly related to the Gd de-coordination.  relaxivity of 8.29 compared to 2.90 mM ' s~ *. The pH depen-

The relaxivity of the clicked product 19 was assessed using dent r; relaxivity measurements for complex 7 and the clicked
the same methods as the Gd complexes 7 and 15 (Fig. 6 and product 19 were also conducted to examine the performance of
Table 1). An enhanced relaxivity is observed for the clicked these potential contrast agents under various pH. For both the
product 19 compared to the Gd-tetrazine complex 7 with a 1.3- non-clicked complex 7 and the clicked product 19, their pH
fold increase at lower field strengths, most likely due to the profiles are fairly flat over pH 2 to 12. No significant changes
increase in molecular weight and hence, reduced rotational were observed in acidic or basic environments, indicating good
correlation time (Table 1). At the clinically relevant frequency of ~ stabilities in different pH conditions (Fig. S8, details in the
60 MHz, a larger 2-fold increase in relaxivity is observed ESIf). In addition, protein titrations with 4.5% HSA were also
compared to complex 7, with an increase of relaxivity observed performed to mimic physiological conditions. Both complexes 7
beyond 10 MHz, which is typical for larger molecular weight and 19 gave significant enhancements with 21% and 13%

400+
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Fig. 5 HPLC traces for 7, 18, and crude 19 mixture (left) and purified clicked product 19 showing 4 major diastereoisomers (right).
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Fig. 6 NMRD profiles for complex 7 vs. clicked product 19 (left) and 19 vs. Gd(DOTA) (right) and 25 and 37 °C.

increasement in their r; relaxivities, respectively (Table S2,
details in the ESIt). This shows there are some protein-complex
interactions between the Gd-tetrazine complexes and the HSA
proteins. These results highlight the excellent performance of
both the Gd-tetrazine complex 7 and clicked product 19 under
physiological conditions compared to Gd(DOTA).**

incubated of the complexes with the cells in 24, 48 and 72 h.
Results showed that the three complexes showed no cytotoxic
effects towards the two tested cell lines up to 200 pM (Fig. 7).
Therefore, in vitro confocal imaging of complex 9 in the two cell
lines was conducted. Since the safety of the complexes was
illustrated up to 200 pM. After 24 h cell incubation with complex
9 of different concentrations, significant fluorescence signal
was observed in the cell images starting from 75 uM upon
488 nm excitation which should be referred to the emission of
Tb in complex 9 (Fig. 8).

In vitro cytotoxicity and cell imaging

The cytotoxicity of complexes 7, 8 and 9 have been studied in
two cell lines: HeLa and MRCS5 cells. The samples had been
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Conclusions

In conclusion, a series of Gd, Eu, and Tb tetrazine-lanthanide
complexes were synthesised which could be used in bio-
orthogonal click chemistry with peptide species for BBB pene-
tration. The relaxivities of the Gd complexes were measured,
with complex 7 showing higher values compared to Gd(DOTA)
at the clinically relevant 1.4 T frequency and complex 15
demonstrating higher values than 7 or Gd(DOTA) at higher
frequencies. The optical properties of the analogous Eu and Tb
complexes were investigated, with standard tetrazine-based
absorption and fluorescence observed, with the absorption
and emission intensities varying depending on the tetrazine
substituent. The Eu and Tb complexes demonstrated phos-
phorescence via tetrazine sensitization. The hydration numbers
were also determined, with complexes 7-9 being ¢ = 1 and
complexes 15-17 being g = 2, as expected from their coordi-
nation geometries. A bio-orthogonal click reaction with Gd
complex 7 and a cyclic-cRGD-norbornene conjugate 18 was
successful with the clicked probe 19 demonstrating enhanced
relaxivity. The attempted click reaction between Gd complex 15
and norbornene 18 gave clicked products without Gd present,
due to the reduced denticity and stability of the tetrazine ligand.
In future work, the clicked probe 19 will have its BBB-
penetration assessed to determine if the cyclic RGD peptide
can act as a peptide shuttle to carry the Gd MRI agent through
the BBB. The tetrazine probes will also be clicked to other BBB-
peptide-delivery species, such as stapled peptides, and their
ability to allow a large molecular weight MRI agent through the
BBB assessed.
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