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Neural tanks-in-series: a physics-guided neural
network extension of the tanks-in-series model
for enhanced flow reactor and reaction modelling
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Martin Steinbergera and Martin Horna

This paper introduces the neural tanks-in-series (NTiS) model, an extension of the traditional tanks-in-

series (TiS) model using physics-guided neural networks (PGNNs). The NTiS model integrates physical

principles with data-driven approaches to improve the accuracy and reliability of flow reactor modeling.

The NTiS can optimize physical parameters and learn unmodeled dynamics while ensuring physically

feasible predictions, even for out-of-domain predictions. The approach is validated using simulations and

experimental data from a Paal–Knorr pyrrole reaction, demonstrating its capability to model flow reactor

systems under varying conditions. The NTiS framework offers a new, robust, and flexible tool for advancing

chemical flow reactor modeling.

1 Introduction

The chemical industry relies heavily on mathematical
modeling and simulation to optimize processes, improve
efficiency, and ensure safety.1–5 In particular, the flow
chemistry sector has seen growing interest in automation and
advanced modeling, as efficient, scalable, and sustainable
chemical flow reactors are crucial for ensuring product quality
and meeting economic demands.6–10

Thereby, traditional modeling approaches, such as the
tanks-in-series (TiS) model, the axial dispersion (AD) model
but also computational fluid dynamics (CFD) have provided
valuable insights into complex chemical processes.11 For
instance, Sheng et al. explored the use of the TiS model to
analyze and characterize non-ideal flow patterns. By applying
the TiS model, the authors investigated various flow regimes
and their impact on the residence time distribution (RTD) of
a molten metal.12 Romero-Gomez et al. investigated the AD
in a pressurized pipe under various flow conditions. The
study focuses on understanding how different flow regimes
affect the dispersion of solutes in the pipe. Using
experimental data and computational models, the authors
analyze the impact of flow velocity, pressure, and pipe
geometry on the axial dispersion coefficient.13

However, these methods often require extensive
computational resources or detailed knowledge of the
underlying physical and chemical phenomena. In recent
years, machine learning (ML) has emerged as a powerful
complement to traditional modeling approaches in process
modeling.14 Beyond neural networks, other surrogate
modeling techniques such as Gaussian process
regression,15,16 support vector machines17,18 and polynomial
chaos expansions19 have been explored to approximate
complex process behavior. By leveraging large datasets and
advanced algorithms, these data-driven approaches can
uncover patterns and relationships not easily captured by
conventional models. Such methods hold great promise for
accelerating innovation, reducing costs and improving the
overall performance of chemical processes.20 This variety of
surrogate models also introduces challenges in model
training and generalization, which will be discussed in the
following section.

Despite the advantages of ML for advanced chemical
process modeling, many surrogate modeling techniques,
including neural networks, can face challenges related to
data availability. Neural networks in particular often require
substantial amounts of data to achieve accurate results. To
address this limitation, new methods such as physics-
informed neural networks (PINNs) and physics-guided neural
networks (PGNNs) have been developed.

In the case of PINNs, known physical relationships such as
partial differential equations (PDEs) are incorporated into the
neural network training by embedding them directly into the
loss function as penalty terms. During training, the network
not only minimizes the error between predictions and data but
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also strives to satisfy the PDE constraints. As a result, the
model is guided towards more physically consistent and
meaningful predictions. This approach enables the use of fewer
data compared to traditional data-driven methods while
maintaining high prediction accuracy.21 Moreover, it is possible
to maintain parameters of the incorporated physical equations
from the training of the PINN.

Thus, PINNs are extensively researched and attract
significant interest. For instance, Ngo et al. leverage PINNs to
incorporate physical laws directly into the training process of
a neural network, enhancing the accuracy and reliability of a
fixed-bed reactor model for catalytic CO2 methanation. The
paper demonstrates that PINNs can effectively solve the
governing equations of the reactor model and identify key
parameters with high precision, even with limited data.22

Moreover, Zheng et al. developed a physics-informed
recurrent neural network (PIRNN) that combines data and
mechanistic models for nonlinear systems. They proved a
generalization error bound and integrated it into a Lyapunov-
based predictive control tested on a noisy chemical reactor.
The hybrid model improved noise rejection and
generalization over purely data-driven or physics-based
controllers.23 Trávníková et al. present an approach using
PINNs for modeling fluid dynamics in stirred tanks. By
incorporating the physical laws into the training of the neural
network, the models achieve higher accuracy and reliability
in predicting flow patterns. The paper demonstrates the
effectiveness of this approach through various simulations
and experimental validations.24 Noteworthy is also the work
of Alhajeri et al., who addressed overfitting in neural
networks for chemical process modeling with noisy data.
Using partially connected RNNs, they examined Gaussian
and non-Gaussian noise and applied Monte Carlo dropout
and co-teaching within a PINN framework. Tested on a large-
scale Aspen Plus process, their method improved prediction
accuracy and closed-loop control under a Lyapunov-based
MPC.25 Wang and Wu proposed a foundation model for
chemical reactor modeling that combines meta-learning with
physics-informed fine-tuning. Pretrained on diverse reactor
dynamics, it adapts quickly to new processes with minimal
data while maintaining physical consistency. The model
outperformed conventional approaches across multiple
reactor types.26

Despite their advantages, PINNs and also traditional ML
approaches often struggle with extrapolation beyond their
training data. This limitation means that predictions for
unseen data cannot always be guaranteed to be feasible or
accurate and their out-of-domain behavior is in general not
well understood.27,28

To overcome this limitation, PGNNs were developed.
PGNNs integrate physical knowledge such as governing
equations, constraints, or domain specific relationships
directly into the neural network architecture and training
process. This integration can take several forms, for example
by adding extra input features derived from physical variables,
by embedding physics based equations or constraints into the

loss function, or by designing network structures that reflect
known physical laws. In this way, PGNNs guide the learning
toward physically consistent solutions, which allows training
with less data than traditional neural networks. This
approach also improves the ability of the model to generalize
and extrapolate to unseen conditions. Due to these
advantages, PGNNs are increasingly applied to enhance
modeling and prediction in the chemical industry.

