

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)Cite this: *RSC Adv.*, 2025, **15**, 19295

Correction: Mild decarboxylation of neat muconic acid to levulinic acid: a combined experimental and computational mechanistic study

Siddhant Bhardwaj,^a Deep M. Patel,^{ab} Michael J. Forrester,^a Luke T. Roling^{ab} and Eric W. Cochran^{*a}

Correction for 'Mild decarboxylation of neat muconic acid to levulinic acid: a combined experimental and computational mechanistic study' by Siddhant Bhardwaj *et al.*, *RSC Adv.*, 2024, **14**, 39408–39417, <https://doi.org/10.1039/D4RA05226A>.

DOI: 10.1039/d5ra90069g
rsc.li/rsc-advances

The authors regret the omission of a reference from the original manuscript, which should have been included in addition to ref. 35–41 in the sentence below. This reference is shown below as ref. 1.

"MA serves as a key platform chemical that readily affords a plethora of critical commodity chemicals, including adipic acid, terephthalic acid, ϵ -caprolactam, and 1,6-hexamethylene diamine, and novel monomers like cyclohex-1-ene-dicarboxylic acid (CH1DA).^{35–41},

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

- 1 C. Ver Elst, R. Vroemans, M. Bal, S. Sergeyev, C. Mensch and B. U. W. Maes, *Angew. Chem., Int. Ed.*, 2023, **62**, e202309597.

^aDepartment of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA. E-mail: ecochran@iastate.edu; Tel: +1-515-294-0625

^bCenter for Biorenewable Chemicals (CBiRC), Ames, IA, 50011, USA

