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When novel chemical reactions are discovered or
modifications to existing reactions are done, optimization is a
required step of the chemistry development procedure, while
also being a crucial need in current research development.
For this task, fast and possibly automated optimization
methods of black-box functions are needed,”® as a full
chemical kinetics characterization may be an excessive
endeavor with classical methodologies, especially if the
reaction is new, and the mechanism unknown.*” Also, when
the experiments involve expensive reactants, optimization
should proceed with reduced amounts of chemicals and
waste.® Furthermore, it has been shown that such
computational methods outperform human intuition and led
to faster/cheaper optimization campaigns.”

Bayesian optimization (BO) methods have seen an
increasing application in as a solution to obtain data-driven
optimization campaigns.”> These methods are very efficient
for automatic optimization with very minor human
intervention, making their implementation in chemistry
discovery appealing. These methods find applications in both
batch (discontinuous) and flow (continuous) reactors,
showing the flexibility of the approach.

BO methods have seen applications in chemistry in
combination with simple response-surface methods.® Several
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platform showcasing the simplicity of the method.

parameters (which number would be excessive for classical,
user-based experimentation and interpretation) have also
been considered simultaneously using recently the TSEMO’
and the BOAEI" algorithms. Also, cost-aware parallelized BO
algorithms (CAPBO) have been developed'" to underline that
the relevant goal in chemistry optimization is the cost of the
experimentation and not the number of experiments
performed. Efficient, automated sampling becomes thus
critical for optimal conduction of BO campaigns.’” BO has
also been applied for fast chemical reactions in combination
with mass spectroscopy.’® It is worth noting that, given the
complexity of the algorithms, non-expert users should be
guided, possibly with simple interfaces and instructions.*
An emerging tool to explore a chemical design space is
dynamic experiments (DynE) in flow chemistry, that is,
optimization parameters are changed over time in a
continuous reactor which is not operated at steady state.
These methods can produce rich data sets with advantages
over classical, steady experiments, as more data can be
collected in shorter times, while saving reagents and time."?
The change of the parameters over time effectively creates
trajectories which sample the design space in an ordered
fashion. DynE best work in Euclidean, continuous design
spaces, typical of chemical reactions where optimization
variables are continuous (residence time, inlet composition,
temperature, light intensity, wavelength, voltage, ...). Such
variables usually represent the majority of the optimization
parameters, while discrete (categorical) variables (e.g., choice
of solvent and catalyst) may be set from previous discovery
experiments or can be treated as separate systems. A
workaround for discrete variables is to transform them in

This journal is © The Royal Society of Chemistry 2025
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continuous ones: for example, solvent choice (among two or
three candidates) can become a problem of binary/ternary
solvent mixture optimization.®

The early works of several groups'’° have set foundation
for newer and sophisticated methods aimed at optimization
and chemical kinetics analysis with DynE. Optimization
procedures using gradient-based methods were adapted to
DynE by alternating circular trajectories (around a central
point in the design space) and gradient search with linear
trajectories (to move the central point to a better location).®
Kinetic analysis has been performed with DynE changing up
to five parameters simultaneously” and by leveraging a digital
twin.*! Kinetic parameters were found even in multi-phase
systems (catalytic reactor with gas-liquid stream) ramping
reactant flow rates at different (constant) temperatures.”

In this work, we develop for the first time a dynamic
experiment optimization method (DynO) in a Bayesian
optimization framework to combine the advantages of both
function optimization and data-rich experimentation. DynO
is compared with the widely used algorithm Dragonfly** in a
parametric analysis using a simulated reaction as a case
study with three optimization parameters (residence time,
reactant ratio, and temperature) to highlight the advantages
of DynO in terms of experimental time and reagent
consumption. Finally, DynO is validated experimentally in
tubular reactor on a Polar Bear Plus Flow™ reactor (Unigsis)
for an ester hydrolysis reaction. The experiment is run with
two parameters (residence time and reactants ratio) to best
display the algorithmic steps, which lead to an optimal result
in the explored domain with only two experiments, while also
collecting an important amount of data which could be used
for kinetic studies.

1 Materials and methods
1.1 DynO algorithm development

A brief summary of the use of dynamic flow experiments
(DynE) will be presented in section 1.1.1, while some details
on BO can be found in section S1 in the ESLj These tools will
be combined in section 1.1.2, where the detailed
development of the proposed optimization methodology is
presented. In this work, without loss of generality, we focus
on the maximization of an objective (minimization can be
done with the same algorithms by maximizing the negative
objective).