For instance, Gallup et al. focus on PGNNs to improve
hybrid process modeling. Their developed framework
simplifies PGNN techniques, speeding training and reducing
data needs on reactor simulations. Physics guided loss
functions and initialization enhance accuracy and consistency
while transfer learning boosts convergence though misuse may
hurt generalizability.29 Alongside, Muralidhar et al. presented
PhyFlow, a novel physics-guided deep learning framework
designed to generate interpretable 3D flow fields. By
incorporating physical laws directly into the neural network
architecture and emulating the projection method commonly
used in CFD simulations, PhyFlow ensures that the generated
flow fields comply with fundamental principles such as
conservation of mass and momentum. The integration not only
enhances the accuracy of the predictions but also provides a
level of interpretability that is often lacking in purely data-
driven models. The authors demonstrated the effectiveness of
PhyFlow through various experiments, showing significant
improvements in both accuracy and physical consistency
compared to traditional deep learning approaches. The study
highlights the potential of PGNNs in advancing the field of
fluid dynamics modeling, particularly in scenarios where data
is sparse or noisy.30 Additionally, Panjapornpon et al.
introduced a PGNN model to enhance the prediction accuracy
of acid–base treatments in dynamic tubular reactors. By
integrating fundamental physical variables, such as residence
time and hydroxide ion concentration, derived from reaction
schematics and batch experimental data, the model effectively
addressed challenges of high nonlinearity and limited data
availability. The resulting PGNN demonstrated the potential for
achieving high prediction accuracy.31 Moreover, Kircher et al.
embedded physical knowledge into neural ODEs to learn
reaction kinetics from integral reactor data. Building on their
global reaction neural networks, they improved kinetic model
discovery over standard neural ODEs. Applied to industrial
reactors, including CO oxidation in hydrogen-rich streams,
their method handles stiff systems and uses rich data for
accurate kinetics.32

While PGNNs have demonstrated significant
advancements in the chemical industry, their application to
traditional models like the TiS or AD models remains
limited. There is research conducted to improve those
traditional models like Martin-Dominguez et al. who
presents an improved version of the traditional TiS model
by incorporating additional parameters to better capture the
complexities of tracer tests in various flow systems. Besides
the number of tanks, they also introduce a dead-space
fraction and a bypassing fraction to account for stagnant
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zones and zones, where the flow circumvent the intended
treatment. By refining the TiS model, the study aims to
provide more accurate interpretations of tracer test data.33

Moreover, Shahin et al. extend the traditional TiS model to
capture the dynamic behavior of solid oxide fuel cells
(SOFC) with direct internal reforming. The study emphasizes
the importance of modeling the interactions between
reforming processes and electrochemical reactions within
the TiS framework. Key findings demonstrate that the
extended TiS model effectively predicts the SOFC system's
transient responses and can be used to optimize its
performance under varying conditions.34 Dutta et al. present
a dynamic TiS model to simulate gas–liquid interactions in
a trickle bed reactor designed for gas fermentation. Their
extension incorporates dynamic behavior by introducing
time-dependent variables and parameters to capture
transient states. The model accounts for gas holdup, liquid
holdup, and mass transfer between phases, providing a
more accurate representation of the reactor's performance
under varying operational conditions. The enhanced TiS
model offers improved predictions for gas–liquid
interactions, aiding in the optimization and scale-up of gas
fermentation processes.35

Despite advancements in the TiS model, current
approaches still struggle to accurately capture complex,
nonlinear reactor dynamics, particularly under varying
operating conditions or when extrapolating beyond training
data. Additionally, purely data-driven models often lack
physical consistency, limiting their reliability for process
optimization and control. Combining PGNNs with the TiS
model offers a powerful solution to these challenges. The TiS
model is well-studied, well-established, and relatively simple,
making it a robust foundation for such an extension. To the
best of our knowledge, no PGNN-enhanced TiS models have
been developed so far. Therefore, we propose a PGNN-
enhanced TiS model that improves prediction accuracy by
learning complex reactor behaviors while enforcing physical
constraints to ensure physically feasible and robust
predictions even in out-of-domain scenarios. This integration
addresses key limitations of conventional TiS models and
provides a more reliable, generalizable tool for advanced flow
reactor modeling.

The paper is structured as follows: first, one can find
the theoretical background on the traditional TiS model,
the concepts of PGNNs and the training process of
neural networks. Next, we introduce our neural tanks-in-
series (NTiS) approach, detailing the necessary insights
and derivations. This is followed by simulations to
validate the proposed approach. Next, the NTiS approach
is applied to experimental data in a case study. Herein,
we demonstrate the applicability to real-world scenarios
for enhancing the modeling and prediction of flow
reactor systems. We show that the NTiS approach
delivers refined predictions and can extrapolate to
unseen data while ensuring that predictions remain
within physically feasible bounds.

2 Theoretical background

In this section, one can find the necessary insights and
notations of the TiS model, how to train a neural network
and the concepts and ideas of a PGNN.

2.1 Tanks-in-series model

The TiS model is a widely used approach developed specifically
for tubular flow reactors to describe deviations from ideal plug-
flow behavior. The model is chosen as it provides a simple but
physically interpretable framework to capture non-ideal flow
characteristics. In the model, a non-ideal tubular flow reactor
is divided into a series of interconnected, perfectly mixed
tanks. Each tank represents a small segment of the flow
reactor, and it is assumed that the concentration within each
tank is the same. The setup allows for the simulation of
gradual changes in concentration, such as the dispersion of a
species or the progression of a reaction, while the substance
moves through the series of tanks.

In Fig. 1 a schematic overview of the TiS model is shown.
As one can see, a flow reactor is split in N perfectly mixed
tanks whereby an inflowing species is propagating through
each tank. The concentration of the i-th species within the
j-th tank is represented by C j

i (t) whereby t denotes the time.
The change of the i-th concentration within the j-th tank

can be described by

dC j
i tð Þ
dt

¼ q tð Þ
ΔVj C j−1

i tð Þ −C j
i tð Þ

h i
þ r j

i ; (1)

where ΔV j represents the volume of the j-th tank, q(t)
represents the volumetric flow rate, and r ji accounts for any
changes of the i-th concentration within the j-th tank due to
reactions. The latter term can thereby depend on the
temperature ϑ(t) and other concentrations within the j-th
tank. When neglecting the reaction term r ji within eqn (1)
and splitting the flow reactor in N equally sized tanks, such
that ΔV j = ΔV, ∀j ∈ {1, 2,…, N} one can describe the change
of the i-th concentration within the j-th tank by a low-pass
filter of first order.

In the Laplace domain, the relationship between the
concentration of the i-th species in the j-th tank and the
( j − 1)-th tank is characterized by the transfer function

Hτ sð Þ¼ C ̅ j
i sð Þ

C ̅ j−1
i sð Þ

¼
1
τ

sþ 1
τ

: (2)

Fig. 1 Schematic overview of the tanks-in-series model.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 6
:5

2:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5re00290g


React. Chem. Eng., 2025, 10, 2932–2946 | 2935This journal is © The Royal Society of Chemistry 2025

In the equation, s denotes the Laplace variable, and τ

represents the time constant of the low-pass filter for a
constant flow rate q(t) = q, as defined by

τ ¼ ΔV
q
: (3)

For the first tank, the inflowing concentration is the
concentration flowing into the reactor system and thus
C0
i (t) = Cin

i (t).
The time constant τ has a significant influence on the

behavior of how a species is flowing from one tank to the
next. Thus, the time constant τ also affects, how the species
is flowing through the entire reactor system. In Fig. 2 the
step response of Hτ(s) for different time constants τ is
depicted. The figure represents, how a species is flowing
from one tank into the next when the concentration C j−1

i (t) is
changed from 0 mol L−1 to 0.1 mol L−1 at time t = 0. This step
is denoted with C j−1

i (t) = 0.1σ(t) mol L−1.
If the reaction rate r ji is not neglected, the model accounts

for additional concentration changes caused by chemical
reactions within each tank. This introduces nonlinearities
and a time-dependent behavior, as reaction rates are
influenced by temperature and species concentrations.
Incorporating these reaction terms transforms the system
into a differential equation that captures both transport and
reaction dynamics, as seen in eqn (1).

