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rotein and nucleic acid solutions
and their folded structures explored using the free-
volume concept and Eyring's rate process theory

Tian Hao *

This article aims to unify the understanding of protein and nucleic acid solution viscosity by integrating the

free-volume concept and Eyring's rate process theory. The importance of controlling protein and nucleic

acid solution viscosity in therapeutic formulations and manufacturing cannot be overstated, as numerous

empirical and semi-empirical equations/models have been proposed to fit experimental data in the

literature. These models are intended to extrapolate viscosity predictions at higher concentrations based

on low-concentration data or provide guidance on how to reduce viscosity by adjusting pH and adding

salt. However, none of these models can be universally applied to all systems, providing reasonable

interpretations of experimental results. We borrow the reptation-tube concept from polymer science to

treat the molecules of proteins and nucleic acids, and introduce the aspect ratio parameter to describe

the fibrousness of the molecular shapes of the proteins and nucleic acids. The obtained equations can

adequately correlate the viscosity with protein and nucleic acid volume fraction, salt concentration, zeta

potential, pH, and temperature, and fit many experimental data very well. They show that the viscosity

increases almost linearly with the volume fraction in low-volume-fraction regions, but increases

dramatically with the volume fraction in high-volume-fraction regions; increases gradually with both

zeta potential and the aspect ratio of the molecular chains; decreases with the square root of the ionic

strength; reaches a minimum point with pH; and generally decreases with temperature, except in DNA

solutions due to the transition from double-stranded to single-stranded molecules, etc. The viscosity of

several protein and DNA solutions are regressed with our equations and very good agreements are

obtained. Our work deepens the physical understanding of critical parameters, and provides clues for

lowering viscosity in pharmaceutical formulations.
1. Introduction

Protein and nucleic acids are vital biomolecules that have
a profound effect on biological processes, with their varied func-
tions being closely tied to their three-dimensional structures. The
sequence of amino acids and the spatial arrangement of these
components determine how they interact and assemble into
single-stranded RNA or double-stranded DNA molecules or aggre-
gates, which, in turn, inuence the complex properties of proteins
and nucleic acids. Additionally, the viscosity of protein solutions
has been found to be a crucial physical parameter that can
signicantly impact protein behavior, stability, and functionality.
Understanding the factors that govern protein viscosity is essential
for developing innovative applications across various elds,
including pharmaceutical formulation, biotechnology, and food
science.

Protein solutions rely heavily on the structural integrity of
proteins to maintain their functional capabilities and regulate
, USA. E-mail: haotian9@gmail.com

49387
viscosity. Current methods for determining protein structures,
such as X-ray crystallography, NMR spectroscopy, and cryo-
electron microscopy, have been widely used aer proteins are
crystallized under specic conditions that require signicant
effort. Nevertheless, these approaches can be time-consuming
and may not always provide accurate information on the
dynamic behaviors of proteins in solution.

Advances in computational methods have greatly enhanced
the accuracy of predicting protein structures and dynamics. Novel
approaches such as molecular dynamics simulations and
machine-learning algorithms enable researchers to gain valuable
insights into the folding mechanisms of proteins and how their
structures adapt to environmental conditions. The Google
AlphaFold2 and AlphaFold3 models have demonstrated excep-
tional precision in predicting protein structures, providing rele-
vant information on the dynamic behaviors of proteins in
solution.1,2 Thesemodels employ diffusion-based neural networks
that are constrained by chemical bond lengths and angles,
including the stereochemistry of amino acids, their stereochem-
ical properties, or the free space/volume availability in the system.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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This correlation enables researchers to link folded protein struc-
tures with viscosity and the ow behaviors of protein solutions.

The excluded-volume concept has also been used to elucidate
protein and nucleic acid conformational structures.3,4 The
excluded-volume effect refers to the spatial constraints imposed
by protein molecules in a solution that, in turn, modulate their
interactions with neighboring molecules. This phenomenon can
result in alterations to protein conformation and dynamics,
thereby inuencing viscosity. The excluded-volume effect is
particularly signicant in crowded environments, such as cellular
interiors, where proteins are densely packed. The concepts of
excluded volume and free volume have been extensively utilized
in the literature to explain glass transitions and ow behaviors of
various materials.5–13 While these concepts share similarities,
subtle distinctions do exist, as discussed in this article.14 The free-
volume concept, which describes the unoccupied space within
a material, may offer valuable insights into protein behaviors in
a solution. Eyring's rate process theory,15 which originally relates
chemical reaction rates to energy barriers, may be applied to
understand protein folding and the corresponding changes in
viscosity with temperature and pressure. The free-volume
concept posits that the viscosity of a protein solution is
inversely related to the amount of unoccupied space available for
proteins to move in. When the temperature increases, the free
volume expands, facilitating increased protein mobility and
reduced viscosity. Conversely, elevated pressure diminishes the
free volume, leading to enhanced viscosity.

The viscosity of protein and nucleic acid solutions is inu-
enced by multiple factors, including protein structure, concen-
tration, molecule size and shape, pH, ionic strength,
temperature, and the presence of other solutes. At low concen-
trations, protein and nucleic acidmoleculesmay behave like free-
owing entities, where their viscosity is primarily dominated by
their physical dimensions and morphology. In contrast, as the
concentration increases, the intermolecular interactions become
more pronounced, leading to non-ideal behaviors and elevated
viscosities.16 The size and shape of proteins and nucleic acids can
be inuenced by pH, ionic strength, and temperature. Recent
theoretical explorations of the crowding effect and the inuence
of salts on viscosity highlight the limitations of traditional
theories and equations.17 Solvent viscosity inuences protein
folding rates as well.18 Salts in general can reduce the viscosity,19

and a neutral pH may lead to the lowest viscosity.20 Aggregation
sizes of protein molecules should also be taken into account for
protein formulation and viscosity control.21

