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-informed one-pot biodiesel
synthesis from an optimally formulated mixed non-
edible oil feedstock over magnetic sulfonated
biobased catalyst

Paschal Enyinnaya Ohale, *abc Andrew Nosakhare Amenaghawon, *a

Thomas Okpo Kimble Audu,a Favour Ugbodu,a Lilian Chikasi Okonkwobc

and Oghenerukevwe Jeffrey Oghenehwosaa

The disposal of domestic and industrial nonedible oils is a major source of environmental concern. Similarly,

the global energy-related environmental crises have exacerbated over the past decade. In this research,

a ternary mixture of non-edible oils (MNEO) from castor oil (CO), waste cooking oil (WCO) and

recovered-oil from palm oil mill effluent (RO-POME) was optimally formulated as a feed-stock for

biodiesel production. MNEO formulation was achieved using a D-optimal mixture design-aided

intelligent optimization. Poultry droppings (PD) was sequentially subjected to calcination, sulfonation and

magnetization to yield a reusable heterogeneous catalyst. One-pot transesterification was modeled

using explainable machine learning algorithms including support vector regression (SVR), artificial neural

network (ANN), and eXtreme Gradient Boosting (XGB) followed by Manta ray foraging optimization

(MRFO). The optimally formulated MNEO comprised 21.31% WCO, 18.45% RO-POME, and 60.24% CO,

with improved properties compared to individual oils. Fatty acid profiling of MNEO revealed it contained

29.96% (saturated), and 64.7% (unsaturated) fatty acids. Characterization results revealed the potentials of

Fe3O4@CPD–SO4 in facilitating MNEO transesterification reaction. Comparative modeling demonstrated

satisfactory applications of ANN, SVR and XGB, while error indices established XGB as the most superior

model in capturing the complex nonlinear dynamics of the system. Feature ranking established

methanol–oil molar ratio as the most influential parameter predicting biodiesel yield, underscoring the

important role of methanol in biodiesel synthesis. Furthermore, optimum reaction temperature, catalyst

dosage, methanol–oil-ratio and reaction time of 50 °C, 3.01 wt%, 30.0, and 2.4 h, obtained from XGB-

MRFO resulted in a yield of 99.68% which was experimentally validated to be 98.16%. It is concluded that

MNEO and poultry droppings can be successfully employed for sustainable biodiesel synthesis.
1. Introduction

The global community is currently apprehensive about energy
usage from fossil sources, owing to their non-renewable nature
and associated environmental consequences.1 Promoting
natural, renewable, sustainable, and cost-effective energy is vital
because of the negative environmental impacts of the ongoing
use of conventional energy resources (coal and petroleum)
cannot be disregarded, especially as concerns about climate
change continue to grow.2 Given that biodiesel is a sustainable
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energy source made from natural resources and shares several
qualities with conventional diesel fuel, it can be adopted as
a substitute for fossil based petrodiesel in internal combustion
engines.3

According to literature, one of the major factors impeding
the sustainable production of biodiesel is the cost of oil feed-
stock which accounts for over 80% of the overall process cost.4

Biodiesel was predominantly produced from edible oil feed-
stock some of which include soybean oil,5 palm oil,6 sunower
oil.7 However, the utilization of edible oils have raised concerns
on feedstock availability, cost, and food supply shortages,
motivating researchers to seek for alternative nonedible sour-
ces.8 Consequently, nonedible oils including castor oil,9 waste
cooking oil,10 lipids,11 waste animal fats12 are now preferred
because they are less expensive feedstocks for cost effective bi-
odiesel synthesis.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Despite these process cost reduction advantages of employ-
ing nonedible oils, the performance of biodiesel obtained from
these single feedstocks, with respect to oxidative stability and cold
ow qualities, requires signicant improvement prior to use.13

Several strategies have been suggested out to address these limi-
tations, and top on the list is the blending of oil feedstocks.
Blending nonedible oil feedstocks is being proposed as an
economical method to produce biodiesel with enhanced quali-
ties.14 In addition, blending of oil feedstocks is a mutually bene-
cial approach where the favorable features associated with each
oil is optimally exploited to form a blend which exhibits superior
attributes relative to each of the constituents.15 Even though there
have been a number of previous endeavors to investigate the
feasibility of exploiting biodiesel feedstocks containing a variety of
oil species, the full potential of this strategy has been constrained
by trial-and-error approaches.16 The process of trial-and-error
possesses identical drawbacks to the one-factor-at-a-time experi-
mental procedure. It cannot ensure the expected optimum and it
limits the researcher from investigating all of the factor distribu-
tions of every parameter.14,17 In implementing a mixture experi-
mental design as opposed to the trial-and-error method, these
limitations can be avoided.

Catalysts are essential in the transesterication reaction as they
enhance the reaction rate and reduce the activation energy
required for the reaction, hence accelerating and optimizing the
process.18 Homogeneous catalysts including sulfuric acid, potas-
sium hydroxide, and sodium hydroxide have been useful in bi-
odiesel production.19 Although these catalysts have been recorded
to have the advantages of facilitating mild reaction conditions,
improved reaction rates, and high biodiesel yields, they are also
associated with separation difficulties which signicantly
increases the process costs.20 As a result, researchers have focused
attention on developing heterogeneous catalysts that facilitate bi-
odiesel production, enhance reusability to lower process costs, and
provide environmental advantages by minimizing waste.5 The
catalytic performance of some catalysts synthesized from biobased
calcium rich precursors reported in literature have been signi-
cantly satisfactory, with respect to biodiesel yield.21–23 For instance,
Goli et al.21 investigated the transesterication of soybean oil using
CaO derived from chicken egg shells, and obtained an optimum
yield of 92.32% at a reaction time of 3 h. Similarly, Gaide et al.22

employed snail shell based CaO catalyst to obtain a biodiesel yield
of 98.15% at a reaction time of 8 h using rapeseed oil, even as
Maneerung et al.23 obtained 90% biodiesel aer 5 h using CaO
catalyst from chicken manure and WCO feedstock. Despite the
recorded satisfactory yields, these catalyst species suffer some
peculiar drawbacks which include long reaction time, accelerated
leaching of active sites during reuse and less catalytic activity
compared to homogeneous catalyst.17 In order to address these
issues, researchers have successfully incorporated sulfonation,24–26

and magnetization27,28 procedures which improved catalytic
activity. The use of magnetite (Fe3O4) has the dual benet of its
magnetic capability which facilitates effective magnetic separation
with reduced leaching as well as offering special catalytic function.
Biobased poultry droppings (PD) primarily constitute brous
manure rich in carbon, calcium, potassium, phosphorous and
other micro-nutrients (nitrogen, magnesium, zinc, etc.). The
© 2025 The Author(s). Published by the Royal Society of Chemistry
satisfactory performance of valorized poultry droppings in the
catalysis of transesterication reaction has been documented.23,29

In this work, poultry droppings (PD) was selected as a catalyst
precursor because of its rich content of alkali (potassium) and
alkaline earth metals (calcium, magnesium) which is a major
advantage over previously reported biomass wastes. In addition to
this, PD is also cheaply available all year round.

Transesterication reaction of fatty acids is a multi-variable
process whose efficiency depends majorly on temperature, molar
ratio of methanol to oil, catalyst dosage, and reaction time.30 One-
factor-at-a-time (OFAT) experimental technique has extensively
been applied to investigate the impact of these variables on
transesterication reaction.31,32 However, the OFAT technique is
time consuming, capital intensive and does not guarantee the
search for desired optimum. Consequently, statistical techniques
such as response surface methodology (RSM) have been developed
to overcome these limitations. However, reports have demon-
strated that RSM encounters difficulties with intricate, non-linear
interactions and necessitates meticulous design of experiments
(DOE) for process optimization, which may be less effective and
costly.33 Recently, many research efforts have been dedicated to
investigating transesterication reaction using machine learning
(ML) models. These models include kernel-based support vector
regression (SVR),34 tree-based extreme gradient boosting (XGB),35

and neural network-based articial neural network.36 Employing
machine learning algorithms in transesterication reaction offers
a powerful approach for data acquisition, interpretation and
prediction of methanolysis process dynamics via pattern recogni-
tion which is superior to the OFAT and RSM procedures.34,35 A
generic overview of chemical systems exploring a comparative
analysis of machine learning algorithms have yielded conicting
conclusions regarding the superiority of anymodeling technique.37

While executing ML technologies for modeling of biodiesel
production, evaluating model uncertainty and designation relative
priority of input features are two aspects that are frequently
ignored. These attributes, however, can offer insightful informa-
tion about the model. In order to overcome this, SHapley Additive
Explanation (SHAP) is preferred because it assigns the model's
uncertainty to distinct points of variation that stem from input
features, providing benets superior to analysis of variance
(ANOVA).17

Despite the fact that many studies have recorded more than
90% conversion of mixed non-edible oils to biodiesel,38–40 the
scientic purpose of blending these feedstock remains largely
unreported. For instance, in most of the reported literature, the
major reasons for blending non-edible oils were to increase bi-
odiesel yield, and to circumvent the complexities of feedstock
cultivation. However, a more scientic justication for feedstock
blending is to optimize key feedstock properties including acid
values (AV), iodine value (IV), and density (r) of the blended
product. A typical exemplication is the deployment of high AV
laden feedstock such as recovered oil (RO) from palm oil mill
effluent (POME, RO-POME) in biodiesel production which has
never been reported in literature. Consequently, it is highly desir-
able to optimize the quality parameters of low-grade RO-POME
feedstock though blending. In order to achieve this, mixture
design technique is used, as opposed to trial and error approach.14
RSC Adv., 2025, 15, 50856–50880 | 50857
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To the best of our knowledge, the implementation of the mixture
design approach in optimal formulation of feedstock blends
remains largely unreported. Also, it is important to highlight that
even though literature review demonstrated the potentials of
poultry droppings in forming a catalyst basis for transesterication
reaction, its application in either pure or modied forms remains
signicantly undocumented. There is no published research on
the application of sulfonated magnetic poultry droppings as
a catalyst for biodiesel production.