1.1.1 Dynamic experiments. Tubular reactors can be
operated under a dynamic regime of the continuous (non-
discrete) variables of interest (e.g:, residence time, inlet
concentrations, and temperature) to measure a time-
changing value of an objective (e.g:, yield) at the outlet of the
reactor. In an ideal scenario where the tubular reactor
behaves as a plug-flow reactor (PFR), the obtained objective
under dynamic regime corresponds exactly to the outcomes
of a series of steady experiments under different conditions.
This allows to efficiently explore a chemical design space (the
space defined by the variables of interest) and observe the

This journal is © The Royal Society of Chemistry 2025

View Article Online

Paper

effect of variables (the optimization parameters in the next
sections) on an objective.*

The value of the objective Y measured at each time ¢ in a
DynE corresponds to the value obtained at steady-state for
some particular set of conditions (reconstructed parameters,
X). Such variables are not necessarily corresponding to the
ones set at time ¢ (instantaneous parameters, Xj), as a plug-
flow introduces a time delay corresponding to the plug
residence time, z. Therefore, a DynE is a trajectory in the
design space provided a proper reconstruction of the
conditions that produced a certain value of the objective.

Parameters can be classified as inlet variables (set at the
inlet of the reactor, such as the composition) and reactor-
wide variables (that affect the entire reactor, such as
temperature, voltage, light intensity). The former type is
reconstructed by observing the value of the instantaneous
parameter back in time by a residence time; the latter
variables are reconstructed by taking the integral average of
the parameter over a time span equal to the current
residence time.*® This means:

Xi(t-1(t)) Inlet variables

xt)={ 1 Jl (1)

— X;(0)d0 Reactor-wide variables
7(t) ) i)

The residence time is the effective time that a plug resides in
the reactor, which can be computed by solving eqn (2) based
on the instantaneous residence time 7; (defined as the ratio

between instantaneous volumetric flowrate and reactor
volume).
dr 71(t-7)
—=1- 0) =11(0 2
@ 0=n0) @

The differential eqn (2) has analytical solutions for many
simple forms of 7(¢) (constant, linear, quadratic, sinusoidal,
exponential functions of time) for which the reader is
referred to section S2 in the ESL}

The choice of the shape of Xi(¢) (and thus also 7(t)) is
arbitrary; in this work we use sinusoidal variations of such
parameters, extending the definition used in a previous
work.”® Sinusoidal variations were chosen for their flexibility
in describing trajectories in the design space. In fact, if the
wave parameters are chosen properly (following the Lissajous
curves constraints), the obtained trajectory in the design
space can also describe a polynomial shape, thus making
commonly used trajectories (usually linear or circular) a
particular case of the used sinusoidal variations. The general
equation for the variations reads:

Xi(t) = Xo <1 + 5sin (M + (p)) 3)

T

where X, is the mean value of the parameter, J is the relative
amplitude of the variation, T is the period of the oscillation,
and ¢ the phase shift of the sine wave. All parameters change
simultaneously over the experiment time span ¢ > 0, while
they are constant before, in a way that steady state is
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established at ¢ = 0. Previous work* showed that the sine
parameters should be selected to allow slow variation of the
parameters in order for a real DynE to be representative of
steady-state outcomes, according to:

21T

T <K (4)

where a very conservative value of K is 0.2 for inlet variables
and 0.04 for reactor-wide variables to account for dispersion
in the tubular reactor.?® Nevertheless, if the reactor behaves
as an ideal PFR K — oo for inlet variables (i.e., there is no
constraint on the speed of parameters variations).

The main advantage of DynE is that they are data-rich
experiments, providing more information than steady-state
experiments with reduced amounts of chemicals employed
and over a shorter experimental time. In a DynE, a steady-
state is initially established by waiting for a time equal to a
selected number of residence times, n,, after which (at ¢ = 0)
the sinusoidal variations of the parameters take effect
(usually n, = 3).