Semi-empirical equations based on Arrhenius equations
have been utilized to understand the viscosity dependence on
temperature to extract insightful activation energy informa-
tion.22 Empirical equations based on the excluded-volume
concept were proposed to understand the viscosity depen-
dence of protein volume fraction.22–24 The empirical viscosity
exponential growth equation, the modied 3-parameter expo-
nential equation, the modied Ross–Minton equation,24 Ein-
stein's equation, Krieger–Dougherty's equation,25 and the
Tomar equation,26 have been evaluated in previous
studies.19,22,27,28 Limitations were identied for all these equa-
tions due to their empirical nature. Protein viscosity cannot be
© 2025 The Author(s). Published by the Royal Society of Chemistry
tted with the hard-sphere model,28 or with many other
empirical models,27 in concentrated solutions. In general,
protein solutions are considered pure liquids if they are fully
dissolved, or colloidal suspensions if they are partially di-
ssolved. Hao has compared many approaches and equations to
describe the viscosities of pure liquids, colloidal suspensions,
and polymeric systems, and found that the equations derived
based on the free-volume concept and Eyring's rate process
theory can give satisfactory ts to experimental data.29 The free-
volume concept and Eyring's rate process theory will be inte-
grated again to describe the viscosity of protein solutions, as
this approach has been successfully applied previously in many
elds, across a wide range of scales from electrons to the
universe.14,30–37 Although Eyring's rate process theory and
excluded-volume quantication have been used to explore
protein folding and even collapse from protein solutions,38 they
were applied independently in biological systems,39 and there
are no reports on integrating these two theories to treat bio-
logical systems. An attempt is made in this article to describe
the viscosities of protein solutions with the integration of Eyr-
ing's rate process theory and free-volume concept, building on
our previous work. The goal is to create a unied theoretical
approach for better describing the viscosity of protein solutions.

2. Theory

At the molecular level, nucleic acids are composed of nucleo-
tides with three components: a phosphate group, a ve-carbon
sugar (deoxyribose in DNA and ribose in RNA), and a nitroge-
nous base. The phosphodiester backbone is formed by the
interaction between the phosphate groups of two adjacent
nucleotides. On the other hand, proteins are made from amino
acids with a central carbon atom bonded to an amino group,
a carboxyl group, a unique side chain, and hydrogen atoms.
Both nucleic acids and proteins have brous chain structures
with a variety of differently charged regions. Typically, they are
highly charged, and their folded structures are therefore inu-
enced by the electrolytes, pH, and other additives that can bind
with them. Analogously, they are comparable to ber-shaped
polymer molecules, but have a much lower molecular weight.
We then can borrow the ideas used to treat polymer molecules
to model the viscosities of proteins and nucleic acids. We will
start with the approaches used for theoretically modeling the
viscosity of polymers, and expand to charged situations to
mimic the behavior of nucleic acids and proteins.

In an article published in 2008,29 viscosities of pure liquids,
colloidal suspensions, and polymeric systems were addressed
using various methods, including the free-volume concept and
Eyring's rate process theory. The current paper borrows the
same ideas/approaches from this article to describe the
viscosities of protein and nucleic acid solutions with a few
tweaks. The rst tweak is that we treat protein and nucleic acid
molecules as bers instead of spherical particles. The second
tweak is that we place a signicant emphasis on the electrostatic
interactions among these brous protein molecules and the
solvent molecules. Nucleic acid molecules are made from
nucleotides, which have different amounts of charge at various
RSC Adv., 2025, 15, 49374–49387 | 49375
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Fig. 1 A single protein molecular chain illustrated as a tube with radius
r and length L.
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sites, either positive or negative. These charges can interact with
each other to form single-stranded or double-stranded struc-
tures. Protein and nucleic acid molecules may behave similarly
in terms of their interactions with the surrounding solvent
molecules, creating various aggregated structures. The third
tweak is that, although we use a cylindrical shape to model
nucleic acid and protein molecules with an aspect ratio
parameter, this cylindrical shape will become a thin ber when
the aspect ratio is higher, typically larger than 10. The same
principal can be applied to globular-shaped proteins like bovine
serum albumin (BSA) with an aspect ratio of about 1. We then
will treat them identically without further clarications.

The free volume of a single nucleic acid and protein ber
molecule needs to be estimated once it is dissolved in a solvent.
The same approach adopted from Hao's previous work on
calculating the free volume of spherically shaped particles
dispersed in a continuous medium is used in this article.40

These brous protein and nucleic acid molecules are similar to
polymeric chains but with smaller molecular weights and
various numbers of charges at different sites. A powerful
concept in dealing with the ow properties of polymeric systems
is the reptation theory, which was introduced by P. G. de Gennes
and expanded on by Doi and Edwards to model the viscoelastic
properties of polymer materials.41,42 The reptation concept of
the polymer molecules argues that polymeric molecules behave
like a snake in a tube. This concept is based on the assumption
that the polymer chains randomly orient and can move freely
along their length. Protein and nucleic acid molecules can be
modeled similarly to polymer chains in the interpretation of
rich, viscous ow behaviors. We therefore would continue to
use this reptation concept to model protein and nucleic acid
molecules, as illustrated in Fig. 1.