2.2 Training of a neural network

The training process of a neural network involves several
sequential steps to optimize the neural network parameters
θ. The goal is, that for a given set of input–output-samples
{(md,nd): d = 1, 2,…, Ns} with Ns samples, the neural network
can effectively map all inputs md to the corresponding
outputs nd.

For a fully connected neural network (z,θ) with the
input z = md, NL layers, and the form

(z,θ) = hNL(WNL−1hNL−1(…W1h1(W0z + b0) + b1…) + bNL−1), (4)

the network parameters θ consist of the weights Wp and bias
values bp for all p ∈ {0, 1,…, NL − 1}. The weights Wp

represent the connections of the p-th layer to the (p + 1)-th
layer whereas the vector bp represents the bias values within
the p-th layer. The term hp denotes a nonlinear activation
function in the p-th layer.

Before one can train the neural network (z,θ), the
structure of the network such as the number of layers NL, the
activation functions hp and the number of neurons within
each layer must be defined. A neuron is a node in the neural
network that processes the input signals from the previous
layer, applies the activation function, and produces an output
which is forwarded to the next layer. After defining the
structure, the parameters of the neural network (z,θ) need
to be initialized. It is common, to choose random values for
the initial weights Wp and to set the initial bias values bp to
zero for all p ∈ {0, 1,…, NL − 1}.

After having defined the structure of the neural network
 and having initialized the parameters, one can train the
neural network for the given set of input–output-samples. To
do so, one can define the prediction loss

(5)

in which a penalization term and a regularization term is
combined. Both terms are weighted relative to one another
using the coefficients λp and λR, respectively. In the equation,
‖·‖2 denotes the L2-norm and the penalization term accounts for
deviations of the predicted output ñd = (md,θ) and the real
value nd for each sample d and the current network parameters
θ. The regularization term mitigates overfitting by penalizing
large weights Wp and bias bp values. The loss (θ) quantifies
how well the network is performing on the current data.

In a so called forward pass the loss (θ) for the current
network parameters θ and all the given input–output-samples
are calculated. For the optimization of the network parameters
θ one usually makes use of a gradient based optimization such
as the Adam optimization algorithm,36 stochastic gradient
descent, or RMSprop.37 Thus, the gradient of the loss function
(θ) with respect to each weight Wp and bias value bp has to
be determined. To determine those gradients, we perform a
backward pass in which we propagate the gradients backward
through the network to identify how each parameter
contributed to the loss (θ). After determining the gradients,
one can update the network parameters using

 = θ − η∇(θ). (6)

Herein, η represents the learning rate, θ the current
network parameters,  the updated network parameters, and

Fig. 2 Step response of the system Hτ(s) describing the relation of the
concentration C

j−1
i (t) in the preceding tank j − 1 to the concentration

C
j
i (t) in tank j for the i-th species.

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 6
:5

2:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5re00290g


2936 | React. Chem. Eng., 2025, 10, 2932–2946 This journal is © The Royal Society of Chemistry 2025

∇(θ) the gradient of the loss function with respect to the
corresponding network parameters. The learning rate η is a
crucial hyperparameter in the optimization process,
determining the step size for updating the network
parameters θ. A small learning rate η ensures stable
convergence but may slow down the training, while a large
learning rate η can speed up training but risks overshooting
the optimal solution or introducing convergence issues.

In addition to the network parameters θ, which are
learned during training, there are hyperparameters, variables
that are set prior to training and remain fixed throughout the
learning process. Examples of hyperparameters include the
number of layers NL, the activation functions hp, and the
learning rate η. These hyperparameters have a significant
impact on training dynamics and model performance.
Therefore, while network parameters are optimized through
training algorithms, hyperparameters are typically chosen
empirically or found through separate tuning procedures or
optimization methods.

2.3 Physics-guided neural networks

PGNNs combine physics-based modeling (PBM) with data-
driven modeling (DDM), by incorporating physical
relationships directly into the neural network architecture
and the training process. This integration enhances the
prediction accuracy, interpretability, and reduces the
amount of data required for training. Additionally, it is
possible, to ensure that out-of-domain predictions of the
PGNNs remain physically feasible. Predictions of the neural
network can be forced to zero ensuring, that only the PBM
part of the PGNN remains.

A PGNN can be realized using different structures. In
Fig. 3 three common structures of PGNNs are depicted. The
structures are very similar as Daw et al. described in their
paper using PGNN to model the temperature in a lake.38 In
each structure, the input X is used to form a prediction Ỹ of
the corresponding real output Y. To form this prediction, a
neural network  and a physical model  is used in
combination. In the figure, the first structure (structure a)
shows a “hybrid input model”. For this structure, the input
of the neural network  is the input X which is extended by
the corresponding output of the physical model . The
output of the neural network  is the predicted overall

output Ỹ. The second structure (structure b) shows a
“residual model” for which the neural network  predicts
only residuals which cannot be covered by the physical model
. This might be due to the fact, that the physical model 
is not accurate enough and not all real-world effects are
modeled. Thus the predicted output Ỹ is the sum of the
predicted output of the physical model  and the neural
network . The third structure (structure c) shows a “hybrid
input residual model” which is a combination of the two
previous structures. The input of the neural network  is the
input X in combination with the predicted output of the
physical model . The neural network  predicts only
residuals, which the physical model  cannot cover. Thus,
the output of the neural network  is added to the predicted
output of a physical model  to form the final prediction Ỹ.

In all the structures, the physical model  typically relies
on physical parameters, collectively denoted as Δ. Since these
parameters may be unknown or only partially accurate, they
can be estimated or refined by the PGNN. This refinement
process is illustrated in Fig. 3 with a dashed arrow. During
training, the PGNN simultaneously trains the neural network
and the physical parameters Δ. By incorporating appropriate
loss terms and constraints in the training process, it is
ensured, that the refined parameters Δ remain within
physically feasible bounds. Consequently, the refined
parameters Δ can be reliably used for out-of-domain
predictions, maintaining the physical validity of the outputs
coming from the physical model .

3 Results and discussion
3.1 Neural tanks-in-series model

In this section, we introduce the neural tanks-in-series (NTiS)
approach, which extends the traditional TiS model by
integrating it into a PGNN framework. The NTiS enhances
flow reactor modeling by improving prediction accuracy, and
capturing complex dynamics that traditional models cannot
represent. Thereby, the NTiS ensures that predictions remain
physically feasible, even for out-of-domain predictions where
the NTiS has not been explicitly trained.