Information deduced from literature showcased the obvious
distinct topological differences between the considered machine
learning algorithms. Given these distinct network-topology (neural
network, kernel and tree) of ML algorithms, it becomes highly
desirable to comparatively assess the performance of SVR, ANN,
and XGB in transesterication reaction of the present system. To
the best of our knowledge, no report has been put out on
comparative assessment of ML algorithms in transesterication of
blended oil feedstock based on their topological differences. Thus,
the current research focused on the application of an optimally
formulated ternary oil as a feedstock for methanolysis reaction in
the presence of magnetic bi-functional catalyst from poultry
droppings. Specically, the objectives of the work include the
optimal formulation of ternary mixed non-edible oil (MNEO)
feedstock comprising WCO, RO-POME, and CO using mixture
design. Also, the preparation and characterization of bi-functional
heterogeneous catalyst from poultry droppings were carried out.
The work carefully considered the comparative modeling and
optimization of one-pot transesterication reaction using ML
algorithms (SVR, ANN, and XGB), sensitivity analysis and optimi-
zation with SHAP and Manta ray foraging optimization (MRFO),
respectively. Catalyst reusability and characterization of synthe-
sized biodiesel and spent catalyst were extensively investigated.
2. Materials and methods
2.1. Procurement and preparation of raw materials

Waste cooking oil was collected from food outlets and fast food
restaurants in Awka, Anambra State Capital, Nigeria. The
collected WCO was allowed to settle for 7 days at ambient
temperature and pressure before ltration through a screen size
of 100 nm to eliminate any food residues and inorganic
remnants, and then dehydrated at 110 °C for 12 h. Palm oil mill
effluent (POME) was obtained from a palm oil processing
factory at Amaenyi, Anambra State, Nigeria. The collected
POME sample was sieved through a screen size of < 50 mm, and
allowed to stand for 10 days under room temperature and
pressure, aer which the sample was screened using 100 nm
Whatman lter paper and dehydrated at 110 °C using a labora-
tory oven. Castor seeds were locally sourced from farmers in
Amansea, Anambra State, Nigeria. The seeds were sun-dried at
an average temperature of 33 °C to constant weight, and then
dehusked before grinding to particle size of < 150 microns. The
wet castor seed cake was mechanically expressed using a screw
conveyor to obtain the castor oil. The extracted oil was dehy-
drated using a Memmert oven at a temperature of 105 °C. The
moisture-free oil was labeled and stored for further processing.
50858 | RSC Adv., 2025, 15, 50856–50880
Fresh poultry droppings were sourced from Ochendo poultry
farm, Anambra State, Nigeria. The poultry droppings were
magnetically separated to remove all metal substances, aer
which they were was sun-dried and then pulverized using
a mechanical crusher. The pulverized samples were preserved
in a cold vessel at a temperature of 4 °C until further use.

Analytical grade reagents of sulfuric acid (assay > 98%), and
sodium sulfate (Na2SO4) which were deployed in the catalyst
activation and biodiesel rening steps, respectively, were
supplied by Parchem Limited, New Rochelle, New York, USA.
Also, ferric chloride hexahydrate (FeCl3$6H2O), ferrous chloride
tetrahydrate (FeCl2$4H2O)and ammonium hydroxide (NH4OH)
which were used for themagnetisation process were supplied by
Molychem chemical industry, Badlapur, Dist. Thane 421 503,
India.
2.2. Methods

2.2.1. Catalyst preparation and characterization. The cata-
lyst was prepared by calcining the poultry droppings at 850 °C at
a rate of 10 °C min−1 in a muffle furnace for 2 h.41,42 Aer this,
the sample was allowed to cool to room temperature to obtain
calcined poultry droppings (CPD). The CPD was sulfonated by
mixing 1 g of CPD with 6 mL of 5 M H2SO4 at a temperature of
90 °C for 6 h41,43–45 to introduce Brønsted acid sites. The
sulfonated CPD (CPD–SO4) was ltered and dried in an oven at
105 °C for 30 min, aer which the dry sample was washed with
excess distilled water until neutral pH.

The synthesis of magnetic sulfonated CPD catalyst (Fe3-
O4@CPD–SO4) was executed in two steps. Firstly, Fe3O4 was
prepared by co-precipitation. For this step, 59.64 g and
162.198 g of FeCl2$4H2O and FeCl3$6H2O, respectively, were
dissolved in 300 mL of aquadest under constant stirring until
complete dissolution. Subsequently, 0.5 M NH4OH solution was
added slowly in a drop wise manner under constant stirring
conditions (500 rpm) until a pH of 11 was attained. This process
was maintained at 60 °C for 20 min to obtain a Fe3O4 solution.
Furthermore, the wet impregnation method was employed to
prepare the nal catalyst by adding 100 g of CPD–SO4 in 300 mL
of Fe3O4 solution, and vigorously stirring at 500 rpm for 5 h. The
obtained precipitate was washed with excess water, and oven
dried at 60 °C to obtain Fe3O4@CPD–SO4.28,46,47 The magnetic
catalyst was stored in an airtight container for further charac-
terization and use.

Fig. 1 depicts the sequential transformation of poultry
droppings into Fe3O4@CPD–SO4. While a typical sample of
poultry droppings appear brownish-black as a result of micro-
bial induced fermentation (Fig. 1(a)), the calcined (Fig. 1(b)) and
sulfonated samples (Fig. 1(c)) appear black and pale-grey,
respectively. The nal magnetic catalyst in Fig. 1(d) were
stored in an airtight container for further use.

The physicochemical characterization of FPD, CPD, CPD–
SO4, and Fe3O4@CPD–SO4 catalyst was carried out using
instrumental analyses. The surface chemical functional groups
in all species were identied using FTIR-Thermo Nicolet Nexus
(Model 470/670/870) at infrared absorption bands within the
range of 400 to 4000 cm−1. The morphological topographic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Catalyst species preparation steps showing (a) raw poultry droppings, (b) calcined poultry droppings (CPD), (c) sulfonated calcined poultry
droppings (CPD–SO4), (d) magnetic–sulfonated/calcined poultry droppings (Fe3O4@CPD–SO4).
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features and associated elemental composition of FPD and
Fe3O4@CPD–SO4 was investigated by scanning electron micro-
scope (SEM-Model Zeiss Evo MA-17 EDX/WDS microscopy).
Crystallographic features if FPD and Fe3O4@CPD–SO4 were
obtained by the reection scan using XRD-Philips XPERT X-ray
diffraction unit. The unit was operated at 40 kV and 609 mA. All
readings were performed at 2q values within 10 and 80°. The
thermal stability and thermal decomposition studies of FPD,
CPD, and Fe3O4@CPD–SO4 were assessed using thermo-
gravimetric analysis TGA-Mettler Toledo TGA/SDTG 851. The
specic surface area of Fe3O4@CPD–SO4 was explored using
Brunauer–Emmett–Teller (BET) technique, while the pore
volume was examined using Barrett–Joyner–Halenda (BJH)
technique and at p/po = 0.99.

2.2.2. Pretreatment and formulation of non-edible oil
blend. Oil recovery from palm oil mill effluent was performed
according to the procedure recommended by other researchers
with somemodications.48,49 The ltered and dehydrated POME
sample was mixed with hot water (>80 °C) in a ratio of 1 : 3 (wt of
POME: vol. of water), and heated to 100 °C in a water bath.
During the heating process, the mixture was slowly stirred to
ensure a clear separation of oil at the top, with sludge and water
at the bottom. The hot mixture was put into a separating funnel
for oil recovery and water removal.

The formulation of the oil blend from recovered oil from
POME, castor oil and waste cooking oil was done according to
a D-optimal mixture design implemented in the Python package
PyDoE2.17 This design is preferred by researchers in formula-
tion development due to its benets, which comprise reduced
uctuation in model parameter estimates, complete represen-
tation of the design domain, reduced experimental runs, and
enhanced model stability.50 Table 1 displays each component of
Table 1 Value distribution of MNEO constituents for ternary feedstock
composition

Variable

Variable levels

Low High

WCO (%) 0 100
RO-POME (%) 0 100
CO (%) 0 100

© 2025 The Author(s). Published by the Royal Society of Chemistry
the blend together with their respective value ranges, whereas
eqn (1) and (2) specify the relative amounts of these
components.

WCO + RO − POME + CO = 100% (1)

0 # WCO, RO − POME, CO # 100% (2)

For the actual formulation, each volume of oil sample was
dispensed into a conical ask to form a blend according to the
design outlined in Table 1, and the oil blend was stirred
vigorously, using a magnetic hot plate stirrer. The process was
allowed to continue for 1 h, aer which the homogeneous oil
mixture was collected and characterized for acid value, density,
and iodine value which served as response variables.