A single protein or nucleic acid molecule is assumed to be
a exible tube with radius r and length L. The aspect ratio of this
tube, Ar, is dened as the ratio of its length to its diameter, Ar =
L/2r. The aspect ratio of a protein molecule can be estimated
from the molecular parameters, like molecular weight and
gyration radius based on the structure of the protein molecules.
The volume of this tube can thus be written as:

Vt = 2pArr
3 (1)

According to the original free-volume calculation40 and the
extension to charged particles,29 the free volume of a protein
molecule can be written as:
49376 | RSC Adv., 2025, 15, 49374–49387
Vft ¼ 64

"
r

�
fm

f

�1=3

� zeme0
dq

#3

(2)

where V is the free volume of an individual protein molecule,
fm is the maximum packing fraction of the protein molecules,
and f is the volume fraction of the protein molecules in solu-
tion, which corresponds to their concentration. z is the zeta
potential of the charged protein molecules, dq is the charge
density of the protein molecules, and e0 and em are the dielec-
tric constants of vacuum and the dispersing medium (such as

water), respectively. Note that the term
zeme0
dq

has the length unit

related to the Debye length in colloidal chemistry. In SI units,
the dielectric permittivity of vacuum e0 has the unit of A

2 s4 kg−1

m−3, the dielectric constant of the dispersed medium em is
unitless, the zeta potential z has the unit of kg m2 s−3 A−1, and
the charge density dq has the unit of A s m−2; therefore, the term
zeme0
dq

has the unit of length m, matching the unit of the rst

term r
�
fm

f

�1=3

. The total free volume of all protein molecules

should be the free volume of an individual molecule V multi-
plied by the number of protein molecules in the solution, i.e.:

Vtft ¼ Vft � fVs

2pArr3
(3)

¼ 32fVs

pAr

"�
fm

f

�1=3

� zeme0
rdq

#3

(4)

where Vt is the total free volume of all protein molecules in the
solution, and Vs is the volume of the solution. According to
Eyring's rate process theory15,43,44 and Hao's extension of this
theory,29 the viscosities resulting from the crowding effect of
protein molecules and the electrostatic interactions can be
expressed as:

hf ¼ f
�
2pmpkBT

�1=2
2DE

2
432fVs

pAr

"�
fm

f

�1=3

� zeme0
rdq

#3
3
5

�2=3

Vfm
�2=3 exp

�
E0

kBT

�
(5)

¼ f ð2pmmkBTÞ1=2
2DE

�
32f

pArð1� fÞ
��2=3"�

fm

f

�1=3

� zeme0
rdq

#�2

Vfm
�2=3 exp

�
E0

kBT

�
(6)

¼
�

32f

pArð1� fÞ
��2=3"�

fm

f

�1=3

� zeme0
rdq

#�2

hm (7)

where Vfm is the free volume of an individual molecule of the
dispersing medium, f is the shear force applied to the solution,
DE is the energy gap between the initial shear state to the next
equilibrium shear state, E0 is the activation energy needed
© 2025 The Author(s). Published by the Royal Society of Chemistry
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during the shearing process, kB is the Boltzmann constant, T is
the temperature, mm is the molar mass of the dispersing
continuousmedium,mp is themolar mass of the protein, and Vs
is the volume of the whole protein or nucleic acid solution. All
other parameters are the same as dened earlier. For conve-
nience, all symbols and their units are listed in Table 1. hm is
the viscosity of the dispersing medium or the liquid continuous

phase, where hm ¼ f ð2pmmkBTÞ1=2
2DE

Vfm
�2=3 exp

�
E0

kBT

�
, initially

derived by Eyring15,43 and extended by Hao.29 As one can see, the
viscosity of a protein solution is a function of temperature T, the
protein concentration expressed as the volume fraction f, the
protein molecule aspect ratio Ar, the zeta potential z and the
charge density dq of the protein chains. Both zeta potential and
charge density are dependent on the pH, salt concentrations,
and the protein’s molecular structure and components, i.e., the
folded structures and amino acid types and how they connect.
Based on Hao's original treatments of pure liquids, colloidal
suspensions, and polymeric systems,29 there are three compo-
nents contributing to the total viscosity of a colloidal
suspension/polymeric system: the viscosities resulting from the
continuous liquid medium hm, the protein molecule crowding
effect due to the volume fractions hphi, and the electrostatic
interactions between protein molecules that are already taken
into account in eqn (7). Obviously, the viscosities of protein
solutions should have these three components, too. We there-
fore may write the viscosity of protein solutions as below:

h = hm + hf (8)

¼
2
41þ �

32f

pArð1� fÞ
��2=3"�

fm

f

�1=3

� zeme0
rdq

#�235hm (9)

where h is the viscosity of the protein solution containing
protein molecules and the dispersing medium. The relative
Table 1 List of symbols and their units

Symbol Meaning

f Shear force
mp Mass of the dispersed particles
mm Mass of the dispersed medium
kB Boltzmann constant
T Temperature
DE Energy gap between the initial shear state
E0 Activation energy during the shearing proc
f The volume fraction of the dispersed parti
Vs The volume of the whole protein or nuclei
Ar The aspect ratio of the molecular chain
fm The maximum packing fraction of the disp
z The zeta potential of the dispersed particle
em The dielectric constant of the dispersed m
e0 The dielectric permittivity of vacuum
r The radius of the reptation tube of a molec
dq The charge density of the dispersed particl
Vfm The free volume of an individual molecule
hm The viscosity of the dispersing medium
hf The viscosity resulting from the particle vo

© 2025 The Author(s). Published by the Royal Society of Chemistry
viscosity, typically dened as the viscosity of a protein solution/
suspension divided by that of the dispersing medium, can thus
be written as:

hre = (hm + hf)/hm (10)

¼ 1þ
�

32f

pArð1� fÞ
��2=3"�

fm

f

�1=3

� zeme0
rdq

#�2

(11)

where hre is the relative viscosity frequently used in the litera-
ture. The specic viscosity, dened as hre − 1, can be written as:

hsp = hre − 1 (12)

¼
�

32f

pArð1� fÞ
��2=3"�

fm

f

�1=3

� zeme0
rdq

#�2

(13)

where hsp is the specic viscosity in the literature. In the
equations above, the radius of the protein molecules, r, is
present. Due to the strong electrostatic interactions and base-
pair attractions among protein molecules, we may not be able
to treat it as a constant when the protein volume fraction
increases, which is a distinguishing nature of protein molecules
in comparison with other entities, such as colloidal particles
and polymer chains. It should be dependent on the protein
volume fraction. When we evaluate viscosity against the protein
volume fraction, we should replace r with a function of the
protein volume fraction f. If the number of protein molecules
in the solution is np, the total volume of the protein molecules
in the solution should be the volume of a single protein mole-
cule illustrated in Fig. 1 multiplied by np:

Vp = 2pr3Arnp (14)

where Vp is the total volume of the protein molecules in the
solution. So the volume fraction of protein should be:
SI unit

N
kg mol−1

kg mol−1

J K−1

K
and next equilibrium state J
ess J
cles Unitless
c acid solution m3

Unitless
ersed particles Unitless
s V
edium Unitless

F m−1

ule m
e surfaces C m−2

of the dispersed medium m3

Pa s
lume fraction and particle interactions Pa s

RSC Adv., 2025, 15, 49374–49387 | 49377
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f ¼ Vp

Vs

(15)

= 2pr3Arnp/Vs (16)

We then have the relationship between the protein molecule
radius and the volume fraction as below:

r ¼
�

fVs

2pArnp

�1=3

(17)

where Vs is the volume of the protein solution. The charge
density, dq, in eqn (7), should be the total amount of charge, Q,
divided by the surface area, Sp, of the protein molecules. This is
how the charge density is dened in the electric double layer
theory for zeta potential calculations,45 which is slightly
different from the regular density denition where the volume
is usually used. So the charge density, dq, can be expressed as:

dq ¼ Q

Sp

(18)

¼ Q

pr2ð4Ar þ 1Þnp (19)

Therefore, the term rdq in eqn (7), in terms of protein volume
fraction, can be expressed as:

rdq ¼ ð2ArÞ1=3Q
ð4Ar þ 1Þ�p2np2fVs

�1=3 (20)

This term has a relationship with the protein volume fraction,
indeed. Experimental and theoretical studies have shown that
the zeta potential is dependent on the volume fraction when the
volume fraction exceeds about 0.07, a relatively low volume
fraction.46,47 There is a complicated relationship between zeta
potential and volume fraction, dependent on the reduced
particle radius dened as the Debye length times the particle
radius lr; however, the general trend is that zeta potential
decreases with increasing volume fraction.46,47 For simplicity,
we will assume z= z0/f, where z0 is the zeta potential at the very

low volume fraction. Under this approximation, the term
zeme0
rdq

can be written as:

zeme0
rdq

¼ ð4Ar þ 1Þz0eme0
�
p2np

2Vs

�1=3
ð2ArÞ1=3Qf2=3

(21)

Using the expression in eqn (21) to replace the term of
zeme0
rdq

in
eqn (9), we may obtain the relationship between the viscosity
and the protein volume fraction:

h ¼
2
41þ �

32f

pArð1� fÞ
��2=3

"�
fm

f

�1=3

� ð4Ar þ 1Þz0eme0
�
p2np

2Vs

�1=3
ð2ArÞ1=3Qf2=3

#�235hm (22)
49378 | RSC Adv., 2025, 15, 49374–49387
The viscosity of a protein solution is now correlated with the
protein concentrations, the protein charge and zeta potential,
the protein molecule aspect ratio, the number of protein
molecules, the maximum packing fraction of protein mole-
cules, the solution volume, and the viscosity of the dispersing
medium. In the next section, eqn (22) will be used for evaluation
and regression purposes, as it contains all variables encoun-
tered in protein solution formulations, while controlling the
viscosity of protein solutions and interpreting experimental
data are imperative.

The term f/DE in the viscosity equations of both hm and hf

contains the shear stress s and shear rate _g information. The
shear stress s is the shear force f divided by the shear area A, s=

f/A. The shear rate _g is the shear velocity v divided by the shear
distance dp in the perpendicular shear direction, _g = v/dp. If the
shear distance in the shear direction is ds, then the shear area
A = dp × ds. If DE has some relationship with the shear velocity
v,DE= vE(v), where E(v) is a function of the velocity, then we can

write the term
f
DE

as follows:

f

DE
¼ sdpds

vEðvÞ (23)

¼ sds

g
c
EðvÞ

(24)

Since the energy by denition is the force times the distance
traveled in the direction of the force, our assumption DE= vE(v)
is reasonable. In this regard, the viscosity equation can be
further written as:

h ¼ sds

g
c
EðvÞ

ð2pmmkBTÞ1=2
2

Vfm
�2=3 exp

�
E0

kBT

�
(25)

2
41þ �

32f

pArð1� fÞ
��2=3

"�
fm

f

�1=3

� ð4Ar þ 1Þz0eme0
�
p2np

2Vs

�1=3
ð2ArÞ1=3Qf2=3

#�235 (26)

Eqn (26) shows that the viscosity of a protein depends on the
shear stress and shear rate, which may show the Newtonian or
non-Newtonian shear behaviors we have already seen in the
literature.48

The surface charge density of protein and nucleic acid
molecules dq is correlated with the salt concentration ci based
on the standard electric double layer theory in colloidal chem-
istry.45,49 The Debye length l can be written as:

l ¼
�
e0emkBT

2e2I0

�1=2

(27)

where e is the elementary charge, I0 is the ionic strength,

I0 ¼ 1
2

X
i

zi2ci, e is the elementary charge, z is the charge of the

ion, and ci is the molar concentration of each ion species. When
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the surface potential U is low, the surface charge density may be
expressed as:45,49

dq ¼ e0emU

l
(28)

¼ eU

�
2e0emI0
kBT

�1=2

(29)

¼ eU

0
@e0em

P
i

zi
2ci

kBT

1
A

1=2

(30)

Eqn (30) shows that the surface charge density is proportional to
the square root of ion concentrations. We therefore may
correlate the viscosity to the salt concentration via eqn (9). If we
assume the surface potential U is approximately equal to the

zeta potential z, then z=dq z

0
@e2

e0em
P
i
zi2ci

kBT

1
A

�1=2

. We may

write the viscosity equation below to correlate with salt
concentrations:

h ¼

2
66641þ

�
32f

pArð1� fÞ
��2=3

2
6664
�
fm

f

�1=3

� ðkBTeme0Þ1=2

er

�P
i

zi2ci

�1=2

3
7775

�23
7775hm

(31)

Eqn (31) can be used to estimate how the salt concentration
would impact the viscosity. Similarly, we may use this equation
to evaluate how pH would impact viscosity, as the pH change
would change the charge density. When the pH is neutral at 7,
the charge density is supposed to be zero in theory. In reality,
zero charge density may be achieved at the isoelectric point. By
simply assuming dq + a= pH, where a is a constant, we can then
use eqn (31) to predict the viscosity at different pH values.
3. Results
3.1. Theoretical predictions based on the viscosity equations

In this section, we conduct a comprehensive analysis of the
relationships between viscosity and its dependence on
concentration, zeta potential, charge density, temperature, and
folded molecular structures as reected by the aspect ratio.
Subsequently, we compare our theoretical predictions with
experimental data from existing literature.