3.1.1 General structure of the NTiS. The NTiS approach
incorporates a “residual model” within each tank. Using this
approach, the outputs of the neural network can be easily
forced to zero by omitting their contribution to the final
output for out-of-domain predictions. Furthermore, the
residual model is more straightforward to implement in the
final structure compared to the “hybrid input residual
model”. The chosen approach enables the representation of
additional dynamics while maintaining the traditional
physical flow of the solvent from one tank to the next. Thus,
the NTiS concept, illustrated in Fig. 4, replaces each
traditional tank with a neural tank (NT). The input to the j-th
NT is denoted as X j−1

k , and the output as X j
k. Here, k denotes

the k-th time sample, as the NTiS approach is implemented
in a discrete manner. Consequently, the k-th sample
corresponds to a point in time t = kTd, where Td is theFig. 3 Common structures of PGNNs.
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discretization time. In our approach, the input X j−1
k consists

of all the concentrations C j−1
i,k combined with additional

information such as the temperature ϑk and flow rate qk.
Similarly, the output X j

k includes the outflowing
concentrations C j

i,k along with the same additional
information. The output serves as the input for the
subsequent NT ( j + 1). Each NT j consists of a physical model
 j and a neural network  j. The physical model  j retains
the functionality of the traditional model, accounting for
delay effects and reactions within a tank. Meanwhile, the
neural network  j learns unmodeled dynamics and
residuals R j

k, which are combined with the physical model's
output before progressing to the next NT. Furthermore, the
physical parameters Δ j for the physical model  j are
optimized within each NT, enhancing the overall modeling
accuracy. To optimize the physical parameters Δ j, the output
layer of the neural network  j is extended with additional
outputs corresponding to these parameters. Each of these
outputs is connected solely to additional bias values, with a
linear activation function applied at the final layer. This
setup ensures that each additional bias value directly
represents a physical parameter. If it is desirable for the
physical parameters Δj to vary based on the input, the output
vector of the neural network can be extended with full
connections to the preceding layers. This allows each NT j to
have its own estimation of the physical parameters Δ j

k for
each time sample k. In any case, the physical parameters are
included in the set θ and are optimized during the training
process of the neural network  j. Consequently, training the
PGNN is equivalent to training all the neural networks  j. In
the figure, dashed arrows illustrate this approach, connecting
the neural networks  j to the physical model  j.

As discussed in the theoretical background for PGNN
(section 2.3), all weights, including the physical parameters,
are optimized simultaneously during training. During
training, the predictions for the physical parameters Δi are
constrained by an additional loss term, ensuring that each
parameter remains within physically feasible bounds.

In most reactor systems, the physical effects of the reactor
remains consistent throughout its entirety. Therefore, we
assume that each NT exhibits identical physical effects.
Consequently, one can state that  j =  for all j ∈ {1,…, N},
and the estimates for the physical parameters Δ j should be
uniform across all NTs j. However, this assumption can
generally be relaxed, allowing our NTiS approach to
accommodate varying physical parameters within each NT. In
combination with the fact, that all neural networks  j are
trained simultaneously, all neural networks  j can be
combined into a single global neural network . This further

simplifies the structure and reduces the overall training
complexity of the NTiS. The global neural network  can be
designed, to provide a single prediction for the physical
parameters Δ and predictions for the individual residuals R j

k

within each NT j. The predictions for the physical parameters Δ
are shared across all NTs, while the individual residual
estimates R j

k are associated with their respective NTs. These
residual estimates are processed through a set of radial basis
functions, ensuring that the residuals are forced to zero when
predicting out-of-domain data. This approach guarantees that
the predictions remain physically feasible, even for unseen data.

In Fig. 5 the refined architecture of the NTiS along with a
NT in detail is depicted. To improve the predictions of the
neural network , previous input samples

X0
k−1; X

0
k−2;…; X0

k−Nd

n o
, up to a configurable number Nd, are

provided as input. To facilitate this, a storage block was
introduced before the neural network . Within the details
of a NT, one can see, that the physical model  j utilize the
predictions of the physical parameters Δ. Before the
prediction is passed to the next NT, the corresponding
residuals R j

k are added. The NT depicted in the overview
differs slightly from the NT in the schematic shown in Fig. 4,
as the neural network is not integrated within the NT.
Nevertheless, we will retain this terminology to differentiate
it from a traditional tank of the tanks-in-series model. The
final predicted output Ỹk of the NTiS is the last output XN

k or
parts of it. Consequently, the relation Ỹk = g(XN

k ) holds where
g represents a function which maps the last output XN

k to the
target structure of the output samples Yk, which may
correspond solely to the outflowing concentrations CN

i,k of the
final NT, and therefore, of the entire system.

When we assume, that there are P species flowing into the
system with a total flow rate qk of the solute and a temperature
ϑk, then the input Xk to the NTiS, can be defines as a
combination of the inflowing concentrations C0

i,k = C (in)
i,k for all i

∈ {1, 2,…, P}, the total flow rate qk and the temperature ϑk. In
general, the input to the j-th NT can be written as

Fig. 4 Schematic overview of the neural tanks-in-series model.

Fig. 5 Overview of the neural tanks-in-series model and an overview
of a neural tank.
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X j
k ¼

Π
j
k

Ω
j
k

" #
jΠ j

k ¼

C j
1;k

C j
2;k

⋮
C j
P;k

2
666664

3
777775; Ω

j
k ¼

q j
k

ϑ
j
k

" #
; j∈ 0; 1;…; Nf g; (7)

where Π
j
k denotes a vector containing all the concentrations,

while Ω
j
k denotes a vector of all additional quantities, such as

the total flow rate q j
k and the temperature ϑ

j
k. As the total flow

rate q j
k and the temperature ϑ

j
k remain unchanged within a NT

j, we theoretically could omit the superscript j. However, since
the NTiS could be modified to allow the temperature ϑ

j
k or an

additional quantity to vary throughout the flow reactor, we
retain the superscript j for the vector Ω j

k to ensure generality.

3.2 Physical model  j

The physical model  j within each NT j captures the
transport effects from one NT to the next and captures
changes due to reactions for each concentration Ci(t). To
account for all these effects, one can discretize eqn (1) using
the forward Euler method and obtain

C j
i;kþ1 ¼ C j

i;k þ Td
qk
ΔV

C j−1
i;k −C j

i;k

h i
þ Tdr

j
i;k; (8)

where Td denotes the discretization time, and
qk
ΔV

¼ τk is

representative for the time constant of the low-pass filter. In
real-world scenarios, discrepancies may arise between the
theoretical time constant τk and the effective time constant k
due to unmodeled dynamics. To account for such
discrepancies, an adjustment factor δτ, which will be part of
the physical parameters Δ, is introduced such that k = δττk.

For the reaction rate r ji,k, in general, any law can be used.
One might assume, that the reaction follows the concept of
the Arrhenius equation, which relates the reaction rate to
temperature and activation energy.39 The reaction rate
forming species i in tank j, while consuming a set of species
, is given by

r j
i tð Þ ¼

Y
n∈

C j
n tð Þ

" #
Aie

− Ei
Rϑ tð Þ: (9)

In the equation, the parameters Ai and Ei are reaction
parameters which are in general not precisely known. Thus,
the NTiS can refine those parameters by incorporating offsets
δAi

and δEi
which will also be part of the physical parameters

Δ. The discretized reaction rate within the j-th NT can thus
be rewritten to

r j
i;k ¼

Y
n∈

C j
n;k

" #
Āi þ δAið Þ e−

Ē iþδEi
Rϑk :

In the equation, Āi and Ēi denote the nominal reaction
parameters, R the ideal gas constant and ϑk the temperature.