It is possible to evaluate a priori the volume of chemicals
required in a DynE, Vpy,g, in relation to the reactor volume,
Vixt, AS:

14 [lew
LS J —dt (5)
Vixt 0 TI(t)

where fey, = (Ns — 1)Ats (time of the dynamic part of the
experiment), being Ns the number of samples taken starting
from ¢ = 0, and Atgs the time interval between subsequent
samplings (corresponding to the time of the analysis if using
an in/on-line method). The first term in the previous
equation is due to the time waited to reach steady-state at ¢ =
0. It is possible to demonstrate (see section S371) that a DynE
is always advantageous, compared to steady operations, in
terms of time to collect the same number of data points.
Additionally, a dynamic experiment requires a lower amount
of reagents to collect the same amount of information,
especially when a fast sampling method is available for the
experiments. When the minimum residence time considered
in the design space is larger than Atg/n, a DynE is
advantageous also in terms of reagents consumption.
Optimal analyses for DynE are thus inline infrared (IR) or
inline nuclear magnetic resonance (NMR) spectroscopy,
which generally allow collection of data 1-2 minutes, making
DynE worthwhile whenever the investigated residence times
are greater than roughly half minute (with n, = 3). Online
chromatography methods (e.g:, high-performance liquid
chromatography, HPLC) require longer times for analysis
(10-20 minutes), thus a making this type of data collection
method worth for reactions requiring residence times above
a few minutes. When the analysis method requires excessive
time (compared to the average residence time) or it is
expensive, there is no true advantage in using DynE over
steady experiments.

1.1.2 DynO algorithm. The D-dimensional design space is
assumed to be bounded in a finite, user-provided range
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Z =la,b]. The user should also provide the sampling time
Ats. DynO is summarized in Algorithm 1 and described
hereafter.

Algorithm 1 Bayesian optimization using dynamic experiments.
Blue steps require an experiment to be performed, red steps take
advantage of standard GP methods from Scikit-Learn. 24

Require: a,b > a,Ats. Optional: d,.
1: if Dynamic iniatilization then

2: X.9,T,9,N;s « Evaluate initialization trajectory parame-
ters. > Eq. (6)-(9)

3: Y, + Collect datapoints from a dynamic experiment.

4: X <« Reconstruct effective sampled points from instanta-
neous trajectory. > Eq. (1)

5: else

6: X <+ Randomly select points to sample.

7: Y, < Collect datapoints from steady experiments.

8: end if

9. ¥(X|Y,,X,) + Train GP using collected data.

10: while Convergence criteria not met do
11: Retrieve experimental optimum location X,
argmaxy Y, and value Y,,; = maxY,.
2,

pr =

12: X,.0 ,f,’(p,Ns < Calculate new trajectory parameters from
argmax o. > Eq. (10)

13: Y, < Augment dataset with new data collected.

14: X < Augment dataset with new sampled points.

15: Y(X|Y,. X ) < Re-train GP using all collected data.
16: end while

As for every BO algorithm, initialization is required to
predict a new trajectory to test experimentally. This can be
done by using data both collected using dynamic or steady
experiments. For steady data, randomization is usually the
best choice. For initialization with dynamic experiments we
suggest using Lissajous curves able to explore the whole
design space while satisfying the slow-variations criterion
(eqn (4)). The trajectory is centered at the center of the design
space, thus:

_b+ta

X,
0 2

(6)
and the amplitude of the sine wave is such to explore a

fraction ¢ (usually unitary) of the design space:

_b—a
T 2X,

b-a
E= gt (7)

For each variable i = 1...D, periods and phase shifts are
linked by a base period T (corresponding to the largest period
considered) and a factor f € N (giving the shape of the

Lissajous curve) via:

o =(-1)f (8)

By minimizing the resulting initialization duration under the
inequality given by eqn (4), one obtains:

This journal is © The Royal Society of Chemistry 2025
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1| K o;
f = max|2, | min"\'/=' max-2
i o J K;

21’[‘[’0 a §jfi71 (9)

X
Atg i K;

T = texp = NsAts

Ns:1+"

The trajectory obtained always guarantees at least one
repeated point (that is, the trajectory self-crosses), which is a
useful sanity check of the experiment. This initialization
method is extremely explorative at the cost of a rather long
experiment time (possibly hours, depending on the number
of variables considered).

Once initialization is completed the GP can be trained.
The design space is normalized to a unitary hypercube
XeZ,Z=1[0,1]) to simplify calculations, given the
boundedness of the domain. In this work an anisotropic 3/2
Matérn kernel is used, but any other functional is allowed.
During training of the GP, measurement noise is evaluated as
an hyperparameter, which will also account for all non-
idealities of the DynO methodology, treating them as
independent and identically distributed noise. GP regression
is performed with the readily available Python package Scikit-
Learn.*!