Temperature and protein volume fraction are two major
factors impacting the viscosity. Fig. 2 shows the normalized
viscosity against temperature and protein volume fraction for
low volume fractions below 0.5 and high volume fractions up to
0.9. The temperature range is assumed to be within −100 to
100 °C, a wide range for most protein solutions for freezing
storage and heat processing purposes. With the temperature
increasing, the viscosity is predicted to decrease, which is in
agreement with the experimental measurements reported in the
literature. When the volume fraction is low in Fig. 2(a), the
viscosity seems to have a linear relationship with the volume
© 2025 The Author(s). Published by the Royal Society of Chemistry
fraction, until the volume fraction is close to the maximum
packing fraction where an exponential increase is shown. This
dramatic exponential increase is more pronounced when the
maximum volume fraction is high, close to 0.9, as shown in
Fig. 2(b). Atoms, molecules, and even large particles all need to
pack into certain structures, and there is a maximum packing
volume fraction for each possible structure.50 How protein
molecules can pack in a solution, i.e., the protein 3D folded
structures, would determine what the maximum packing
volume fraction is, which is a central concept in free-volume
calculation.40 The maximum volume fraction regulates at what
volume fraction point the viscosity would start to dramatically
increase. Many experimental data support these predictions of
a linear relationship at low volume fractions followed by an
exponential increase at high volume fractions.16,28,51

The radius and aspect ratio of protein molecules should
impact the viscosity. We assume that the volume fraction does
not change when the radius and aspect ratio vary, and that they
are independent of each other, which is not true in reality but
can be used for evaluation purposes of our equations. We can
use eqn (22) to see how the viscosity is going to vary with Ar, and
use eqn (9) to see how the viscosity is going to change with r,
only for pure illustration purposes. In both cases, the viscosity
increases with Ar and r, which makes perfect sense as large and
long protein/nucleic acid molecules would increase the internal
frictional forces during the shear process, leading to higher
viscosities. The large and long protein molecules usually have
a high molecular weight and relatively poor solubility. In other
words, they cannot easily dissolve into the dispersing liquid
medium and reach a high volume fraction; the viscosity may
already be extremely high at low protein volume fractions.
Nonetheless, our focus is on how the aspect ratio and the radius
of the protein impact the viscosity. From these predictions, we
may expect higher viscosity in aggregated protein solutions
where protein molecules are longer and larger, like bundles,
which is evidenced in experimental investigation.52 If protein
aggregates create inhomogeneity in solution, a lower viscosity
should be expected due to how viscosity is measured experi-
mentally,53 which has nothing to do with the intrinsic viscosity
of a protein solution. The shapes of protein molecules have
been experimentally found to have a big impact on viscosities:
the viscosities of seven proteins with distinct structural differ-
ences from small spherical shapes to brous “Y” shapes were
investigated, and the ber-shaped proteins exhibited higher
viscosities at the same volume fraction.16 This is possibly due to
the larger Ar of brous protein molecules, as described with eqn
(22) and illustrated in Fig. 3.

Zeta potential and charge density are the two main factors
that determine the viscosity of a protein. Both of them reect
the amount of charge that the protein molecules carry, but in
different ways: the zeta potential is a measure of the electric
potential at the electric mobile layer created by the charge
entities and the charge density is a measure of the charge per
unit area of the surface. They are the indications of how strong
the electrostatic interactions are, and should inuence the
viscosity via so-called electroviscous effects.52,54 Note that these
two parameters only become important in concentrated protein
RSC Adv., 2025, 15, 49374–49387 | 49379
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Fig. 2 Illustration of normalized viscosity against temperature and the protein concentration based on eqn (22) for (a) fm = 0.5 and (b) fm = 0.9.

Fig. 3 Illustration of normalized viscosity against Ar (a) and the size of the protein molecules r (b) based on eqn (22) and (9), respectively. The
protein volume fraction is also presented in the graphs but considered as an independent variable.
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solutions where there is overlapping between the electric
double layers around each molecule.19,54 For illustration
purposes, the predicted viscosities from eqn (9) are plotted
against zeta potential z and charge density dq in Fig. 4. When
the zeta potential changes from−100 to 100 mV at relatively low
volume fractions, the predicted viscosities increase at rst, and
decrease when the volume fraction is extremely high, implying
that the electrostatic interactions overtake the crowding effect.
These abnormal behaviors may only happen when the pro-
teinmolecules can be heavily charged with charging agents or
salts, and in the meantime the aggregations of molecules don’t
cause protein collapse from the solution – a phase change. For
the charge density, there is a “U”-shaped relationship; the
viscosity decreases initially, reaches the lowest point, and then
increases. Salt concentration and pH variations can cause both
the zeta potential and charge density to change, leading to the
reduction or enhancement of viscosity proles, which is evi-
denced in the literature,19,54 where maximum viscosities are
49380 | RSC Adv., 2025, 15, 49374–49387
found when the salts or pH are varied. Four types of electrostatic
interactions are proposed: the excluded-volume repulsion,
electrostatic repulsion, electrostatic attraction, and hydro-
phobic attractions.19 Aer salts are added to the solutions, the
kosmotropic effect, resulting from the solubility decrease of
hydrophobes, and the chaotropic effect, resulting from the
solubility increase of hydrophobes, could occur. Depending on
the intrinsic charge properties of protein molecules, the added
salts may neutralize, enhance, or reduce the charge density,
creating different viscosity impacts.
3.2. Comparisons with experimental data

The viscosities of lysozyme solutions with a wide range of
volume fractions from 0.01 to about 0.35 measured at three
different temperature of 5, 25, and 50 °C were extracted from
the article55 and regressed with eqn (7). The data and the
regressions are shown in Fig. 5(a). The tting curves were
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Illustration of normalized viscosity against zeta potential z (a) and the charge density of the protein molecules dq (b) based on eqn (9). The
protein volume fraction is also presented in the graphs but considered as a independent variable.