2.2.3. Biodiesel production studies. The biodiesel reaction
was carried out in a three-neck at bottom ask tted with
Dimroth condenser. A slightly modied method used by
Dharmalingam51 was adopted for this procedure. Firstly, pre-
determined amounts of methanol and catalyst were measured
and mixed at 60 °C for 40 min. in the three-neck ask. Also,
specied amount of the oil blend which had been preheated at
50 °C for 1 h was added to the three-neck ask containing
methanol-catalyst mixture to maintain a desired methanol-to-
oil molar ratio. Aer adding the formulated oil blend, the
temperature of the setup was adjusted to the desired trans-
esterication reaction temperature and le to continue at
a stirring speed of 400 rpm until the end of the process. At the
end of the reaction, the reactants were discharged into
a separating funnel where the catalyst and other products was
recovered via decantation aer 24 h. The crude biodiesel was
rened by gently washing multiple times with warm water. The
washed biodiesel was dried over anhydrous Na2SO4, while the
recovered catalyst was washed with methanol and dried at 70 °
C for 2 h. The percentage yield of biodiesel was estimated
using the eqn (3).38,51,52

Biodiesel yield ð%Þ ¼ Weight of the refined biodiesel ðgÞ
Total weight of mixed waste oil used

� 100

(3)
RSC Adv., 2025, 15, 50856–50880 | 50859
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2.2.4. Characterization of non-edible oil mixture and bi-
odiesel product. Standardized experiments were performed to
characterize the mixed non-edible oil and biodiesel product.
Specically, MNEO and biodiesel product were characterized to
obtain the acid value, free fatty acid (FFA), viscosity, saponi-
cation value, iodine value, and density. Furthermore, key fuel
properties including cloud point, pour point, moisture content,
cetane number, higher heating value and methyl ester were
used to ascertain the qualities of the biodiesel product. All tests
were conducted using ASTM D6751 standards.53
2.3. Experimental design and machine learning modeling

The biodiesel synthesis procedures were designed utilizing
a central composite design (CCD) featuring four factors related
to the input set of parameters: reaction temperatures, catalyst
dosage, reaction time, and the molar ratio of methanol-to-
MNEO. The selection of the CCD stemmed from the benets
it offers, which include reliable stability of the design model,
reduced sampling errors due to a ve-level spread of design
data, the ability to conform to quadratic effect, statistical
accuracy in computing parameter values, and satisfactory
interpolation attributes.33 The design framework was created
with the Python package PyDoE2, employing the inputs pre-
sented in Table 2, which were established from initial analyses
and references in literature.17 The data produced by the CCD
was utilized to develop machine learning models for the
production of biodiesel. All studies conducted during the
machine learning implementation process were performed in
Python (version 3.7.5) utilizing Jupyter as a unied develop-
ment framework. For the numerical assessment, Numpy
soware version 1.17.0 was used, while OriginLab (2025b) was
employed for data visualization and graph creation. Further-
more, a heatmap of Pearson correlation was used to evaluate
and visualize the impact of each feature on the measured
targets, and this was created using OriginLab (2025b). The
heatmap makes it easier to rapidly determine whether vari-
ables are substantially positive, negatively correlated, or
weakly connected by using color intensity to reect the
correlation degree (which ranges from−1 to 1). Three machine
learning algorithms including SVR, ANN, and XGB were used
to predict the transesterication reaction of MNEO using
Scikit-learn version 0.23.2, TensorFlow version 2.4.0, and XGB
version 1.2.3, respectively.

Given their complementing algorithmic exibility and
demonstrated efficacy in process modelling incorporating
nonlinear and multivariate systems, ANN, SVR, and XGB were
Table 2 Factor levels for transesterification reaction

Factor

Factor levels

Level 1 Level 2 Level 3 Level 4 Level 5

Reaction temperature (oC) 50 60 70 80 90
Catalyst dosage (wt%) 1 2 3 4 5
Methanol-to-oil molar ratio 6 12 18 24 30
Reaction time (h) 0.5 1.38 2.25 3.13 4.0

50860 | RSC Adv., 2025, 15, 50856–50880
chosen for the present study.17 For instance, SVR incorporates
a concept identied as structural uncertainty minimization,
which enables it to obtain satisfactory generalization ability and
minimize over-tting, rendering it particularly appropriate for
small datasets.54 Also, XGB, a gradient-driven tree network, has
shown remarkable performance in systems that are marked by
unpredictable and complex information due to its regulariza-
tion capabilities and scalability.55 Lastly, ANN excels in identi-
fying complicated patterns and has become widely applied in
modelling chemical engineering systems containing both large
and small amounts of data.56,57 The employment of these three
algorithms ensures an accurate evaluation across essentially
unique computational frameworks, hence boosting the
robustness of prediction insights and guaranteeing a thorough
model selection for optimizing biodiesel yield.

While it is generally believed that machine learning (ML)
algorithms require large amount of data for modeling, several
publications have demonstrated that, in fact, provided that
a dataset is statistically well distributed across a design space, it
will be sufficient to execute ML modeling. Some experimental
designs that have been used to achieve such statistical data
distribution for ML algorithms in biodiesel synthesis include
Box–Behnken design,58,59 and central composite design.60–62

Specic data points assigned for training and testing have been
highlighted in Table S2 (SI). For hyperparameter tuning, the 30
biodiesel experimental dataset was split into 80% (24 data points)
20% (6 data points) for training and testing purposes respec-
tively, and then used for a ve-fold cross-validation procedure.
The entire set of training data was used for cross-validation, and
the verication dataset, which hadn't been given to the models
for their training phase, was used for testing. This was performed
in order to reduce the possibility of overtting and improve the
model's capacity to generalize adequately to new data, especially
for the case of ANN. Further hyperparameter tuning was done
using Bayesian optimization.

2.3.1. Articial neural network. A neural network with
a feed-forward structure was used in the present investigation. A
group of neurones that make up the ANN's hidden layer was
employed to evaluate the networks prediction (y) from the
supplied feature data (x). The neurone uses appropriate biases (b)
and weights (wi) to estimate the feature characteristics (xi) by
computing linear combinations (z) using eqn (4). The selection of
the activation algorithm is an essential step in the ANN model-
ling process, given that it largely controls how inputs are mapped
to outputs. In order to identify the best choice, a number of
activation algorithms were evaluated, comprising exponential,
scaled exponential linear unit (SELU), rectied linear unit (ReLU),
and leaky rectied linear unit (Leaky ReLU).17

z ¼
Xn

i¼0

xiui þ b (4)

The predictive network was developed using an iteration
method for the ANN technique, which uses the root mean
square error (RMSE) as an indicator (eqn (5)) to modify the
prediction weights in order to minimize the model loss ð‘Þ. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
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is accomplished by the use of a gradient-descent algorithm,
which scales weights employing the pattern recognition rate (l)
and adjusts them depending on overall loss of model infor-
mation (eqn (6)). To optimize the ANN hyperparameters, grid-
based cross validation (GridSearchCV) was used.

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � yiÞ2
s

(5)

utþ1 ¼ ut � l
vl

vwt

(6)

where experimental and predicted data were denoted as yi and
�yi, respectively.

2.3.2. Support vector regression. Support vector regression
(SVR) is a customized functional unit of support vector machine
(SVM), tailored for the purpose of regression analysis. Support
vector machine is equipped with a sophisticated, controlled
learning kernel-based algorithm machine learning framework.
They are especially helpful in processing high-dimensional
data, such as those found in bioenergy research, given that
they could possibly be used to represent complex
situations.63 The SVR seeks to create the optimal hyperplane for
discriminating between various data source categories. Denot-
ing a vector of targets as y= Rn, and input features as x= xi,˛RP;
i, ., n, a model regression for SVR is generated in eqn (7).

F(x) = uTf(x) + b (7)

The weights (u) and biases (b) are determined by subjecting
eqn (8) to minimization.

Minimize
1

2
uTuþ C

Xn

i¼1

xi; x
*
i (8)

Subject to: 8>><
>>:

yi � uTfðxiÞ � b# 3þ xi

uTfðxiÞ þ b� y# 3þ x*i

xi; x
*
i $ 0

(9)

x and C are error and penalty terms, respectively, associated
with the SVR hyper parameters. Consequently, the SVR predic-
tions are given in eqn (10).

FðxÞ ¼
Xn

i¼1

�
ai � a*

i

�
K
�
xi; xj

�þ b (10)

where ai and a*
i are Lagrange multipliers and, K is the kernel. To

choose the best, sigmoid, linear, polynomial, and radial basis
function (RBF) kernels were evaluated.

2.3.3. Extreme gradient boosting. Another cutting-edge
machine learning approach that combines decision trees and
gradient-boosting techniques is called XGB. Its effectiveness
comes from using progressive learning to merge many weak
learners into an efficient learner. Through the use of autono-
mous parallel computing, XGB improves training precision and
computational effectiveness. Eqn (11) shows the XGB prognosis
© 2025 The Author(s). Published by the Royal Society of Chemistry
function for a given time period (t). Regularization is also used
by XGB to reduce overtting of data.

fi
ðtÞ ¼

Xt

k¼1

fkðxiÞ ¼ fi
ðt�1Þ þ ftðxiÞ (11)

where input data, step t pattern learner, step t data prediction,
and step t− 1 data prediction are xi, ft(xi), f (t)i , and
f (t−1)
i , respectively.
2.3.4. ML model performance assessment. Four signicant

metrics were used to assess the ML models' functionality
following hyperparameter optimization. These model appraisal
techniques are useful in ranking the performance of each ML
algorithm in capturing the convoluted non-linear nature of the
present system. The specic error indices used in this study
include coefficient of determination (R2), mean square error
(MSE), root mean square error (RMSE), and Akaike's informa-
tion criterion (AIC). Mathematical implications of these models
are outlined in eqn (12)–(15).