It should be noted that other similar kernels, such as the
commonly used 5/2 (or larger) Matérn kernels and radial
basis functions, may restrict the objective to very smooth
shapes, possibly being unable to capture (rare) sharp changes
in the objective; the 3/2 kernel is able to predict both sharp
and smooth objectives. Other kernels (periodic, dot product)
can be used, but have generally few applications for common
flow chemistry objectives such as yield, productivity, and
environmental indexes.

With a trained GP it is possible to maximize an
acquisition function to obtain the new experiment
parameters (Xo, 6, T, @, Ng). The present acquisition function
(based on UCB>®) was developed to consider the contribution
of each individual point of the trajectory with the addition of
a repulsive term to avoid the collapse of the trajectory to a
single point. The parameters of the new trajectory are then
obtained by iteratively maximizing:

o= iUCB(X(t,'))—0.0l-y (10)

where UCB(X(t;)) is the upper confidence bound evaluated
at the sampling time ¢; in the dynamic experiment, and is
a repulsive term depending on the distance of the
trajectory from all points (both explored in previous
experiments and in the current one). X(¢;) is evaluated by
solving the trajectory reconstruction problem (section 1.1.1)
with the parameters of the current iteration. The repulsive
term is computed, similarly to high coverage terms
reported in literature,® as:

This journal is © The Royal Society of Chemistry 2025
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1 &s 2d, 10
y= exp(NSlZ; (di+d0) > (11)
where d, is the distance between points at which the
repulsive term becomes relevant, and d; is the minimum
distance (L*> norm) of point i to any other point in the
design space. These evaluations are performed using a
fictitious, under-sampled trajectory to speed up the
calculation: 3D samples are assumed with a sampling time
of max(Ats, (b, + a,)/2). This heuristics allows a fairer
exploration of regions at large residence time. Furthermore,
to slightly reduce the effect of repulsion over iterations as
more and more data points are collected that could
generate excessive repulsion, the value d, is assumed to
follow an exponential decay of 0.1/1.05/" for the j-th
iteration, j > 1.

The maximization of « is done via a differential evolution
algorithm from SciPy in Python. It is worth noting that the
solution to this problem is not unique for a trajectory: as a
trivial example, the same trajectory in the design space can
be traced in two opposite directions, producing similar (if
not equal) values of a. Nevertheless, the area in which the
trajectory is located will hardly change and only its shape
may vary.

A new proposed experiment can then be run and the GP
retrained. Now new experimental conditions can be
suggested again, and the procedure repeated up to
convergence. Convergence can be assessed by observing
different measures and we considered:

C.0 similarity between optima found experimentally and
estimated from the GP (using a 10% significance Z-test);

C.1 similarity between such optima locations (distance
lower than d,);

C.2 low uncertainty of the GP-estimated optimum
(standard deviation lower than 5%);

C3 similarity of location distance over iterations (distance
with last optimum lower than d,).

A combination of these criteria can also be used, as it will
be observed in the parametric analysis in section 2.

1.2 Experimental setup

Dynamic optimization of a case study reaction, ester
hydrolysis, was performed in 5 mL plug flow reactors (PFRs)
on a Polar Bear Plus Flow™ reactor (Unigsis) (Fig. S1 and
S2t) to validate the proposed model. A schematic of the ester
hydrolysis reaction is in shown Fig. S3.}

LabVIEW™ (National Instrument, NI ver. 2021.0) and
MATLAB® & SIMULINK® (MathWorks, Inc., ver. R2022a) were
used to enable automated dynamic experimentation. The
LabVIEW virtual instrument (VI) automation user interface
was designed and written completely in-house for controlling
the Polar Bear Plus Flow reactor (Unigsis), VICI Milligat six
pumps array (Global FIA, VICI M6), flow rate manipulation,
temperature control, online ultra high-performance liquid
chromatography (UHPLC) sampling, and analysis (Fig. S4

React. Chem. Eng., 2025, 10, 656-666 | 659
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and S5f). We achieved the automated dynamic
experimentation by the integration of sinusoidal trajectories
(eqn (3)) with the MATLAB-Script node in LabVIEW.

The analysis of product mixture was carried out with
Agilent 1260 Infinity II online UHPLC with an IClass QDA
mass spectrometer (MS). NI USB 6009 Data Acquisition (DAQ)
with digital I/O (DIO) device was used for automated
sampling and analysis on UHPLC via enhanced remote
interface (ERI) signal. The Agilent 1260 Infinity II online
sample manager (G3167AA) set comprised of the Agilent 1260
Infinity II online sample manager (G3167A) and the Agilent
1290 Infinity II valve drive (G1170A) with external sampling
valve (Fig. S27). The external valve drive (G1170A) with a valve
head (3-position/6-port FI) served as an external sampling
interface, which was synchronized with the inner injection
valve of the online sample manager. The online UHPLC
provided enhanced injection flexibility of process samples
with flexible sampling and injection volumes (0.1 to 100 pL).
In addition, it allowed direct injections, automated dilutions
(up to 1:1000), reaction quenching, and sample archiving via
online retain-sample functionality.