When assuming, that X j−1
k is the input and X̂ j

k the output
to the physical model  j, the model can be defined as

 j: Π̂
j
k ¼ Π

j
k−1 þ Tdδτ

qk−1
ΔV

Π
j−1
k−1 −Π

j
k−1

h i
þ…

þTdξ Π
j
k−1

� �
Āi þ δAi½ � e−

Ē iþδEi
Rϑk−1 :

Ω̂
j
k ¼ Ω

j−1
k :

(11)

Thereby, eqn (8) is applied to each concentration C j
i,k

for all i ∈ {1, 2,…, P} and the additional input
parameters Ω

j−1
k are forwarded without any changes. In

eqn (11), the individual reaction rates for each species are
collected in the vector ξ and is thus of size P × 1.

When applying the physical model  j to the input X j−1
k ,

we abbreviate it with the notation

X̂ j
k ¼

Π̂
j
k

Ω̂
j
k

" #
¼  j X j−1

k ; Δ
� �

; (12)

where Δ denotes the set of physical parameters and
refinement parameters.

3.3 Neural tank model  and NTiS model 

Overall, one can define a model  for a NT whereby we apply
the physical model  j to an input X j−1

k and, before passing
the output to the next NT, the corresponding residuals R j

k

predicted by the neural network  are added. Thus, the NT
model can be defined as

: Π
j
k ¼ Π̂

j
k þ R j

k ;

Ω
j
k ¼ Ω̂

j
k :

(13)

When all residual terms R j
k are collected in the vector

Γk ¼

R1
k

R2
k

⋮
RN
k

2
66664

3
77775; (14)

one can form an abbreviated notation for calculating the
output X j

k of the j-th NT using the physical parameters Δ and
residual terms Γk as

X j
k = (X j−1

k , Δ, Γk). (15)

Having defined an individual model for a NT, and
assuming, that the measured output consists of the measured
output concentrations like Yk = [C (out)

1,k C (out)
2,k … C (out)

P,k ]T, one
can also define an overall model for the entire series of NTs as

(16)

In the equation, the operator ∘N represents the N-fold
repeated application of the function . The abbreviated

(10)
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notation for the repeated application of the NT model can be
stated as

Ỹk = (X 0
k, Δ, Γk). (17)

3.3.1 Neural network . The neural network  of the
NTiS can be realized using various architectures, such as
convolutional neural networks (CNNs), recurrent neural
networks (RNNs), or a fully connected neural network. The
structure such as the number of hidden layers and neurons
per layer can be customized by the user to suit the complexity
of the underlying system.

As seen in Fig. 5, for the input zk to the neural network
, we combine the current input to the NTiS X0

k with
previous inputs X0

k−Nd
up to a definable number Nd. This

approach can increase the prediction accuracy as the neural
network  gains knowledge of previous inputs to the system.
The input zk to the neural network  can thus be defined as

zk ¼

X0
k

X0
k−1
⋮

X0
k−Ndþ1

2
66664

3
77775: (18)

For the output yk = (zk,θ), we want to have a
combination of the physical parameters Δ and the residual
terms Γk. The output of the neural network  thus read as

yk ¼
Δ

Γk

� �
:

As described in section 3.1.1, the physical parameters Δ

are obtained by extending the output layer of the neural
network  with an appropriate number of additional bias
terms. This approach enables training the neural network 
while simultaneously optimizing the bias terms for the
physical parameters Δ.

For the training of the neural network  we make use of
a gradient based optimization. Thereby, a defined loss  is
minimized to optimize all the weights Wp and bias values bp

which are collectively denoted in the network parameters θ.
When we assume, that the neural network  has NL

layers and that each time sample can be used for the
training, one can define a cost (θ), similar as stated in
eqn (5), as

 θð Þ ¼ λP
1
Ns

XNs

k¼1

 X0
k ;Δ;Γk

� �
−Yk

�� ��2
2

þ λR
XNL−1

p¼0

Wpk k22 þ b pk k22
� �þ λCΔ θð Þ:

In the cost (θ), an additional loss term Δ(θ) is added
to ensure, that the refined parameters Δ remain within
physically feasible bounds. The cost term can be, for
example, of a cost term similar to

Δ θð Þ ¼
X
δ

e δ−δminð Þ δ−δmaxð Þ:

Herein, δ represents a physical adjustment parameter out of
Δ, δmin and δmax the lower and upper bounds of the feasible
values for the physical adjustment parameter δ respectively.

For the training process, we have to calculate the gradient
of the loss (θ) with respect to all the network parameters in
θ. For the penalization term one can find, that

∂ θð Þ
∂θ ¼ 2λP

Ns

XNs

k¼1

 X0
k ; Δ;Γk

� �
−Yk

�� ��
2

∂ X 0
k ; Δ;Γk

� �
∂θ

and thus, that we have to calculate

∂ X0
k ;Δ;Γk

� �
∂θ ¼ ∂ X0

k ;Δ;Γk
� �
∂X0

k

∂X0
k

∂θ þ ∂ X0
k ;Δ;Γk

� �
∂Δ

∂Δ
∂θ

þ ∂ X0
k ;Δ;Γk

� �
∂Γk

∂Γk

∂θ

over all Ns sample points. As X0
k does not dependent on θ one

can neglect the first part. Moreover, one can see, that
∂Δ
∂θ and

∂Γk

∂θ depend on the structure of the neural network . The

according derivations are calculated within the training
process of the neural network itself. All derivations utilized in
the implementation are detailed in Appendix A.

3.4 Implementation and simulations

3.4.1 Implementation. The proposed NTiS approach is
implemented in Matlab, utilizing the Deep Learning
Toolbox.40 The NTs were designed as custom neural network
layers which in Matlab allow users to define forward and
backward computations customized for specific applications.
This integration enables the NTiS to be represented as a
single, unified neural network within Matlab, simplifying
both its application and training process. Each custom layer
includes the necessary backward path, implemented in
alignment with the derived model.

In Fig. 6, the structure of the NTiS implementation in
Matlab is presented as a single comprehensive neural
network. The neural network  features a custom parameter
layer that predicts the physical parameters Δ. In parallel, a
user-defined neural network, such as a fully connected neural
network, predicts the residuals Γk. The prediction of the
residuals Γk is processed through a layer of radial basis
functions before being forwarded. The input to the NTiS in
Matlab includes the current input X0

k and previous inputs
X0
k−1; X

0
k−2;…; X0

k−Nd
, up to a configurable number Nd. A

reduction layer selects only the most recent input X0
k, which

is then combined with the physical parameters Δ and
residual predictions Γk in a concatenation layer. This forms a
unified input vector for the subsequent custom NTiS layers,
ensuring that each NTiS layer has access to all relevant
information while maintaining a single input–output
structure. A single input–output structure simplifies
implementation in Matlab, as it aligns well with its

(19)

(20)

(21)

(22)

(23)
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computational framework. Within a custom NTiS layer, the
output concentrations Π

j
k are updated based on the input

concentrations Π j−1
k , additional information Ω

j
k, physical

parameters Δ, and residual predictions Γk. Finally, a custom
output layer ensures that only the final output concentrations
ΠN

k are forwarded.
3.4.2 Simulation with deviating physical parameters. In

the first simulation, we highlight that the NTiS can recover
underlying physical parameters even from incorrect initial
values, thereby validating its basic training functionality. For
the simulation we considered a flow reactor where two
species flowed into the system. These two species reacted to
form a third species within the flow reactor, with the
underlying reaction within a tank described by the Arrhenius
equation. As system inputs, we used varying concentrations
of the first and second species, a varying temperature ϑ(t),
and a varying total flow rate q(t). Given these varying inputs,
we simulated the output concentrations using the traditional
TiS model, which served as ground truth TiS setup. For all
simulations, we used a sample time of Td = 0.1 seconds, with
a total reactor volume of 5 mL evenly distributed across 20
tanks. The traditional TiS model employed fixed reaction
parameters A3 and E3.