R2 ¼ 1�
PN
i¼1

�
yexp:ðiÞ � ypred:ðiÞ

�2

PN
i¼1

�
yexp:ðiÞ � yexp:ave:

�2
(12)

MSE ¼ 1

N � 1

XN
i¼1

�
ypred:ðiÞ � yexp:ðiÞ

�2

(13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN
i¼1

�
ypred:ðiÞ � yexp:ðiÞ

�2

vuut (14)

AIC ¼ n ln

�
RSS

n

�
þ 2ðN þ 1Þ þ 2ðN þ 1ÞðN þ 2Þ

ðn�N � 2Þ (15)

2.3.5. SHAP feature evaluation. Developing an efficient
machine learning model logically leads to assessing the impact of
input parameters on the target variable. A relationship between
characteristics and results is visualized and measured using
SHapley Additive exPlanations (SHAP).64,65 SHAP is a exible
method for analyzing specic forecasts as well as global evalua-
tions. SHAP uses Shapley values, which are optimum integrals, to
determine the signicance of features based on game theory.
SHAP was selected for feature evaluation because it offers addi-
tional case-specic, in-depth interpretations that indicate the
tendency and size of each feature's relevance to a prediction,
compared to the Pareto effect which only highlights the most
inuential characteristics. SHAP technique guarantees equitable
distribution of contributions over feature values, all of which is
crucial for fosteringmodel trust. Here, the signicance of the input
attributes inuencing each target is determined using the Python
SHAP module. As demonstrated in eqn (16), SHAP measures the
improvement in overall effectiveness when a parameter is indi-
cated, thereby quantifying the impact of each feature.

fiðxÞ ¼
X

S˛N
	

fig jSj!ðn� jSj � 1Þ!
n!

½fxðSWfigÞ � fx ðSÞ�

(16)
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where F is the set of all features, S is a subset of features
excluding i, and fS(Xs) is the model prediction when only features
in S are considered.

2.4. Intelligent optimization

Intelligent optimization was carried out using Manta ray
foraging optimization (MRFO) algorithm. MRFO is conceptu-
alized from mimicking three foraging techniques exhibited in
Manta Rays including chain, somersault, and cyclone
foraging.66 In MRFO, manta rays are arranged from its head to
its tail to create the foraging chain. The next agent, represented
by x1(t), is thereaer modied depending on the best possible
position and its neighboring solution at iteration (t). Aer that,
an agent can move closer to the nutritional supply. The
following is a representation of this procedure:
xi
dðtþ 1Þ ¼

(
xi

dðtÞ þ r*


xbest

dðtÞ � xi
dðtÞ�þ a*



xbest

dðtÞ � xi
dðtÞ�; i ¼ 1

xi
dðtÞ þ r*



xi�1

dðtÞ � xi
dðtÞ�þ a*



xbest

dðtÞ � xi
dðtÞ�; otherwise

(17)
Here, r˛[0,1] stands for a basic vector, and xbest
d(t) is the top-

performing sample, which is analogous to the plankton that
is highly concentrated across the d axis. The following equation
determines the weight element, or quantity a.

a ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jlog rj

p
(18)

Manta rays construct a lengthy chain-like framework and
swim in a spiral motion to nd food during cyclone foraging. An
example of the agent's update procedure is as follows:
xi
dðtþ 1Þ ¼

(
xi

dðtÞ þ r*


xbest

dðtÞ � xi
dðtÞ�þ u*



xbest

dðtÞ � xi
dðtÞ�; i ¼ 1

xi
dðtÞ þ r*



xi�1

dðtÞ � xi
dðtÞ�þ u*



xbest

dðtÞ � xi
dðtÞ�; i ¼ 2; 3;.;N

(19)
u ¼ 2e
r1

�
T�tþ1

T

�
� sinð2pr1Þ (20)

The following is a representation of this procedure. The
agents are required to move a random step away from their
present location in order to investigate an alternate location.
They can investigate the search space autonomously of the
optimal agent since this arbitrary distance is established by
utilizing a variable, as shown:
xi
dðtþ 1Þ ¼

(
xrand

dðtÞ þ r*


xrand

dðtÞ � x

xrand
dðtÞ þ r*



xi�1

dðtÞ � xi
dð

50862 | RSC Adv., 2025, 15, 50856–50880
In the existing illustration, X stands for a particular entity in the
iteration space, and its characteristics are as follows:

xrand
d(t) = LBd + rand(UBd − LBd) (22)

The placements of samples are subsequently mathematically
described in the somersault foraging procedure improvements
as follows:

xi
d(t + 1)= xi

d(t) +B*[r2xbest
d(t)− r3xi

d(t)], i= 1, 2, 3,.,N(23)

In this case, r2 and r3 can have any value inside the given range
[0,1].

MRFO was chosen for the intelligent optimization of the
current study due to potentially advantageous performance
benets, which include rapid convergence and better
exploration–exploitation equilibrium compared to other meta-
heuristic algorithms inspired by biological neurons. MRFO was
implemented in Python using MEALPY library.
3. Results and discussion
3.1. Optimal formulation and characterization of ternary oil
feedstock

Table 3 shows the data frommost important variables obtained
from the analysis of variance (ANOVA). ANOVA estimated p-
value and F-value ratios are crucial metrics for assessing the
applicability and precision of quadratic models given in eqn
(24)–(26). Each parameter featuring a p-value < 5% (p-value <
0.05) were considered relevant parameters in the model; given
that the likelihood of p-value was examined at an assurance
level > 95%.2,33 Consequently, according to Table 3, all input
variables were relevant in predicting the investigated physico-
chemical properties of MNEO. In addition to p-values, the
relevance of each term in the quadratic model was evaluated
using the corresponding magnitudes of F-values. This was
accomplished by analyzing how each model's residual and pure
error interacted with the related lack of t. From the
i
dðtÞ�þ u*



xrand

dðtÞ � xi
dðtÞ�; i ¼ 1

tÞ�þ u*


xrand

dðtÞ � xi
dðtÞ�; otherwise

(21)
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Table 4 Optimization levels for formulation of MNEO species

Scope Variables
Optimization
criteria Value

Input parameters WCO (%) In range 21.31
RO-POME (%) In range 18.45
CO (%) In range 60.24

Responses Acid value (mg KOH per g) Minimize 9.018
Density (g cm−3) Minimize 0.9031
Iodine value (g I2/100 g oil) Minimize 68.533
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information in Table 3, and F-value of 378.3, 47.06, and 910.8
highlights the relevance of the quadratic models in predicting
the acid value, density and iodine value, respectively of MNEO,
relative to pure error. Furthermore, lack of t F-values of 0.4491
(acid value), 0.1434 (density), and 8.12 (Iodine value) demon-
strated the insignicant impact of the lack of t in describing
the physicochemical properties of MNEO. R2 (AV = 0.9921; r =

0.9058; IV = 0.9978) and adjusted-R2 (AV = 0.9920; density =

0.8587; IV= 0.9967) were satisfactorily correlated, given that the
numerical difference between each of them is not greater than
0.2. It is important to note that the agreement between R2 and
adjusted-R2 indicates a satisfactory correlation between experi-
mental and predicted values as demonstrated in Table S1. Other
statistical appraisal indices including adequacy precision (APR),
coefficient of variance (CV) authenticated the reproducibility
and applicability of the mixture design modeling of MNEO. The
results obtained here give credence to the fact that the formu-
lated oil blend actually possess the properties obtained in this
study.

Acid value = 0.07371x1 + 0.352519x2 + 0.036774x3
− 0.001930x1x2 + 0.000659x1x3
− 0.00114x2x3 (24)

Density = 0.008795x1 + 0.008606x2 + 0.009053x3
− 0.0000005212x1x2 + 0.0000017947x1x3
− 0.0000008884x2x3 (25)

Iodine value = 0.5186x1 + 0.25232x2 + 0.809505x3
− 0.005021x1x2 + 0.002527x1x3
− 0.008564x2x3 (26)

where x1, x2, and x3 represent the proportions of WCO, RO-
POME, and CO in the blend.

Based on the formulated models (eqn (24)–(26)), optimized
blends of nonedible oils were formed, and the associated surface
and contour plots are given in Fig. 2. An overview of the surface
and contour plots shows the synergistic importance of blending
the feedstock. This is highlighted by the fact that each of the
studied response variable is associated with an elevated
concentration (>70%) of either species. Specically, an acid value
of 23.72 mg KOH per g was obtained at blending ratios of WCO
(11.99%), RO-POME (71.1%), and CO (16.91%), while an iodine
value of 80.47g I2/100 g oil was obtained at 18.06%, 9.55%, and
72.40% of WCO, RO-POME, and CO, respectively. This trend was
consistent with the observation noted for density and viscosity
parameters, where signicant concentrations of CO resulted in
RSC Adv., 2025, 15, 50856–50880 | 50863
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Table 5 Selected physicochemical properties of single and optimally formulated MNEO species

Property Castor oil RO-POME WCO MNEO

Acid value (mg KOH per g oil) 4.110 34.830 8.010 9.018
FFA (%) 1.812 17.730 4.042 4.404
Viscosity @ 28 °C (m. Pas) 154.680 27.660 54.326 109.857
Saponication value 180.753 194.000 186.656 184.455
Iodine value (g I2/100 g oil) 80.920 24.840 51.830 68.533
Average molecular wt (g mol−1) 928.500 839.870 896.000 898.140
Density @ 28 °C (g cm−3) 0.965 0.902 0.938 0.903
Specic gravity 0.983 0.918 0.955 0.920