2 Parametric analysis and algorithmic
comparison

To showcase the capabilities of DynO, a synthetic case study
is conducted on a test reaction with selectivity issues in a
simulated tubular reactor. A reaction (following the scheme
of a Suzuki-Miyaura coupling) is considered between a di-
halogenated species A and phenylboronic acid B as from
Fig. 1. Also, catalyst deactivation and protodeboronation of B
are considered. Ia and Ib are mono-substituted products (in
the two possible positions) and II is the di-substituted
product. Each reaction follows the Suzuki coupling
mechanism  where oxidative addition (0OA) and
transmetallation (TM) are considered, while reductive
elimination is assumed to be instantaneous. The following
parametric analysis considers the optimization of an
objective at different values of the reaction rate constants, in
particular at changing value of the ratio between OA and TM

Catalyst Catalyst II

Ia

AT LI

AN

Catalyst ——————— Byproducts
B —— > Byproducts
Fig. 1 Mechanism of the reactions considered in the parametric
analysis. The scheme is based on a Suzuki-Miyaura coupling of a di-
halogenated species A with phenylboronic acid B, leading to three
possible products. Catalyst deactivation and B degradation are also
considered.
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Table 1 List of parametric analysis tests: low [high] speed indicates K

equal to 0.2 [0.6] for residence time, 0.2 [0.5] for the B/A inlet ratio, and
0.04 [0.09] for temperature®®

Init. mode Init. Ng Speed of variation Ats [min]
1 Steady 10 Low 10
2 Steady 20 Low 10
3 Steady 10 High 10
4 Steady 10 High 2
5 Dynamic Eqn (9) Low 10
6 Dynamic Eqn (9) High 10
7 Dynamic Eqn (9) High 2

rate constants. Further details can be found in section S4 in
the ESLf

The objective to be maximized corrects yield of Ia by
considering the use of reactants (favoring solutions using
smaller amounts of chemicals) and residence time (favoring
lower residence times slightly):

YIa/A
[Blo

1+m

0= -0.017 (12)

where Yy, is the yield of Ia w.r.t. A (limiting reactant), [A],
and [B], are the inlet concentrations of A and B, respectively,
and 7 is the residence time expressed in hours. The aim is to
maximize the objective in a three-dimensional design space
composed of residence time (10-60 min), [B]o/[A]o
concentration ratio (1-3), and temperature (20-90 °C).

The analysis is run optimizing the reaction with DynO
considering different initialization methods (random/steady
vs. dynamic), speeds of variation of the parameters (i.e., the
values of K), and sampling times (slow vs. fast analysis
methods, e.g., HPLC vs. FTIR) for 60 different sets of kinetic
constants (see ESIf), according to Table 1. Cases 1-4 were
also repeated with the state-of-art algorithm Dragonfly** and
a purely random (steady) optimizer to compare the results,
all algorithms being initialized with the same data. Cases 5-7
study the effect of initializing DynO with a DynE (Lissajous
trajectory) instead of random points.

The learning curves of the algorithms were observed by
reporting relative regret (ie., the difference between the
optimal objective and the objective that is achieved relative
to the true optimum value) against number of data points
used in the optimization campaign, experimental time (i.e.,
time required for running the experiments in real life), and
volume of reagents needed for the optimization campaign
(divided by the reactor volume). It should be stressed that in
a real-life scenario experimental time and volume of reagents
are the variables of interest for a successful optimization
campaign, rather than the number of samples, if the cost of
the analysis is negligible compared to equipment up-time
and chemicals cost, which is generally the case. Additionally,
the possible presence of noise in the objective was analyzed
for all considered cases, with the objective being tainted with
independent and identically distributed noise equal to 1% of

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Learning curves comparing the three algorithms initialized
randomly with the same data for a noise-free objective. Regret is
reported as a function of number of samples, experimental time, and
volume of reagents. The shaded area represents one standard
deviation. A 5% regret threshold is reported as dotted line.

the optimum value. All learning curves are analyzed in terms
of geometric average of the regret (average of log-regret) and
geometric standard deviation.