Fig. 5 Viscosities of several protein solutions are fitted with the equations derived in this article. The data points are extracted from the literature.
(a) The specific viscosity of lysozyme solutions at three different temperatures, 5 °C, 25 °C, and 50 °C, vs. protein volume fraction. The data points
are extracted from ref. 55 and the lines are regressed with eqn (22). Viscosities decrease with increasing temperature, consistent with the
predictions. (b) The relative viscosity of bovine serum albumin and human serum albumin solutions at different pH values from 5.1 to 8.5 and zeta
potentials from 0 to−50mV vs. protein volume fraction. The data points are extracted from ref. 51. The line is regressed with eqn (22). The dotted
line is a linear fit for comparison purposes only. (c) Viscosity of 125 mg per ml mAb1 in 30 mM histidine buffer at pH 6.0 vs. the square root of
additive or salt concentrations. Data points are extracted from ref. 56, and the lines are regressed with eqn (31). The protein concentration data
were converted to c1/2 for the data-fitting purpose required by eqn (31). (d) Viscosity of 125mg permlmAb1 in 30mMhistidine buffer at pH 6.0 vs.
the square root of additive or salt concentrations. Data points are extracted from ref. 56, and the lines are regressed with eqn (31). The protein
concentration data were converted to c1/2 for the data-fitting purpose required by eqn (31).

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 49374–49387 | 49381
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generated with eqn (7) and expressed in solid lines. As one can
see, the predicted curves match perfectly with experimental
data. The viscosities decrease with temperature: higher
temperatures lead to lower viscosities. Such a wide volume
fraction range does not show any linear regions, though in the
very low volume fraction region, it is hard to tell if that is linear.
Many articles claim that a linear relationship exists between the
viscosity and the volume fractions at extremely low volume
fractions. Fig. 5(b) shows the viscosities of two globular protein
solutions, bovine serum albumin (BSA) and human serum
albumin (HSA), against protein volume fractions below 0.008,
i.e., very diluted solutions. The viscosities linearly increase with
the volume fraction below 0.006. The viscosity data points
contain the samples when the pH changes from 5.1 to 8.5 and
the zeta potential changes from almost zero to −50 mV.51 These
data indicate that pH and zeta potential do not impact the
viscosities in such a low volume fraction region. As explained in
the previous section, the viscosities calculated with eqn (22) and
presented in Fig. 2 show the linear relationship at low volume
fractions, and the viscosities would dramatically increase at
higher volume fractions close to the maximum packing frac-
tion, fm. The zeta potential and charge density terms in eqn (9),
zeme0
rdq

, only become important at high volume fractions, where

overlapping between electric double layers occurs, and the
electrostatic interactions become comparable to the crowding
effect caused by the high volume fractions. Otherwise, the
viscosities would be solely dominated by the volume fraction
term, and we would not see that viscosities vary with zeta
potential, pH, salts, etc., the parameters related to the charge
properties of protein molecules.

For the purpose of evaluating our equations with other
protein systems, we plot the viscosity against the protein
volume fraction of recombinant human albumin (rAlbumin)
solution measured with a micro-viscometer/rheometer in
Fig. 6(a). Within a relatively wide concentration range from 0 to
Fig. 6 Viscosities of several protein solutions are fitted with the equations
UBQ represents ubiquitin, GB3 is the third IgG-binding domain of pro
recombinant albumin solution is plotted against the protein volume fracti
eqn (22). (b) The viscosity of several proteins solutions is plotted against t
the lines are regressed with eqn (22).

49382 | RSC Adv., 2025, 15, 49374–49387
35% by volume, our equation ts the data very well. The
viscosity dramatically increases at a protein volume fraction of
around 30%, implying that the system becomes very crowded
and does not have much free volume for protein molecules to
move around in. Therefore, a huge shear resistance, i.e., a larger
viscosity, is observed in higher volume fractions. Fig. 6(b) shows
the viscosity against the protein volume fraction calculated with
the atomistic molecular dynamics simulation method for
ubiquitin (UBQ), the third IgG-binding domain of protein G
(GB3), and hen egg white lysozyme (LYZ). A cluster model is
used to describe the protein structures in the solution, and the
viscosity is calculated from the pressure tensor uctuations.57

The data points are imported from the gure of the viscosity vs.
the protein volume fraction via the WebPlotDigitizer soware.
Amazingly, the tting lines regressed with eqn (22) are consis-
tent with the calculated values, implying that their method
really works. Of course, as stated in the original article,57 their
calculation method is calibrated with real systems and the data
are reliable.