Table 6 Fatty acid profile of mixed non-edible oils

Fatty acid RT Molecular wt (g mol−1) Amount (%) Nature

Palmitic acid (C16 : 0) 5.884 256.43 11.0486 Saturated
Stearic acid (C18 : 0) 6.124 284.48 16.4856 Saturated
Behenic acid (22 : 0) 15.026 340.58 2.4241 Saturated
Total saturated acids — — 29.9583 Saturated
Oleic acid (C18 : 1) 7.240 282.46 30.2267 Monounsaturated
Total monounsaturated acids — — 30.2267 Monounsaturated
Linoleic acid (C18 : 2) 9.618 280.4472 19.5714 Polyunsaturated
Linolenic acid (C18 : 3) 10.793 278.43 4.1378 Polyunsaturated
Arachidonic acid (C20 : 4) 13.522 304.47 2.7470 Polyunsaturated
Eicosapentaenoic acid (C20 : 5) 15.362 302.451 3.0530 Polyunsaturated
Docosahexaenoic acid (C22 : 6) 17.600 328.488 4.9557 Polyunsaturated
Total polyunsaturated acids — — 34.4649 Polyunsaturated
Others — — 5.3501 —
Total saturated fraction — — 29.9583 Saturated
Total unsaturated fraction — — 64.6916 Unsaturated

Fig. 2 Surface and contour plots for effect of mixing ratio on acid value (a and d), density (b and e), and iodine value (c and f) for optimal
formulation of MNEO feedstock.
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Fig. 3 FTIR spectrum of (a) FPD and CPD, (b) CPD–SO4 and Fe3-
O4@CPD–SO4 catalyst.
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elevated their values in MNEO product. According to Godswill
et al.,67 the signicant acidity in palm oil based RO-POME is
attributed to the hydrolysis of triacylglycerols into free fatty acids.
The authors highlighted that this hydrolysis process is oen
triggered during the palm oil processing step, and accelerated by
lipase enzyme contained in the POME slurry. Similarly, ricinoleic
acid, and its associated hydroxyl group which constitutes more
than 90% of castor oil has been noted to be responsible for
elevated densities in the sample.68

Table 4 shows the optimization data for achieving optimal
formulation of MNEO, while Table 5 presents relevant physi-
cochemical properties of each oil species and optimized
samples of MNEO. According to Table 4, optimization criteria
for all factors were kept “in range”, implying that boundary
conditions for optimization procedure included all factor levels
within the upper and lower bounds. Similarly, the optimization
criteria for selected responses were set minimization goal,
considering the fact that elevated values of any of the studied
responses is undesirable for biodiesel feedstock.17 At the end of
numerical optimization, the acid value, density, and iodine
value were 9.018 mg KOH per g, 0.931 kg m−3, and 68.533 g I2/
100 g oil, respectively, at a composition of 21.31%WCO, 18.45%
RO-POME, and 60.24% CO.

The physicochemical properties of single and blended
nonedible oil species were characterized and presented in Table
5. According to the result in Table 5, it is evident that blending
the oil species contributed signicantly in improving the
physicochemical of MNEO. For instance, CO, having an
acceptable FFA of 1.812 contributed signicantly in reducing
the FFA of RO-POME (17.730%) to produce a MNEO having an
FFA of 4.404% which is comparable to the values reported in
other works.69,70 Also, an undesirable high viscosity of 154.68 m
Pas in CO was reduced to 109.857 m Pas in MNEO, following
addition of RO-POME and WCO. Consequently, judging from
the improved properties of the blended oil feedstock, it will be
a more desirable biodiesel feedstock compared to each of the
oils in transesterication reaction.

Using gas chromatography in conjunction with mass spec-
troscopy, the fatty acid prole of MNEO was examined. The
peaks were identied by comparing their mass spectrum and
retention time using a mass spectra database, and the results
are presented in Table 6. According to the values in Table 6, the
quantitative order of fatty acids present in MNEO are oleic acid
(30.227%), linoleic acid (19.571%), stearic acid (16.486%), and
palmitic acid (11.049%). These composition reects a desirable
mixture of saturated and unsaturated fatty acids in MNEO
suitable for biodiesel reaction.71,72 According to Lanjekar et al.,71

the synthesis of biodiesel requires an appropriate ratio of
saturated and unsaturated fatty acids. The authors stated that
although saturated fatty acids can promote the prevention of
NOx emissions, and improve oxidative stability, they can also
cause unsatisfactory cold ow characteristics. Also, it is
important to highlight that although polyunsaturated fatty
acids enhance cold ow characteristics, they have been found to
be responsible for increasing NOx emissions and declined
oxidative stability.72 Therefore, MNEO containing 29.96%, and
64.69% of saturated and unsaturated fatty acids, respectively,
© 2025 The Author(s). Published by the Royal Society of Chemistry
illustrate a desirable feedstock with good potentials of
producing a biodiesel having good combustion characteristics,
oxidative stability, and cold ow properties.
3.2. Catalyst characterization

3.2.1. FTIR. FTIR spectra of all catalyst species prepara-
tions steps is depicted in Fig. 3. According to the result in
Fig. 3(a), three prominent peaks were detected including
3420 cm−1, 1622 cm−1, and 1046 cm−1. The broadband in fresh
poultry droppings (FPD) detected in 3420 cm−1 drastically
reduced to a sharp peak in waveband 3390 cm−1 following
calcination (CPD in Fig. 3(a)). The slight shi in wave number
and signicant transformation from broadband to a sharp peak
in calcined poultry droppings (CPD) underscores the unstable
nature of hydroxyl groups at elevated temperatures.73 The
presence of carbonyl and carboxyl groups in carbohydrates
found in dietary cellulose (FPD in Fig. 3(a)), and the presence of
C–O stretching were expose by vibrational wave number at
1622 cm−1 and 1046 cm−1, respectively. These functional
groups are typically associated with organic wastes containing
signicant amounts of brous materials.74 Given their large
surface area and porous nature, which offer a large number of
RSC Adv., 2025, 15, 50856–50880 | 50865
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Fig. 4 SEM-EDX of (a–c) fresh poultry droppings and (d–f) Fe3O4@CPD–SO4 catalyst.
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active sites and facilitate mass transport and substrate acces-
sibility for effective transesterication, brous substances are
crucial for biodiesel catalysis.75

Similarly, C–O stretching of polysaccharides which initially
appeared as a weak, slightly broad peak, transformed to a strong
sharp stretching vibration in 1612 cm−1 aer calcination. Four
new peaks were detected aer calcination, out of which three
peaks (2912 cm−1, 1364 cm−1, 726 cm−1) were useful in
describing the calcined poultry droppings (CPD in Fig. 3(a)).
Aliphatic CHn vibration was detected in wave number
2912 cm−1. This aliphatic CHn vibration showcases the breaking
of weak single bonds between carbon and hydrogen of alkyl
groups. This bond breaking phenomenon is a consequential
reaction associated with thermal activation. The nger print
region highlights two peaks, including 1364 cm−1 and 726 cm−1

signaling the presence of CH2 unit biopolymers and wagging
vibrations of CH bond in aromatic and hetero-aromatic
compounds. In catalyst development, heat activation is crucial
for separating weak bonds as it enables molecular recongu-
ration to create an ideal structure in the nal catalyst, builds
active sites, and facilitates a mechanism for transesterication
reaction to take place at greater efficiency and less energy.76

Vibrational spectroscopy of sulfonated CPD and magnetic
catalyst (Fe3O4@CPD–SO4) in Fig. 3(b) did not show signicant
deviations in surface structure from the result obtained in CPD.
The vibrational position of most wave numbers was retained,
while a few produced minor shis aer activation. For instance,
wave numbers 3390 cm−1, and 2908 cm−1 did not shi from the
original positions aer sulfonation and ferromagnetic activa-
tion. Also, the wavenumber at 2318 cm−1 which indicates the
50866 | RSC Adv., 2025, 15, 50856–50880
presence of C^N vibration associated with nitriles and isocy-
anates, was not deformed aer sulfonation and magnetization.
The sulfonation and ferromagnetic activation processes were
validated by the appearance of wavenumbers 805 cm−1

(sulfonated polysaccharides), 1250 cm−1 (sulfonated polymeric
aromatic compounds), and 546 cm−1 (Fe–O).1,77 The FTIR
spectrum of Fe3O4@CPD–SO4 highlights a catalyst with the
potentials to propagate esterication and transesterication
reactions through an energy efficient means. In additions to
these properties, the catalyst is susceptible to magnetic
recovery. These advancements in catalytic properties are as
a result of changes associated with precursor (FPD) trans-
formation during Fe3O4@CPD–SO4 activation.

3.2.2. SEM-EDX. The morphological features along with
the Energy dispersive X-ray analysis (EDX) of FPD and derived
catalyst (Fe3O4@CPD–SO4) at different magnications is
depicted in Fig. 4. According to Fig. 4(a) and (b), the morpho-
logical image of FPD showcases an assemblage of roughly
shaped akes, overlapping several layers of irregular platelets.
These observations are consistent with FTIR results which
implied that FPD contained brillary structure and crispy rough
materials.78 Overlapping layer frameworks are crucial for
transesterication catalysts given that they can improve
stability, which promotes longevity and reusability.79

SEM micrograph Fe3O4@CPD–SO4 (Fig. 4(d and e)) depicts
a surface having partly spatial distribution of uniform pseudo-
spherical particles. Further observation reveals the appearance
of a porous dark matrix in Fe3O4@CPD–SO4, implying a signif-
icant enlargement in particular pore diameter compared to
FPD. These observations noted in Fe3O4@CPD–SO4 are
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 XRD crystallography of (a) FPD (b) Fe3O4@CPD–SO4 catalyst.
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consistent with the surface of a catalyst possessing improved
morphological properties with the potentials of accelerated
catalyzes of transesterication reaction compared to FPD.80

The EDX spectroscopy showing elemental distribution on
the surface of FPD and Fe3O4@CPD–SO4 were listed in Fig. 4(c)
and (f), respectively. From the average elemental distribution of
FPD, the major elements contained in FPD include carbon
(18.36%), oxygen (16.55%), calcium (16.03%), potassium
(14.40%), magnesium (12.24%) and nitrogen (10.30%). These
elemental compositions are associated with animal wastes
containing bro-proteinous substrates and uric acids, which
make up a signicant portion of poultry droppings. Aer
passing through the physicochemical tripod activation steps of
© 2025 The Author(s). Published by the Royal Society of Chemistry
calcination, sulfonation and magnetization, the elemental
make up of Fe3O4@CPD–SO4 was signicantly modied. Major
elemental make up of Fe3O4@CPD–SO4 includes iron (23.3%),
calcium (21.5%), sulfur (15.1%), potassium (12.02%). The
increase in amounts of calcium and corresponding reduction in
carbon and oxygen is attributed to thermal activation step,
while the presence of Fe and S validated the magnetization and
sulfonation steps, respectively. The distribution of elements on
the surface of Fe3O4@CPD–SO4 underscores the potentials of
this catalyst species in propagating one-pot transesterication
reaction via bi-functional mechanism.