DynO is run for a maximum of 10 iterations after
initialization, while Dragonfly and the random optimizer
are run for a maximum of 65 data points after
initialization.

The learning curves for cases 1-4 using the three
algorithms are reported in Fig. 2 when no noise in the
objective is considered. DynO seems to always be
outperformed by Dragonfly and to behave similarly to or
worse than random in the classical view of sample
complexity. This behavior is expected as DynO is a data-
rich method, while Dragonfly and random rely on steady
experiments to collect data. On the other hand, in the
majority of the cases, DynO learns faster then Dragonfly
in terms of both experimental time and volume of
reagents, the quantities that are important to practical
optimization. The learning curves imply that DynO is able
to collect data more efficiently than Dragonfly (and
random).

In cases 1 and 2 (low speed of variation, steady state
reached in 3 times the residence time), DynO is able to
decrease regret in a sub-linear fashion (on the bi-logarithmic
plot) since the beginning, while Dragonfly behaves similarly
to random at the beginning of the optimization procedure.
The comparison of cases 1 and 2 for DynO shows that there
is no real advantage in doubling the number of initialization

This journal is © The Royal Society of Chemistry 2025
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converges in a fraction (1-NC) of cases. Confusion matrix reported as
TP true positive, FN false negative (type Il error, wasted iterations), FP
false positive (type | error, early algorithm stop), TN true negative.

When cases 3 and 4 are considered (high speed of
variation), DynO behaves efficiently with a linear or super-
linear trend. Notably for there cases, the time waited to reach
steady state is lower (1.5 times the residence time), yet DynO
outperforms Dragonfly on the long run, reaching very low
values of regret. Comparing cases 3 and 4 for DynO shows
that the algorithm is slightly more efficient in regret
reduction when a fast sampling method is used, exploiting
the data-richness of the underlying DynE.

Overall, this analysis demonstrates that DynO outperforms
and, at worst, behaves as Dragonfly. Additionally, on long
runs DynO steadily decreases regret, while Dragonfly tends to
a plateau, suggesting that DynO behaves as a no-regret
optimization method (as it is based on UCB, which is no-
regret’”).

When a noisy objective is considered, the learning curves
change to those reported in Fig. 3 (a dashed line also reports
the noise level). All considerations above remain unchanged,
with DynO outperforming Dragonfly and quickly reaching a
regret lower than the noise level.

Fig. 4 helps comparing the different ways of initialization
for DynO, with steady or dynamic experiments in a noise-free
setting. A couple of cases are compared: 1 and 5 have slow
variations and slow sampling method, 3 and 6 have fast
variations and slow sampling, while 4 and 7 have fast
variations and fast sampling. In all cases, using a DynE to
initialize DynO helps regret reduction in terms of time (i.e., it
requires a lower or equal time to reach the same regret). No
advantage is observed in terms of volume, which is in any
case lower than the one required by Dragonfly as per the
discussion above.
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Finally, we analyzed different convergence criteria. The
data summarized in Fig. 5 are based on using the average
values obtained in all considered cases. The regret at
convergence of the analyzed cases is reported for the four
basic criteria (C.0-C.3) individually and four
combined criteria. The plot uses a linear scale, as in real-
life scenarios errors between 1 and 5% are acceptable and
any error analysis below 1% becomes meaningless due to
experimental error and noise. The arithmetic and
geometric average regret at convergence are reported as a
red dot and a red triangle, respectively. Also, the fraction
of cases which did not reach convergence (NC) and the
confusion matrix are reported. In general, a confusion
matrix indicates at a glance the goodness of a
classification model (e.g., a convergence criterion) based
on four performance indicators: true positive fraction (TP),
false negative fraction (FN), false positive fraction (FP),

new

and true negative fraction (TN). For the case of
convergence criteria, TP indicates the ability of the
criterion to  correctly indicate convergence when

convergence is effectively achieved (the regret is small),
while TN the ability to correctly indicate that no
convergence is reached when the regret is large; FN
indicates the cases when the criterion deemed not to have
reached convergence even if the regret was small (this
corresponds to wasting iterations in practice and to the
so-called type II error); FP shows the cases when the
criterion deemed to have reached convergence even if the
regret was large (this corresponds to a premature stop of
the algorithm and to the so-called type I error). All the
proposed basic criteria for DynO individually are able to
indicate convergence, on average, correctly below 5%
regret, yet they may also incorrectly report convergence or
never converge in some cases. This can be seen in the
confusion matrix, where the base criteria display a sum of
FN and FP between 30 and 70%.