Alongside, we implemented the NTiS model. In contrast to
the traditional TiS setup, we intentionally altered the NTiS
parameters so that the resulting time constant τk and the
reaction parameters A3 and E3 differed from those of the TiS
model used as ground-truth. As a result, the set of physical
parameters Δ in the NTiS comprises the adjustment factor δτ
and the offset parameters δA3 and δE3

. The latter allow
refinement of the pre-exponential factor and activation energy,
respectively, while δτ accounts for variations in the reactor
parameters that cause discrepancies between the theoretical
time constant τk and the effective time constant k.

For the neural network of the NTiS, we used a shallow,
fully connected neural network with one hidden layer

consisting of 20 neurons. The hyperparameters, such as the
number of neurons per layer and the activation function,
were determined empirically through manual tuning. In
general, it is possible to apply hyperparameter optimization
techniques to systematically explore and optimize these
structural aspects. The neural network used only the most
recent time sample as its input allowing the NTiS model to
be set up without the custom reduction layer. For the training
of the NTiS, we used the simulated output data from the
traditional TiS together with the corresponding inputs. These
simulated outputs serve as a stand-in for potential
measurements from a real flow reactor, effectively mimicking
the actual system response to the given inputs.

During the training process, we showed that the physical
adjustment parameters δτ, δA3

, and δE3
were updated by the

neural network such that the resulting time constant τk and
the reaction parameters A3 and E3 closely matched those of
the ground truth TiS setup. The adjustment parameter δτ and
the resulting reaction parameters A3 and E3 for the ground
truth TiS setup, the initial NTiS model, and the optimized
NTiS model can be found in Table 1. The residuals of the
NTiS within each NT remained nearly zero, as the predictions
were already enhanced by adjusting the physical parameters.

In Fig. 7, the traces for the temperature ϑ(t), the total flow
rate q(t), and the input concentrations C1(t) and C2(t) are shown.
The input concentration C3(t) was fixed at zero throughout the
experiment. Additionally, the output concentration C3(t) of
species 3, which is formed within the flow reactor, is depicted
for three cases: the simulated output of the traditional TiS
model and thus representing the ground truth, the initial
prediction of the NTiS with parameters containing deviations,
and the prediction of the NTiS after the training process. One
can see, that the initial prediction of the NTiS shows a
significant difference in the shape of the outflowing
concentration C3(t) compared to the actual output. However,
after training, the NTiS achieves a highly accurate estimate,
demonstrating that its learning process effectively can predict
the underlying physical parameters. This trend is also seen,
when calculating the mean square error (MSE), denoted as ζ,
across all three output predictions for both the initial and
optimized predictions of the NTiS. The MSE ζ is defined as

ζ ¼ 1
3
1
Ns

X3
i¼1

XNs

k¼0

CðoutÞ
i;k −CðpredÞ

i;k

� �2
; (24)

where C(out)
i,k represents the actual reactor output from the

ground truth TiS setup, and Cpred
i,k corresponds to the NTiS

Fig. 6 Schematic of the NTiS implementation within Matlab.

Table 1 Adjustment parameter δτ, and the resulting reaction parameters
A3 and E3 for the ground truth TiS setup, the initial and optimized NTiS
model

Model A3 E3 δτ

Ground truth TiS setup 10.00 15 000 1.20
Optimized parameters of the NTiS model 9.97 14 982 1.19
Initial parameters of the NTiS model 12.00 13 000 1.00
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prediction (initial or optimized). The results reveal that the MSE
of the initial prediction, ζinitial = 1474 × 10−6, is significantly
reduced to ζTrained = 1 × 10−6 after training the NTiS.

As seen, in the first simulation, the NTiS mainly focused
on adjusting the physical parameters (δτ, δA3

, and δE3
) while

keeping residuals exceptionally small. The minimal residuals
confirm that the NTiS does not heavily depend on neural
network corrections for parameter deviations. Instead, it
achieves high accuracy by aligning its physical parameters
with those of the real system which is represented by the
traditional TiS model. This highlights the robustness of the
NTiS framework, where the neural network component serves
as a supplementary mechanism, activating only when
necessary. The limited need for residual corrections shows
that the NTiS captures the core system dynamics effectively
through parameter adjustments, ensuring interpretability
and precise predictions.

3.4.3 Simulation with flow-rate-dependent offset. To
further evaluate the NTiS training and show its ability to learn
unknown physical effects beyond the TiS model, we conducted
a second simulation with a flow-rate-dependent offset added to
each concentration. Thereby, a concentration offset is
introduced to account for additional effects influenced by the
flow rate q(t) after each tank. This offset is directly proportional
to q(t), meaning its magnitude scales linearly with the flow rate
at any given time. The offset might reflect phenomena such as
mixing inefficiencies, system disturbances, or chemical

reactions occurring at varying flow rates. The result is, that
more of species 3 is formed throughout the reactor. Thus,
depending on the flow rate q(t), a higher concentration C3(t)
can be obtained at the output. This artificially introduced effect
is not accounted for in the traditional TiS model, which
therefore cannot address such unmodeled phenomena. The
NTiS, on the other hand, can leverage training data to learn
these unmodeled effects and improve prediction accuracy. In
Fig. 8 one can see the result of the output concentration C3(t)
for the second simulation. For the simulation, the same input
concentrations C1(t), C2(t) and C3(t), temperature ϑ(t), and flow
rate q(t) were used as for the first simulation. In the resulting
plot the simulated output shows the flow-rate-depending offset.
As before, the NTiS was initialized with deviations in the
nominal reactor values (time constant τk and the reaction
parameters A3 and E3) resulting in the same physical
parameters Δ as for the first simulation. Moreover, as the NTiS
is not yet aware of the offsets, the initial prediction using the
NTiS shows strong deviations compared to the simulated
output. The initial prediction is also similar to what one would
expect from the traditional TiS model using the altered
parameters, as the flow-rate-dependent offsets are not
considered in the traditional TiS model. After training, the
NTiS with the same settings as for the first simulation, and
using the simulated data for the training, one can see, that the
prediction of the NTiS agrees nearly perfectly with the
simulated output which shows the mentioned offset depending

Fig. 7 Reactor simulation showing input variables and output C3(t) for
the traditional tanks-in-series model, the initial prediction of the NTiS,
and the prediction of the trained NTiS.