3.2.3. XRD. Xray diffraction was used to explore the crys-
tallinity of FPD and Fe3O4@CPD–SO4. Crystalline polymorph of
RSC Adv., 2025, 15, 50856–50880 | 50867
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Fig. 6 TGA result of (a) FPD, (b) CPD, and (c) Fe3O4@CPD–SO4 catalyst.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/5
/2

02
6 

6:
07

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
FPD (Fig. 5(a)) demonstrated a well resolved absorption spec-
trum with sharp reections illustrating the presence of dietary
cellulose, silica (SiO2), carbonate forms of calcium and
magnesium, including chlorinated and sulfonated potassium.
The presence of these compounds could be attributed to the
dietary make-up of the poultry birds which are also contained in
their excreta.81,82 Furthermore, the detection of cellulosic crys-
tals correlates favorably with the observations noted in FTIR
50868 | RSC Adv., 2025, 15, 50856–50880
and SEM that FPD contain dietary cellulose. The XRD of Fe3-
O4@CPD–SO4 show the formation of new crystalline structures
in Fig. 6(a). The formation of CaO at 2q = 18.6°, 23.1° is
attributed to the thermal transformation of CaCO3 to stable
oxide of calcium (CaO). Furthermore, it is also discernible to
note that high intensity peaks at 2q = 24.1° and 27.8° high-
lighting the crystalline presence of CaCO3 in FPD, completely
disappeared in the crystalline polymorph of Fe3O4@CPD–SO4,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 N2 adsorption–desorption isotherms of Fe3O4@CPD–SO4.

Table 8 Fitness metrics for ML models

Value
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underscoring the impact of calcination in crystalline trans-
formation of FPD. Furthermore, a spread of calcium sulfonate
(CaSO4) crystals in the synthesized catalyst (Fig. 5(b)) may be
attributed to the interactions between thermally stable CaO
from CPD and sulfuric acid during chemical activation. It is also
important to note that the ferric property of Fe3O4@CPD–SO4

was exposed by the presence of Fe3O4 at 2q = 62.1°. These
results correlate favorably with the observations of other
researchers who synthesized magnetic catalyst for trans-
esterication reaction.83 Given that CaO (a well-known Lewis
base),84 and acid containing sulfonate groups of CaSO4 are
present in Fe3O4@CPD–SO4 catalyst, it implies that the nal
catalyst possess the potentials of inducing both acidity and
alkalinity required for esterication and transesterication
reactions, respectively.

3.2.4. TGA. Thermo-gravimetric analysis (TGA) was used to
explore the physicochemical changes in the samples and
establish the thermal stability of FPD, CPD and Fe3O4@CPD–
SO4 at each preparation stage. These results are presented in
Fig. 6. According to Fig. 6(a), thermal decomposition of FPD and
catalyst species occurred in three phases. The rst phase of
decomposition occurred from 0 °C to 97 °C to 99 °C. During this
stage, a signicant dehydration occurs leading to loss of
Table 7 Textural characteristics and surface area analysis

BET specic surface
area (m2 g−1)

Pore volume
(m3 g−1)

Pore diameter
(nm)

10.864 0.03136 15.346

© 2025 The Author(s). Published by the Royal Society of Chemistry
moisture and surface volatile nutrients.85 At the end of this
stage, FPD, CPD (Fig. 6(b)), and Fe3O4@CPD–SO4 (Fig. 6(c)),
retained 98.2%, 99.7%, and 99.7% of their initial weights,
respectively. The second stage of decomposition demonstrated
an accelerated rate of weight loss occurring between 97 °C and
285 °C for FPD (Fig. 6(a)), and between 98 °C and 350 °C, and
99 °C and 355 °C for CPD (Fig. 7(b)) and Fe3O4@CPD–SO4

(Fig. 6(c)), respectively. This second stage accounted for
68.8% wt. loss in FPD (Fig. 6(a)), and 68.3 wt% loss of CPD
(Fig. 6(b)), while Fe3O4@CPD–SO4 (Fig. 6(c)) recorded a 68.5%
weight loss. It is also interesting to note that despite the fact
that upper limit of decomposition temperature occurring in
Fe3O4@CPD–SO4 (Fig. 6(c)) was 70 °C above FPD (Fig. 6(a)), the
corresponding weight loss during this period was approxi-
mately identical, this underscores the superior thermal stability
of Fe3O4@CPD–SO4 (Fig. 6(c)) catalyst compared to FPD
(Fig. 6(a)) precursor. The third stage of decomposition was
Parameter ANN SVR XGB

Train R2 0.9880 0.9562 0.9705
Test R2 0.8221 0.9061 0.9353
Full data R2 0.9595 0.9480 0.9644
MSE 0.0405 0.0520 0.0356
RMSE 0.2012 0.2280 0.1887
AIC 76.2154 78.7082 22.0692

RSC Adv., 2025, 15, 50856–50880 | 50869
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Table 9 Intelligent optimization data

Feature Hyper parameter Optimized output

Parameter Value Parameter Value Predicted Validated

Molar ratio 30.0 Epoch 5 99.68% 98.16%
Temperature 50 °C Pop_size 10
Time 2.4 h Somersault_range 1.0
Catalyst dosage 3.01 wt%
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between the upper limit of the second stage and termination
temperature of 600 °C.

Given that a catalyst exhibiting signicant thermal stability
is capable of withstanding the elevated temperatures needed for
the process to take place, it is preferred for transesterication.
This prevents degeneration and guarantees steady catalytic
performance throughout the process.

3.2.5. Surface area and textural analyses. N2 adsorption–
desorption technique was employed to estimate the textural
features of Fe3O4@CPD–SO4 catalyst species. The results of this
analyses are presented in Table 7 and Fig. 7. From the graphical
illustration, Fe3O4@CPD–SO4 catalyst depicts a blend of Type-1
and Type-IV IUPAC classied adsorption isotherm with H4
hysteresis loop, authenticating the presence of microporous
and mesoporous materials.86,87 According to the numerical
values in Table 7, BET surface area of Fe3O4@CPD–SO4 is 10.864
m2 g−1 while the pore volume and pore diameter were 0.03136
m3 g−1 and 15.346 nm, respectively. According to Sahar et al.,86

both microporous and mesoporous catalysts provide several
benets, such as a wide surface area, tunable pore diameters,
Fig. 8 Influence of process parameters on transesterification of MNEO

50870 | RSC Adv., 2025, 15, 50856–50880
and good heat durability, all of which improve reactant
permeability and reaction effectiveness. These features corre-
late favorably with the observations noted during the FTIR
analysis where the textural properties were linked.
3.3. ML modelling for biodiesel synthesis

The results of experimental and machine learning modeling of
the present system were supplied in Table S2 of SI, while the
optimized hyperparameter data of each model was given in
Table S3 (SI). The optimized hyperparameter data were useful in
evaluating the training and test performance of the ML
algorithms.

3.3.1. Hyperparameter tuning. Support vector regression
(SVR) model was developed using radial basis K-fold cross val-
idator parameter. A ve-fold cross-validation parameter was
selected owing to the fact that it produced the least iteration
time and estimation error, which are important signals vali-
dating the non-existence of model over-tting. The total time
employed by the vector regression to perform training_time
using Fe3O4@CPD–SO4 catalyst.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Pearson heat-map correlation data.
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split algorithm over a 42 random state was 238 seconds. At the
end of training_split algorithm, the model complexity/error
trade-off signal (C), error tolerance margin (3), and inuence
of training parameter (g), were 1.0635, 0.4154, and 0.0963,
respectively. These parameters authenticate the reliability of
SVR model performance. For instance, high levels of C produce
a model which tries to replicate the training information as
closely as possible, and it more susceptible to individual data
values, potentially ending up in over-tting, while low values of
C leads to model under-tting. According to Su et al.,88 the
desirable range for C is typically 1 # C # 10. Consequently, a C
value of 1.0365 highlights an efficiently reliable model capable
of replicating experimental values withing the design space
while not suffering over-tting. Table S3 contains a detailed
data of training and test hyperparameter for ANN algorithm.
Regularization parameter, learning rate, scoring metric, and
cross-validation were useful hyperparameters employed to
assess the stability of ANN. Similarly, extreme gradient boosting
(XGB) machine learning algorithm was designed using k-fold
cross validator. This algorithm exploits gradient boosting
approximation functions to achieve high precision prediction
rates and associated minimized over-tting drawbacks. The
main identied optimum hyper-parameters include max_depth
(10), sub-sample (0.82), min_child_weight (3.0), n_estimates
(1400) and regularization strengths (Reg_a: 0.06746; Reg_l:
0.04349). These parameters, most importantly Reg_a and Reg_l
regularization strengths satisfactorily emphasized the fact that
XGB algorithmmodeling technique was not associated with the
risk of over-tting during the iteration process.65 Other hyper-
© 2025 The Author(s). Published by the Royal Society of Chemistry
parameters were selected as follows: learning rate = 0.012; g
= 0.0004; colsample_bytree = 0.9; random_state = 84.