A combination of the basic criteria (possibly imposing a
minimum number of DynO algorithm iterations) was found
to be helpful to decrease FP, while decreasing the average
regret at convergence. Requiring three or all four base criteria
to be met at the same time (1i3c and 1i4c in Fig. 5) leads to
low regret, at the cost of an excessive number of wasted
iterations (large FN) and at the risk of not reaching
convergence within 10 iterations. When instead at least two
iterations are required together with one (2ilc) or two (2i2c)
criteria, the best balance between true and false outcomes is
obtained, with reduced average regret. The proposed criteria
and their combinations allow the user to select different
levels of risk (to incur in type I or II errors) instead of only
relying on the expertise of the user in judging convergence,
as usually done in BO. Nevertheless, all combination criteria
have a regret distribution that is skewed to the left with a
significant fraction of cases (greater than 30%) reaching
convergence with less than 1% regret, which is more than
acceptable for the majority of the practical scenarios in
chemistry optimization.
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Table 2 Parameters of the trajectories used in the experimental validation of DynO to be used in eqn (3)
Iter. texp [Min] Var. X o[-] T [min] o [rad]
0 360 T 17.50 min 0.7100 260.0 0
X 2.00 0.5000 183.0 0
1 96 T 18.51 min 0.6117 258.7 0.074
X 2.39 0.2530 187.3 1.486
2 96 T 20.23 min 0.4748 213.17 —-0.060
X 2.26 0.2721 187.40 1.470

3 Experimental validation with ester
hydrolysis

DynO was tested with an experimental test case, ester
hydrolysis in a Polar Bear PFR reactor (Fig. S1-S37f). The
objective was to maximize the yield of the hydrolyzed
product. The LabVIEW automation user interface enabled
automated execution of dynamic experiments for ester
hydrolysis (Fig. S4 and S51). The hydrolysis reaction mixture
was divided into two streams: stream 1 consisting of ester
starting material in 2-methyltetrahydrofuran (2-MeTHF) and
stream 2 consisting of potassium hydroxide (KOH) in
methanol.

The design space was composed of two variables (D = 2):

1. Residence time: 5 to 30 min;

2. equivalents of KOH w.r.t. ester: 1 to 3.

Sampling was performed approximately every Atg = 8 min
using the automated online UHPLC (details of the method in
the ESIt). The values of K were set to 0.3 for both residence
time and KOH equivalents to avoid excessively conservative
trajectories in terms of speed.

3.1 Initialization

Prior to starting the hydrolysis experimentation, the Polar
Bear temperature was set to 25 °C and both streams, and the
reactor were flushed with mixture of 2-MeTHF and methanol
under ambient pressure, followed by pressurizing the system
to 20 psi with a Zaiput BPR. Pressure relief lines with 250 psi
cartridge BPRs (Upchurch, IDEX) were inserted directly after
the pump head as a standard flow safety protocol. After the
system was flushed and pressurized, a steady state was
established in the reactor with residence time of 17.5 min at
2 equiv. of KOH and held for three residence times after
equilibration of set temperature. Afterwards the LabVIEW
automation software executed the dynamic portion of the
experiment setting the flowrates to determine the residence
time the ratio of flow rates (stream 1 and 2) to determine the
equivalents of reagents with the parameters reported in
Table 2 (iteration 0) and graphically reported in Fig. 6a and b
over time. Upon completion of the dynamic experiment the
system was flushed with mixture of 2-MeTHF and methanol.
The data collected in the DynE over time (Fig. 6¢) is used
to reconstruct the steady-equivalent design space using eqn
(1) and to train the GP. Fig. 6d-f are obtained, where contour
plots indicate the GP predictions (average, standard

This journal is © The Royal Society of Chemistry 2025

deviation, and UCB) in the whole design space based on the
experimental data on the reconstructed trajectory. Fig. 6g is a
3D representation of the predicted objective together with
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Fig. 6 (a) and (b) Values of the optimization parameters in the
initialization trajectory over time, reporting both instantaneous (dashed
line) and reconstructed values (solid line). (c) Values of the objective
obtained over time during initialization. Contour plots of the GP-
predicted (d) objective mean, (e) standard deviation, and (f) UCB. The
reconstructed initialization trajectory is drawn as a continuous line and
the points are the sampled conditions. (g) GP-predictions in a 3D
space.
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Table 3 Optimum location and value obtained experimentally and predicted by the GP after training during the optimization procedure with DynO; the

GP error reported is the standard deviation

Optimum location

Optimum value

Exp. GP Exp. GP
Iter. 7 [min] 2 [F] 7 [min] x[-] [%] [%]
0 29.60 2.96 30.00 2.77 90.97 91.20 + 1.17
1 29.59 2.43 30.00 2.40 92.57 92.24 £ 1.79

experimental data. The response surface obtained is rather
smooth, as expected for a chemical reaction of this type and
the optimum is visually observed close to a corner of the
domain.