Viscosity was found to decrease with the addition of anions56

but increase with the addition of cations,55 which can be easily

explained with eqn (9). With anions, the term
zeme0
rdq

becomes

negative and the term

"�
fm

f

�1=3

� zeme0
rdq

#�2
becomes more

positive. The viscosity becomes much smaller due to the power

of −2. In contrast, with cations, the term
zeme0
rdq

remains posi-

tive, and the term

"�
fm

f

�1=3

� zeme0
rdq

#�2
becomes larger,

leading to higher viscosities. These trends are demonstrated in
Fig. 4 as well. The lowest viscosity occurs at the point where the
charge density is zero, neither positive nor negative. The pH,
similar to salt, impacts the viscosity as it changes the charge
density. In the literature, the viscosity of protein solutions is
derived in this article. The data points are extracted from the literature.
tein G, and LYZ is the hen egg white lysozyme. (a) The viscosity of
on, the data points are extracted from ref. 58. The line is regressed with
he protein volume fractions. The data points are taken from ref. 57, and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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either independent of pH, or it increases initially and then
decreases, or it decreases initially and then increases.19,51 All of
these phenomena are dependent on the intrinsic charges of
protein molecules, and the added salts and adjusted pH may
neutralize, intensify, or reduce the intrinsic charge properties.
Fig. 5(c) shows the viscosities of mAb1 solutions against the
square root of the additive or salt concentrations in two cases:
one is added with urea and another is added with guanidine
hydrochloride. The data points are tted with eqn (31). Satis-
factory agreements are reached between the data points and
regression lines, implying that our equations reect the
underlying mechanisms of how viscosities vary with various
factors.

Viscosity can change dramatically with pH, as shown in the
literature.19 It can increase with pH initially, reach a peak, and
then decrease, or decrease rst, reach a minimum and then
increase, or be independent of pH. Fig. 5(d) shows the viscosi-
ties of bovine serum albumin (BSA) with and without NaCl at
different pH values extracted from ref. 19. The viscosities show
a strong pH dependence with a minimum point. The regressed
lines generated with eqn (9) are also shown in the gure, by
assuming that pH would simply change the charge density dq
with a shi of the isoelectric point value. Again, good agree-
ments with experimental data further demonstrate that our
theory and the derived equations are sound and can explain
many rich viscosity phenomena observed in protein solutions
experimentally. This non-monotonicity has recently been
explored using Metropolis Monte Carlo simulations by
assuming that a critical charge density is required for the
electrostatically driven adsorption–desorption process.59 This
charge-regulation effect should be universal across a wide range
of protein structures, based on the electrical double-layer
theory.60 Assuming different relationships between pH and dq,
wemay use the same equation to t the experimental data of the
other two scenarios in ref. 19.

The viscosity of DNA solutions is found to increase with the
volume fraction of DNA,61 similar to protein solutions. Fig. 7(a)
Fig. 7 Viscosities of DNA solutions are fitted with the equations derived
viscosity of salmon testes double-stranded DNAwater solution at 25 °C is
from ref. 66. The line is regressedwith eqn (22). (b) The viscosity of genom
data points are taken from ref. 62 and the lines are regressed with eqn (

© 2025 The Author(s). Published by the Royal Society of Chemistry
shows the viscosity of salmon testes double-stranded DNA
solutions plotted against the DNA volume fraction. The density
of DNA is assumed to be 1 g ml−1 when converting the
concentrations from mg ml−1 to the volume fraction. The trend
between the viscosity and the DNA concentrations is very
similar to that of proteins. Initially, the impact of the volume
fraction on the viscosity is small, but becomes dominant when
the volume fraction is higher. A dramatic increase in viscosity is
observed with high volume fractions. In the response to
temperature, a melting point where the double-stranded DNA
transitions to the single-stranded DNA is expected. Since the
concentration of DNA is doubled aer this transition, higher
viscosity is anticipated.62 Based on eqn (7), we may write the
viscosity resulting from the single-stranded DNA, hss, as follows:

hss ¼
f ð2pmmkBTÞ1=2

2DE

�
64f

pArð1� 2fÞ
��2=3

"�
fm

2f

�1=3

� zeme0
rdq

#�2

Vfm
�2=3exp

�
E0

kBT

�
(32)

¼ A

�
64f

pArð1� 2fÞ
��2=3"�

fm

2f

�1=3

� zeme0
rdq

#�2

exp

�
E0

kBT

�
(33)

where A is a constant. Note that the parameter f is changed to
2f as the double-stranded DNA changes to single-stranded DNA
aer the melting. The viscosity of these DNA systems will be
a mixture of these two types of DNA, plus the dispersing
medium. If the percentage of the double-stranded DNA is p,
then that of the single-stranded DNA should be 1 − p. So the
viscosity of the DNA solutions may be expressed as follows:

hDNA =phds + (1 − p)hss + hextra (34)

where hds is the viscosity of the double-stranded DNA, and can
be expressed with eqn (7). hextra is the viscosity caused by the
tertiary effects among the double-stranded DNA, single-
in this article. The data points are extracted from the literature. (a) The
plotted against the DNA volume fraction. The data points are extracted
ic calf-thymus DNAwater solutions is plotted against temperature. The
34).
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stranded DNA, and the dispersing medium. As shown earlier,
for binary systems containing only one dispersed entity and one
dispersing medium, hextra is assumed to be hm, the viscosity of
the medium (see eqn (22)). The parameter p is temperature
dependent, and can be expressed as shown below based on the
thermodynamics of DNA melting and the logistic function:62–64

p ¼ 1

1þ exp½aðT � TmÞ� (35)

where a is a constant dependent on the concentration, and Tm is
the melting point, i.e., the temperature at which the double-
stranded DNA transitions to single-stranded DNA. Fig. 7(b)
shows the viscosity of calf-thymus DNA solutions at two
concentrations, 4 and 6 mg ml−1, against the temperature. In
both concentrations, a sudden increase of viscosity is observed
at the temperature about 330 K, implying a melting of the
double-stranded DNA happens. The solid lines are tted with
eqn (34). Amazing agreements between the experimental data
and ttings are achieved using our equation. Sensing viruses by
detecting the viscosity/mechanical tension changes aer viruses
changes from double-strand to a single-strand structures is
proposed,65 which should be a very good tool in the future.