3.3.2. Model performance assessment. The performance of
each modeling technique was assessed using analytical indices
such as R2, MSE, RMSE, and AIC, the actual numerical signi-
cance of their performance was expressed. According to infor-
mation available in literature, the performance of a predictive
model is reasonably adequate if R2 is greater than 0.9.89

According to the information in Table 8, the range of the full
data R2 values was 0.9480 # R2 # 0.9644, emphasizing the
robust ability of each model to efficiently predict the nonlinear
dynamics of MNEO transesterication process. Explicitly typi-
fying this is to understand that SVRmodel, having an R2 value of
0.9480 implies that 94.8% of the experimental data can accu-
rately be predicted by SVR algorithm. This same principle
applies to ANN (95.95) and XGB (96.44%). MSE provides a basic
indicator of how effectively a model explains the data by
calculating the average squared variance across estimated and
actual measurements. The values of MSE were found to be
signicantly low (<0.1) underscoring the applicability of each
technique in modeling the nonlinear nature of trans-
esterication reaction of the present system. The mean size of
discrepancies through expected and actual values is measured
by RMSE. An overview of theMSE and RMSE values indicate that
XGB marginally performed better than ANN and SVR. The
Akaike's information criterion (AIC) was further used for model
discrimination. Small magnitudes of AIC, like the values ob-
tained for XGB (22.0692) were preferred over the values of ANN
(76.2154) and SVR (78.7082) because they showed that the XGB
had an acceptable balance involving complexity and precision.
RSC Adv., 2025, 15, 50856–50880 | 50871
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A generic assessment of the hybrid error appraisal established
that XGB performance, although not signicantly, was superior
to ANN and SVR in capturing the nonlinear nature of the
present system. Consequently, the accuracy of model predic-
tions followed the order XGB > ANN > SVR. Given that XGB
performed better than other models, it was adopted for SHAP
and MRFO analyses.

3.3.3. Intelligent optimization. Table 9 shows the intelli-
gent optimization data obtained from XGB-coupled MRFO
algorithm (XBG-MRFO), along with the associated hyper-
parameter values. To regulate the technique's behavior, hyper-
parameters typically pre-set. These hyperparameters affect the
algorithm's search-exploitation stability, converging rate, and
capacity for minimizing local optima. Essential hyper-
parameters such as population size and somersault range were
appropriately set as 10 and 1.0, respectively, which were suffi-
cient enough to stabilize the capacity of the foraging algorithm
to, locate global optima.90 Applying the MRFO algorithm,
optimum variable levels of temperature 50 °C, catalyst dosage
3.01 wt%, methanol-oil ratio 30, and reaction time 2.40 h were
obtained as shown in Table 9. At these optimum values, a pre-
dicted biodiesel yield of 99.13% was obtained. A triplicate
validation experiment was performed at the predicted optimum
variable parameters, aer which biodiesel yield of 98.16% was
obtained, demonstrating a high reliability in the modeling and
optimization techniques applied in this study.

Table S4 presents a comparative performance of our ndings
to the most recent publications in transesterication reaction of
blended oils over solid catalysts. An overview of these results
reveals insightful information regarding the performance of
Fe3O4@CPD–SO4. The optimum yield of our catalyst (98.16%)
outperformed dolomite based catalyst (87.7%) reported by
Vieira et al.,91 in transesterication of mixed castor and cotton
seed oil. Worthy of note is the fact that the obtained values here
aligned closely with the ndings of Babatunde et al.,92 (97.67%),
Boro et al.,93 (96.57) and Basumatary et al.,94 (96.34%). Despite
these strong correlations, the signicant catalytic performance
of Fe3O4@CPD–SO4 was exemplied by the fact that a lower
amount (3.01 wt%) was employed to achieve a comparable yield
as opposed to 15 wt% (Areca nut leaf ash–K2CO3) and 9 wt%
(Banana waste), reported by Boro et al., (2024) and Basumatary
et al., (2024), respectively. The dependability of the proposed
Table 10 Physicochemical analysis of MNEO methyl ester

Property MNEO

Acid value (mg KOH per g oil) 9.018 � 0.01
FFA (%) 4.404 � 0.021
Iodine value (g I2/100 g oil) 68.533 � 0.01
Cloud point (°C) —
Pour point (°C) —
Saponication value 184.455 � 0.02
Density @ 28 °C (g cm−3) 0.9031 � 0.02
Viscosity (mm2 s−1) —
Moisture content (%) —
Cetane number —
Higher heating value (MJ kg−1) —
Methyl ester content (%) —

50872 | RSC Adv., 2025, 15, 50856–50880
strategy is demonstrated by the fact that the described ideal
conditions found in this work matched those found in previous
studies and, in many cases, even exceeded them.

3.3.4. Input–output visualization. Fig. 8 depicts the surface
and contour plots demonstrating the inuence of process
variables on transesterication reaction of MNEO using Fe3-
O4@CPD–SO4, while Fig. 9 represents the heat-map Pearson
correlation derived from these plots. An overview of Fig. 8
reveals that biodiesel yield was at least >75%, underscoring the
signicant inuence of each process parameter in present
system. According to Fig. 8(a) and (e), biodiesel yield progres-
sively increased from 35% at lower limit of catalyst wt (1 wt%)
up to a partial-equilibrium stage of approximately 75% at
4.0 wt% of Fe3O4@CPD–SO4 catalyst. Beyond this amount of
catalyst, there was no signicant improvement in the yield of
biodiesel until termination of the process at the upper limit of
5 wt%. The iso-positive effect recorded throughout the range of
catalyst weight corresponded with the positive numerical
correlation (0.1950) given in heat-map correlation (Fig. 9)
between catalyst weight and biodiesel yield. The increase in
biodiesel yield (Fig. 8(a) and (e)) resulting from catalyst weight
could be attributed to availability of more active sites which
obviously facilitated the conversion of triglycerides of MNEO
into biodiesel.9 The reduced conversion rate (Fig. 8(a) and (e)) is
due to increased viscosity of the reaction liquor resulting from
incremental addition of catalyst. This increase viscosity hinders
mass transfer between reacting species leading to reduced yield
of biodiesel.1

The inuence of reaction temperature was investigated from
50 °C to 90 °C as demonstrated in combination with other
process factors in Fig. 8(a) and (e). An overview of these results
highlights the quadratic inuence temperature exerted with
respect to biodiesel yield. Accordingly, in Fig. 8(c) and (g), bi-
odiesel yield reached 85.8% following a gradual increase in
temperature from 50 °C to 63.8 °C. Beyond 63.8 °C, biodiesel
yield declined signicantly to a value of < 60% at 90 °C reaction
temperature. It has been documented that increase in temper-
ature increases the rate of reaction as postulated by Arrhenius
equation. In addition to this, increase in temperature decreases
the viscosity of esteried oil feedstock, facilitating the mobility
of both methanol and MNEO molecules which results in
enhanced yield of biodiesel.17 Decrease in biodiesel output
Biodiesel Comercial diésel ASTM D6751

0.33 � 0.00 — <0.5
0.17 � 0.01 — <0.25
52.24 � 0.01 — —
7 � 0.00 Max + 5 −3 to 12
4 � 0.00 — −15 to 10
127.45 � 0.03 — —
0.873 � 0.01 0.8300–0.8601 —
4.41 � 0.01 3.15 � 0.03 3.5 to 5.0
0.023 � 0.01 — <0.03
53.9 � 0.01 46–55 >47
38.95 � 0.01 44.0–45.4 >35
98.87 — >96.5

© 2025 The Author(s). Published by the Royal Society of Chemistry
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could be as a result of partial vaporization of methanol which
climaxed around its boiling point, leading to a decreased
amount of liquid phase methanol available for methanolysis.
According to Elgharbawy et al.,95 methanol fosters the contact
between triglyceride molecules andmethanol. The effectiveness
of this contact obviously reduced with the reduction of meth-
anol volume in liquid phase at temperature beyond 63.8 °C. It is
interesting to note that the bubble point of methanol (63.8 °C) is
signicantly close to the optimum temperature obtained here.
The notable quadratic effect corresponded accordingly with
a non iso-positive effect of −0.1920 correlating the impact of
temperature on biodiesel in Fig. 9.
Fig. 10 SHAP results for (a) feature ranking plot, (b) beeswarm plot, (c) w

© 2025 The Author(s). Published by the Royal Society of Chemistry
Fig. 8(b)–(d) and (f)–(h), demonstrates the combined inu-
ence of time and cat. wt., temp. and molar ratio, respectively, on
the methanolysis of MNEO. Also, according to the information
in the heat-map Pearson correlation data (Fig. 9), temperature
has a slightly negative impact (−0.0976) on the yield of bi-
odiesel. This negative impact corresponds to a graphical
quadratic effect on the conversion of triglycerides to biodiesel.
Accordingly, at a molar ratio of 30 : 1, biodiesel yield increased
from 91% (at 0.5 h) to a peak of 96.03% (at 1.87 h). Even with
more increase in reaction time, biodiesel yield signicantly
declined to value of 64.14% at a reaction time of 4.0 h. From the
basic knowledge of chemistry, increase in reaction time
aterfall plots.