Fig. 8 Reactor simulation with flow-rate-depending offsets. Depicted
is the output C3(t) for the traditional tanks-in-series model, the initial
prediction of the NTiS, and prediction of the trained NTiS.
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on the flow rate q(t). The reactor parameters are again
optimized in such a way, that they match the values used for
the simulation to generate the ground truth data.

In Table 2, the adjustment parameter δτ and the resulting
reaction parameters A3 and E3 are reported for the ground
truth simulation with a flow-rate-dependent offset, as well as
for the initial and optimized NTiS model. The results
illustrate how the NTiS training successfully recovers the true
physical parameters despite starting from altered initial
values. Moreover, as shown in the corresponding figure, the
offset dependent on the flow rate q(t) is accurately
reconstructed by the NTiS, demonstrating its capability to
capture systematic effects not explicitly modeled in the
traditional TiS model. This improvement is also evident when
comparing the mean squared error (MSE) across all three
predictions: the initial NTiS prediction yields ζinitial = 1483 ×
10−6, which is reduced to ζTrained = 17 × 10−6 after training,
highlighting the effectiveness of the parameter adaptation
and residual learning in the NTiS approach.

As seen in the second simulation, the NTiS model
demonstrated its ability to learn unmodeled dynamics, such
as the flow-rate-dependent offset, while still adjusting the
physical parameters. The model focused on updating δτ, δA3

,
and δE3

, while also accounting for the flow-rate-dependent
offset. The NTiS successfully captured the offset caused by
variations in the flow rate q(t). The model's predictions
closely matched the simulated output, showing its ability to
adjust both physical parameters and unmodeled dynamics.
This ability to incorporate both physical parameter updates
and the flow-rate-dependent offset highlights the NTiS's
robustness, as it can handle complex effects that the
traditional TiS model cannot model directly.

Overall, the simulation results clearly demonstrate the
effectiveness of the NTiS model in accurately predicting flow
reactor outputs by jointly training both physical parameters
and neural network weights. This hybrid learning approach
enables the NTiS to leverage domain knowledge embedded in
the TiS structure while flexibly capturing unmodeled
dynamics through residual learning. By balancing updates to
the physical parameters with targeted residual estimations,
the NTiS can not only recover true underlying process
parameters but also adapt to systematic deviations.

3.4.4 Case study and out-of-domain behavior. Within a
case study, we apply the NTiS to model a flow reactor
system. We show that the NTiS can be used to model the
flow reactor system and achieve accurate predictions, even
for out-of-domain scenarios. For this purpose, a Paal–Knorr

pyrrole reaction, consisting of a single reaction, was utilized.
The reaction involves three main components: iso-propanol
as the solvent (C1(t)), ethanolamine (NH2–CH2–CH2OH) at a
concentration of 1.5 mol L−1 (C2(t)), and 2,5-hexanedione at
1.5 mol L−1 (C3(t)). These components were introduced into
a 5 mL flow reactor at controlled flow rates. Inside the flow
reactor, ethanolamine reacts with 2,5-hexanedione to
produce the final product, 1-(2-hydroxyethyl)-2,5-
dimethylpyrrole (C4(t)), along with two molecules of water. It
is assumed, that the underlying temperature dependence of
the reaction within a tank can be described by the
Arrhenius equation whereby the reaction parameters A4 and
E4 are not known in detail. The concentrations of both the
final product and remaining reactants (2,5-hexanedione)
were measured after the flow reactor. The reactor design
and the stoichiometry of this single-step Paal–Knorr pyrrole
reaction are illustrated in Fig. 9.

In the experiment, we applied different flow rates and
temperatures to the flow reactor. The selected temperature
ϑ(t) and total flow rate q(t) profiles, as well as the resulting
input concentrations of the reactants (species 2 and 3), are
shown in Fig. 10.

During the experiment, the output concentrations of the
product and the remaining 2,5-hexanedione were measured
and used to train a NTiS model. For the NTiS model we set
the number of NTs to 50. Similar as for the simulations, the
physical parameters Δ comprise the adjustment factor δτ, as
well as the offset parameters δA3

and δE3
. The nominal

reaction parameters Ā4, Ē4 were selected to lie within a
physically meaningful range, and the reactor volume V was
adopted from the actual reactor configuration.

For the neural network of the NTiS, we employed a
shallow architecture with one hidden layer containing 40
neurons. The network was trained only on the first 4.5 hours
of data, while the remaining data beyond this point was kept
completely unseen for testing. The hyperparameters of the
network and the training process were determined
empirically through manual tuning, and no hyperparameter
optimization was performed.

Table 2 Reaction parameters δτ, A3 and E3 for the traditional TiS model,
the initial and optimized NTiS model for the second simulation with flow-
rate-depending offsets

Model A3 E3 δτ

Ground truth simulation (with offsets) 10.00 15 000 1.20
Optimized parameters of the NTiS model 9.89 15 072 1.18
Initial parameters of the NTiS model 12.00 13 000 1.00

Fig. 9 Reactor setup and stoichiometry of the Paal–Knorr pyrrole
reaction.
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Fig. 11 compares the measured output concentrations
with the initial NTiS predictions obtained using the initial
parameters. During training, the NTiS refined the physical
parameters and learned residuals, capturing both modeled
and unmodeled effects. Consequently, the trained NTiS
predictions shown in the figure demonstrate excellent
agreement with the measured data.

Additionally, predictions for out-of-domain data, where
the residual contributions of the neural network within the
NTiS were set to zero, are included and labeled as “PBM
only”. Those results are equivalent to a traditional TiS model
with optimized physical parameters. The figure shows that
while the out-of-domain predictions are an improvement over
the initial predictions, the predictions incorporating
residuals are slightly more accurate. This indicates that the
primary improvements stem from adjustments to the
physical parameters, with the residuals contributing only a
minor additional boost in accuracy for this experiment.

To further illustrate the behavior in out-of-domain
scenarios, we trained a purely data-driven neural network
with two hidden layers of 60 neurons each. The neural
network was trained exclusively on the first 4.5 hours of data
and subsequently applied to estimate the full time series of
output concentrations. As shown in the figure, the data-
driven neural network achieves excellent agreement within
the training domain but exhibits an increasing offset once
applied to out-of-domain data. In contrast, both the trained
NTiS and the PBM-only predictions maintain physically
consistent behavior and do not show such deviations. These
results emphasize that while a purely data-driven model can
fit in-domain data well, its lack of physical constraints can
limit its reliability for extrapolation.

This improvement is further confirmed by the MSE
analysis for each individual output shown in Fig. 12. The
initial estimates yield the highest MSE, followed by the data-

driven neural network and then the PBM-only case. The latter
represents out-of-domain predictions or a traditional TiS
model with optimized parameters. The trained NTiS
consistently achieves the lowest MSE values.

The results of the case study highlight the improved
performance of the NTiS compared to the traditional TiS. The
NTiS ensures reliable out-of-domain predictions, which
purely data-driven methods may not achieve, as illustrated by
a neural network that showed deviations on unseen data.

Conclusions

The neural tanks-in-series (NTiS) model presented in this
work represents a significant advancement over traditional
TiS models through its integration of PGNNs. By combining
mechanistic modeling with data-driven approaches, NTiS

Fig. 10 Inputs to the flow reactor system for the Paal–Knorr pyrrole
reaction.