We select several examples to demonstrate how our equations
can be used to t the experimental data and predict the viscosities
of protein and nucleic acid solutions. These equations should be
applicable to a wide range of protein solutions, including globular
proteins, brous proteins, and protein aggregates. In addition to
examples of how viscosities vary with temperature, protein or
nucleic acid volume fraction, the ion concentrations, and pH, they
can also be used to predict how the viscosities would change with
zeta potential, charge density, and other factors listed in our
equations. Readers are encouraged to perform additional regres-
sions based on their interests using our equations.
4. Discussion

The folded structures of proteins and nucleic acids can be
described using three key parameters: radius, aspect ratio, and
maximum packing fraction. The radius represents the size of
the gyration, while the aspect ratio indicates how elongated the
protein molecules are compared to their base diameter. The
maximum packing fraction measures the tightness with which
protein molecules can be packed in a 3D space. By using our
equations, we can t experimental data and extract this infor-
mation to better characterize folded protein structures.

The viscosity equations derived in this article are based on
Eyring's rate process theory and free-volume concept. The esti-
mation of the free volume of a protein or nucleic acid molecule
is based on the same approach as previous applications in pure
liquids, colloidal suspensions, and polymeric systems. The
distinct nature of protein and nucleic acid molecules is that
their molecular sizes can change substantially with the volume
fractions, pH, and salt concentrations, etc. In addition, the
electrostatic interactions become prominent and cannot be
neglected in most cases. Secondly, the protein and nucleic acid
molecules are not spherical, and the aspect ratio parameter, Ar,
must be taken into account in modelling the viscosities. The
49384 | RSC Adv., 2025, 15, 49374–49387
idea behind the self-diffusion process, which is restricted by
crowders and responsible for the viscosity, is consistent with
the free-volume concept in general.67

A unied theory describing the viscosities of protein and
nucleic acid solutions, based on our previous theoretical treat-
ments of pure liquids, colloidal suspensions, and polymeric
systems, is provided with a few tweaks and expansions. We also
provide a set of numerical examples to demonstrate the applica-
bility of our equations. More examples could be tested with the
equations once the experimental conditions and parameters are
known. Please note that the theoretical treatments presented in
this article are not bound to any specic protein or nucleic acid.
The theory should be universally applicable. Our equations
contain all important variables, like shear stress, shear rate,
temperature, volume fraction, zeta potential, charge density, salt
charge, and concentrations, etc. As demonstrated in our previous
work, these equations based on Eyring's rate process theory and
free-volume concept may provide much better ts with experi-
mental data in comparison with other models, like Einstein's
viscosity equation, Mooney's equation, Krieger–Dougherty's equa-
tion.29 This kind of comparison is thus not repeated in this article.

When visualizing our equations graphically, it is essential to
acknowledge that certain parameters within these equations are
oen assumed to be independent of each other, even though
this may not accurately reect real-world conditions. Further-
more, the graphs themselves might be mathematically accurate
but fail to make physical sense. For instance, when the aspect
ratio of molecules shis from low to high, it is logical that the
volume fraction should also change in response, yet we typically
maintain the volume fraction as a separate variable. This
highlights the importance of exercising caution when drawing
conclusions solely based on these graphical representations.

Another important point is that the radius of the protein and
nucleic acid molecules is assumed to be a constant when we
evaluate other parameters, which may not be true for nucleic
acids due to the strong base-pair interactions and strong elec-
trostatic interactions. This is an unavoidable assumption in the
evaluation.
5. Conclusions

A hypothesis that the molecules of proteins and nucleic acids
would behave like reptation tubes is successfully employed in
this article to formulate a unied theory of viscosity. A set of
new equations are therefore derived based on previous work
using Eyring's rate process theory and free-volume concept.
This approach is the same in studies on pure liquids, colloidal
suspensions, and polymeric systems, but with three modica-
tions to address the unique characteristics of protein and
nucleic acid solutions: (1) protein molecules are treated as
bers rather than spherical particles, allowing for consideration
of their aspect ratio. (2) Electrostatic interactions are empha-
sized in the model. (3) The size variations of protein and nucleic
acid molecules with various conditions are taken into account,
including non-constant radii. The derived equations can t the
experimental viscosity data across a range of parameters,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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including temperature, volume fraction, zeta potential, pH, and
salt concentrations. The main ndings are summarized below:

(1) At low volume fractions, a linear relationship is observed
between viscosity and volume fraction, whereas at higher
volumes, the viscosity prole exhibits a dramatic increase as the
volume fraction reaches its maximum value. This packing-
related parameter and aspect ratio can be used to characterize
protein shapes at the molecular level. Both proteins and nucleic
acids behave very similarly in this regard.

(2) The effects of pH and added salts or additives may change
the molecules' intrinsic charging nature, depending on their
type and concentration. These substances can either neutralize,
intensify, or reduce the charging properties of proteins and
nucleic acids, which in turn affects their viscosity in a different
manner. Our equations can accurately handle these complex
scenarios and provide reliable predictions that align with
experimental results, especially the viscosity dip with pH, and
the non-linearity with the square root of the salt concentrations.

(3) Our equations can reasonably describe the temperature
dependence of viscosity without using the empirical Arrhenius
equation. In particular, it can t the viscosity data of the double-
stranded DNA solutions before and aer melting into the
single-stranded DNA chains.

(4) All these predictions can come from a single-source
equation, providing a unied approach to understand the
viscosity of proteins and nucleic acids.

Our research provides insight into the mechanisms governing
protein and nucleic acid viscosities, which could lead to the
creation of a predictive model for the viscosities of therapeutic
formulations under diverse conditions, including low tempera-
tures, high volumes, and limited quantities. The derived equa-
tions would be particularly valuable when developing expensive
proteins with short supply chains and tight deadlines. By exam-
ining viscosity data at room temperature and diluted conditions,
we can rene therapeutic formulations to achieve optimal
viscosities at preferred temperatures, pH levels, salt concentra-
tions, and desired concentrations. This approach could enable
the creation of various formulations without the need for addi-
tional experimental work, thereby signicantly accelerating the
development process and saving time and effort.
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