RSC Adv., 2025, 15, 50856–50880 | 50873
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enhances the mixing and dispersion of reacting species,
allowing for mass transfer between methanol and MNEO
molecules. This phenomenon explains the increased yield in
biodiesel relative to progressive increase in reaction time. The
decline in the yield of methanolysis product could be due to the
consolidated negative effects of loss of esters from product to
reaction stream and blockage of Fe3O4@CPD–SO4 catalyst pores
by glycerin molecules, leading to a shi in reaction equilibrium
to the le hand side.96

The methanol- to-oil molar ratio exhibited the highest
(0.8615) iso-positive effect on the conversion of MNEO triglyc-
erides to biodiesel. This implies that throughout the reaction
Fig. 11 Instrumental analysis of spent-Fe3O4@CPD–SO4 catalyst for (a)

50874 | RSC Adv., 2025, 15, 50856–50880
levels of molar ratio, biodiesel yield continued to increase from
36% (at 6 : 1) up to 95.54% (at 30 : 1). Given that the trans-
esterication process for producing biodiesel is reversible
altering the state of equilibrium by adding sufficient methanol
into the reactants might boost the yield of the nal product.
Improved output of biodiesel is found when the quantity of
methanol is increased because the reverse reaction becomes
less preferred over the forward step, based on Le Chatelier's
principle.97

3.3.5. Feature evaluation using SHAP. SHAP analysis
employs feature ranking and Beeswarm plots to portray the
importance and inuence, respectively, of each process variable
SEM, (b) EDX, (c) TGA, (d) FTIR.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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on predicted yield of biodiesel. The feature ranking plot in
Fig. 10(a) illustrates that molar ratio is the most important
factor in MNEO transesterication reaction. This is likely due to
the crucial role of methanol reactant in providing the alkyl
group needed in ester formation. Similar observation have been
reported by Betiku et al.98 Following molar ratio is reaction
temperature and catalyst weight (catalyst dosage). The impor-
tance of these two factors is anchored on their unique roles in
transesterication reaction. For instance, the importance of
temperature is anchored on its ability to enhance mass transfer
during transesterication, while catalyst speed up the rates of
this mass transfer operation. The least important process factor
according to the feature ranking in Fig. 10(a) is reaction time.
Similar observations have been reported by Sambasivam et al.,99

where it was noted that transesterication reaction time was the
least important factor. It should be noted that reaction time
solely inuences the rate at which the process approaches
equilibrium, rather than the total yield aer equilibrium is
reached, making it less signicant in the development biodiesel
compared to other variables.

According to the inuence (impact) ranking of each feature
demonstrated in the Beeswarm plot of Fig. 10(b), methanol to
oil molar ratio maintained the lead as the most impactful
feature in transesterication of MNEO. According to Guo et al.,63

blue marks indicate low value impact of each input attributes,
whereas red marks indicate high value impact. Consequently,
a closer comparison of Fig. 10(a) and (b) reveals that although
reaction temperature is more important than catalyst dosage,
its inuence was slightly greater than that of reaction temper-
ature on the prediction outcome of biodiesel yield. It is note-
worthy that the impact of reaction time was the least,
corresponding to the feature ranking in Fig. 10(a). Specically,
the beeswarm result implies that positive SHAP values of bi-
odiesel yield were favoured by high levels of molar ratio, while
negative SHAP values were associated with low amounts of
molar ratio. This observation corroborated with the discussions
in Section 3.3.4., further consolidated the plausibility that
increasing the volume of methanol actually facilitated equilib-
rium displacement by favoring the reaction, resulting in
increased yield of biodiesel.97 Furthermore, Fig. 10(b) reveal
that high SHAP values were obtainable at low temperatures, as
opposed to high temperature values. This phenomenon further
supports earlier observation that increasing this feature, in
effect, led to the reduction of the top-ranking feature (molar
ratio) within the reaction vessel. This reduction in molar ratio
was triggered by volatilisation of methanol at elevated temper-
atures, causing a reduction in liquid phase methanol available
for transesterication reaction. For catalyst weight feature, the
beeswarm ndings indicated that if improved yield of biodiesel
is desired, higher values of catalyst weight will be required. The
mechanistic implication here is that the availability of more
active catalytic sites obviously favoured the accelerated conver-
sion of MNEO to biodiesel.9 Fig. 10(c) depicts the SHAP waterfall
plot. This gure exemplies the contribution of each feature in
predicting optimum yield of biodiesel. Accordingly, feature
contribution to predicted optimum followed the order molar
ratio > temperature > time > catalyst dosage. This implies that
© 2025 The Author(s). Published by the Royal Society of Chemistry
methanol-to-oil molar ratio was the most inuential process
feature in MFRO algorithm by a magnitude of +27, while cata-
lyst weight having a magnitude of +0.93 was the least.

3.4. Biodiesel characterization

The physicochemical properties of MNEO methyl ester synthe-
sized at optimum conditions was characterized and compared
to compared to commercial diesel and ASTM D-6751 standards
(Table 10). Distinct fuel properties including viscosity, cloud
point, and pour point were found to be within the permissible
range to guarantee unhindered ow at low temperature.
Furthermore, an acid value of 0.33 mg KOH per g oil not only
demonstrates a signicant reduction from 9.018 mg KOH per g
oil, it also gives credence to the fact that there will be no
corrosion associated with the combustion of MNEO methyl
ester. The level of moisture content (0.023%) and saponication
value indicates a good quality fuel with easy combustion char-
acteristics. An indication of fuel ignition quality and quantity of
heat energy associated with its combustion was given by cetane
number and higher heating value, respectively. From these
values, MNEO methyl ester possess a satisfactory ignition
property and acceptable heat energy associated with the
combustion dynamics. These properties highlight the poten-
tials of MNEO methyl ester as a suitable liquid fuel for internal
combustion engines.

3.5. Catalyst reusability and characterization

Two essential qualities of catalysts for manufacturing purposes
are their capacity for reuse and catalytic efficiency. TheFe3-
O4@CPD–SO4 re-usability investigation was carried out in the
optimum parameters specied by MRFO. The MNEO biodiesel
output values from ve successive cycles regardless of any
further modication are displayed in Fig. S1. The gradual
saturation of active spots on Fe3O4@CPD–SO4 catalyst surface
by transesterication intermediates may be responsible for the
apparent little drop in biodiesel output following each cycle.17

Activation reagents (sulfur ions) eventually seep towards the
reaction liquor as a result of this obstruction, decreasing the
Fe3O4@CPD–SO4 catalytic performance. A generic overview of
Fig. S5 highlights a satisfactory performance of Fe3O4@CPD–
SO4 catalyst. This satisfactory performance was authenticated
by a negligible 15.77% reduction in biodiesel yield aer 4 cycles
of non-regenerative reaction. However, at the end of 7th cycle,
biodiesel yield of 62.33% was recorded, showing a signicant
decline in Fe3O4@CPD–SO4 catalytic activity.

Characterization of spent Fe3O4@CPD–SO4 catalyst and bi-
odiesel product are presented in Fig. 11, and Table 7, respec-
tively. The SEM image depicts a swollen ridge-like matrix
illustrating imbibition of reacting liquor. Furthermore,
Fig. 11(a) portrays the disappearance of porous dark array,
demonstrating a probable saturation of catalyst active sites as
a consequence of transesterication reaction. The EDX results
show discernible reductions in calcium, sulfur, potassium and
iron contents compared to Fig. 4(f). These reductions not only
demonstrate the active participation of Fe3O4@CPD–SO4 cata-
lyst in methanolysis of MNEO, it further corroborates the
RSC Adv., 2025, 15, 50856–50880 | 50875
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postulations concluded in the re-usability study that active
elements percolated progressively towards the reaction liquor
during the process. Thermogravimetric analysis (Fig. 11(c))
show that spent Fe3O4@CPD–SO4 retained its thermal stability
even aer h cycle of reaction. FTIR spectrum of spent Fe3-
O4@CPD–SO4 (Fig. 11(d)) corroborate favorably with the nd-
ings of EDX. The infrared spectrum shows the disappearance of
sulfonated polysaccharides in wave number 805 cm−1, while the
reduction in sulfonated polymeric aromatic compounds was
depicted by the peak at 1250 cm−1. These deformations in
wavenumber authenticate the deployment of Fe3O4@CPD–SO4

in transesterication of MNEO. Furthermore, the reduced
catalytic activity and saturation of active sites was additionally
evidenced by the decreased vibrational peak at 546 cm−1 (Fe–O)
and 1040 cm−1 (C–O stretching of polysaccharides).

4. Conclusion

The current research presents the results of one-pot trans-
esterication of reaction of optimally formulated MNEO.
Optimal formulation was executed using mixture design tech-
nique to obtain a blending ratio of 21.31 : 18.45 : 60.24 on v/v
basis of WCO : RO-POME : CO, respectively. In addition to the
physicochemical properties, three major parameters including
acid value, density, and iodine value were used to adjudge the
best oil formulation. The preparation of catalyst species pos-
sessing bi-functional catalytic potentials was successfully
carried out using calcination, sulfonation, and magnetization.
Instrumental characterization using FTIR, TGA, SEM-EDX, and
XRD authenticated the relevance and effectiveness of each
activation process, further giving credence to the potentials of
Fe3O4@CPD–SO4 in one step methanolysis of MNEO. Machine
learning modeling of the process was effectively done using
ANN, SVR and XGB models. Statistical and error appraisal
techniques established the marginal superiority of XGB over
ANN, and SVR in capturing the nonlinear nature of the system.
Feature analysis was done using SHapely additive exPlanations
(SHAP). Feature ranking and Beeswarm plots indicated that MR
was both the most important and most impactful process
parameter. Process optimization using MRFO predicted an
optimum yield of 99.68% at a methanol-to-oil ratio of 30.0,
temperature of 50 °C, reaction time of 2.4 h, and catalyst dosage
of 3.01%. Triplicate validation experiments authenticated the
optimum prediction of MFRO at 98.16 ± 0.11%, and physico-
chemical characterization conrmed the suitability of MNEO
methyl ester in internal combustion engines.
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