The experimental and GP-predicted maxima are reported
in Table 3 (iteration 0) where an almost-corner point is
indicated. At this moment the combined convergence criteria
are not met as no iteration after initialization was performed,
thus the optimization needs proceed. The large range of
values of the objective and the low GP standard deviation
produce an UCB with a similar shape to the average,
encouraging exploitation in the following iteration with a
minor component of exploration. A DynO trajectory
prediction was run to obtain the parameters for the following
iteration, reported in Table 2 (iteration 1).

3.2 Iteration 1

Similarly to initialization, a steady state was established with
residence time of 19.35 min at 2.99 equiv. of KOH (these
values differ from X, because ¢ is not a multiple of =) after
equilibration of set temperature at 25 °C. The LabVIEW
automation software subsequently executes the dynamic part
of the trajectory automatically.

The trajectory over time and the collected data is reported
in Fig. 7a—c. The reconstructed trajectory in the design space
is used to retrain the GP and Fig. 7d-g are obtained. As
expected, DynO computed a trajectory that crosses the region
of maximum UCB at the previous iteration, while also going
through unexplored parts of the domain (balanced by the
UCB in the acquisition function) with minor overlap with the
previous trajectory (effect of repulsion in the acquisition
function). The obtained results confirm that the shape of the
previous iteration and the points where the new trajectory
crosses the old one have the same objective value. This is a
sanity check of the DynE and a confirmation of the good
choice for the values of K: crossing points with same results
indicate that the DynE is representative of steady states and
the error done by using DynE instead of discrete, steady
conditions is negligible.>®

The experimental and GP-predicted maxima are reported
in Table 3 (iteration 1) and interestingly the maximum has
moved to lower KOH equivalents while keeping the
maximum residence time. At this iteration the combined
criterion 1i3c was satisfied (three of the four base criteria
C.0-C.3 met). This should be expected as the domain has
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low dimensionality and initialization was done with a DynE
(in accordance to the parametric analysis, Fig. 4, where very
low regret is achieved). Based on 1i3c convergence analysis
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Fig. 7 (a) and (b) Values of the optimization parameters in the

trajectory of iteration 1 over time, reporting both instantaneous
(dashed line) and reconstructed values (solid line). (c) Values of the
objective obtained over time during iteration 1. Contour plots of the
GP-predicted (d) objective mean, (e) standard deviation, and (f) UCB.
The reconstructed trajectory of iteration 1 is drawn as a continuous
line and the points are the sampled conditions. Points outside the
trajectory are previous data. (g) GP-predictions in a 3D space.
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(Fig. 5), a regret lower than 2% is expected. As convergence
is reached with a strong criterion, there is no need to
further proceed with optimization. If DynO was asked to
calculate a new trajectory, the parameters in Table 2
(iteration 2) would have been obtained.

Conclusions

This work presents for the first time the use of Bayesian
optimization in the context of dynamic flow experiments.
The DynO algorithm was developed specifically for chemistry
and chemical engineering problems, leveraging the
fundamental behavior tubular reactor,
exploiting the data richness of dynamic experiments in
combination with the flexibility of Gaussian processes in
describing response surfaces. The algorithm is able to guide
the user from initialization (using steady or dynamic
experiments) to the end of the optimization procedure thanks
to useful convergence criteria, which were proposed for the
first time together with an estimate of the regret reached.
Based on a parametric analysis, DynO was compared to
Dragonfly optimization algorithm (and a random optimizer),
showing remarkable performance in terms of experiment
time saving and reagent volume reduction. The procedure
was validated with a reaction of ester hydrolysis, showing
that DynO can be easily implemented experimentally and
allows to evaluate optimal reaction conditions with a limited
number of experiments. It should be noted that DynO is
designed for Euclidean domains, thus discrete variables
cannot yet be included.

of continuous

Data availability

The code for the DynO algorithm can be found in Python on

GitHub (https://github.com/fflorit/DynOpt) under a BSD
3-Clause License.
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