Fig. 11 Predictions for the Paal–Knorr pyrrole reaction. Data to the
left of the border was used to train the NTiS and the data-driven neural
network while the data to the right are used for test.
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improves prediction accuracy, captures unmodeled dynamics,
and ensures physically feasible predictions even in out-of-
domain scenarios. It outperforms purely mechanistic TiS
models by adapting to varying operating conditions while
preserving the physical structure of a flow reactor. Compared
to purely data-driven models, NTiS achieves comparable
accuracy without the risk of physically infeasible
extrapolations. These results highlight the value of NTiS in
combining robustness and interpretability with the flexibility
of data-driven learning.

Through simulations, we demonstrated that NTiS can
refine physical parameters and learn residuals, enabling
accurate modeling of complex flow reactor systems. The case
study on the Paal–Knorr pyrrole reaction further confirmed
its capability to predict real-world reactor behavior under
varying conditions. NTiS not only enhances prediction
accuracy but also provides reliable estimates when
extrapolating beyond the training data.

It should be noted, however, that NTiS relies on the TiS
structure for modeling flow reactors. If the assumed topology
does not match the actual system, parameter identification
may be affected, as the neural components may compensate
for structural mismatches. Nevertheless, the NTiS concept
can be extended to other reactor types by adapting the
underlying physical model, creating opportunities for future
studies.

Overall, NTiS provides a robust and flexible framework for
enhancing flow reactor modeling. By merging mechanistic
understanding with data-driven flexibility, it delivers accurate
and physically consistent predictions under varying
conditions and out-of-domain scenarios. This makes it
particularly suited for flow chemistry applications, digital
twins, and PAT-integrated process automation, supporting
improved process optimization, real-time decision-making,
and accelerated design and scale-up of chemical processes.

Its combination of reliability, interpretability, and
adaptability underscores its potential for broad impact in
both research and industrial settings.
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Appendices
Appendix A: Gradient computation/backward pass

Appendix A provides a detailed explanation of the backward
path computations for a NT realized as custom neural
network layer. The backward path is derived by applying the
chain rule to compute the gradients of the loss function with
respect to the layer's inputs, weights, and biases.

To ensure generality, we consider the possibility of
time-varying physical parameters Δ

j
k and allow each NT j

to have its own unique set of parameters. To capture this
variability, we use the subscript k to indicate time
dependency and the superscript j to denote the specific
NT.

Fig. 13 illustrates the generalized structure of an NT,
whereby the inputs include X j−1

k , Δ j
k, and R j

k, while the output
is X j

k. As an NT does not contain internal weights and biases,
and when following the derivatives stated in eqn (23), one
can find, that the focus is solely on determining

Fig. 12 Mean square error ζ for different models and outputs.
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∂X j
k

∂X j−1
k

;
∂X j

k

∂Δ j
k

; and
∂X j

k

∂R j−1
k

: (25)

Derivative with respect to the input X j−1
k . For the derivative

with respect to the input X j−1
k one can find

∂X j
k

∂X j−1
k

¼

∂Π j
k

∂Π j−1
k

∂Π j
k

∂Ω j−1
k

∂Ω j
k

∂Π j−1
k

∂Ω j
k

∂Ω j−1
k

2
66664

3
77775 (26)

Thereby,

∂Ω j
k

∂Ω j−1
k

¼ ∂Ω̂ j
k

∂Ω j−1
k

¼ ∂Ω j−1
k

∂Ω j−1
k

¼ I;

where I represents the identity matrix of appropriate size,
and

∂Ω j
k

∂Π j−1
k

¼ 0;

as Ω j
k is not affected by Π j−1

k .
As the output Π j

k of a NT depends only the previous input
(Xj−1

k−1) and not on the current input X j−1
k , the derivatives

∂Π j
k

∂Π j−1
k

and
∂Π j

k

∂Ω j−1
k

will be zero. This is because the current

input X j−1
k does not directly influence Π j

k. Finally, one can
summarize that

∂X j
k

∂X j−1
k

¼ 0 0

0 I

� �
: (29)

Derivative with respect to the physical parameters Δ j
k.

Assuming that all the NTs consist of a physical model  j

with one reaction forming species i, the physical parameters
Δ j

k can be defined as the combination of the delay

adjustment δ j
τ,k, the offset for the pre-exponential factor δ

j
Ai;k

and the offset for the activation energy δ j
Ei;k

like

Δ
j
k ¼ δ

j
τ;k δ

j
Ai;k

δ
j
Ei;k

h iT
: (30)

This is no general limitation, as the physical model  j

can include as many reactions as required. More reactions
would require to extend the physical parameter vector Δ

accordingly.

For the derivative with respect to the physical parameters
Δ j

k, one can find

∂X j
k

∂Δ j
k

¼

∂Π j
k

∂Δ j
k

∂Ω j
k

∂Δ j
k

2
66664

3
77775 ¼

∂Π̂ j
k

∂Δ j
k

þ ∂R j
k

∂Δ j
k

0

2
64

3
75 ¼

∂Π̂ j
k

∂Δ j
k

þ 0

0

2
64

3
75; (31)

where

∂Π̂ j
k

∂Δ j
k

¼ ∂Π̂ j
k

∂δ j
τ;k

∂Π̂ j
k

∂δ j
Ai;k

∂Π̂ j
k

∂δ j
Ei;k

" #
:

For the three derivations, one can find

∂Π̂ j
k

∂δ j
τ;k

¼ Td
q j−1
k−1
ΔV

Π
j−1
k−1 −Π

j
k−1

h i
;

∂Π̂ j
k

∂δ j
Ai;k

¼ Tdξ Π
j
k−1

� �
e
−
Eiþδ

j
Ei

Rϑ
j−1
k−1 ; and

∂Π̂ j
k

∂δ j
Ei;k

¼ − Td

Rϑ j−1
k−1

ξ Π
j
k−1

� �
Ā þ δ

j
Ai

h i
e
−
Eiþδ

j
Ei

Rϑ
j−1
k−1 :

When the input Δj
k is identical across all time steps k and

tanks j, the gradient calculation for each tank and time step,

∂Π̂ j
k

∂Δ j
k

, remains unchanged.

Whenever the input Δ j
k = Δ is shared across all NTs, the

overall gradient with respect to Δ is aggregated as the mean

of all individual gradients:
∂Π̂ j

k

∂Δ ¼ 1
N

X
k; j

∂Π̂ j
k

∂Δ j
k

, where N is the

total number of tanks and time steps. This averaging ensures
the collective contribution from all tanks and time steps is
accounted for consistently, enabling balanced updates during
optimization.

Derivative with respect to the residuals R j
k. For the

derivative with respect to the residuals R j
k one can find, that

∂X j
k

∂R j
k

¼

∂Π j
k

∂R j
k

∂Ω j
k

∂R j
k

2
66664

3
77775 ¼

∂Π̂ j
k

∂R j
k

þ ∂R j
k

∂R j
k

0

2
64

3
75 ¼ 0þ I

0

� �
: (34)
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