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chine learning integrated with TD-
DFT descriptors and SHAP analysis for predicting
the maximum absorption wavelength of azo dyes

Yonghao Fang, †a Changqing Cao,†b Dong Yin,c Gang Luo,a Yanmin Chengd

and Qing Wang*a

The maximum absorption wavelength (lmax) represents a key property determining the application

performance of azo dyes, and accurate prediction of lmax is of paramount importance for accelerating

the rational design of novel dye molecules. Existing prediction models exhibit significant limitations in

terms of prediction accuracy and chemical interpretability. In this work, we propose an innovative

prediction framework for lmax of azo dyes by integrating Gaussian Process Regression (GPR) with key

molecular descriptors derived from time-dependent density functional theory (TD-DFT) calculations.

Results indicate that the coefficient of determination (R2) for leave-one-out cross-validation (LOOCV)

was 0.83, and that for the independent test set was 0.74. According to SHAP analysis, the S0 / S1
transition energy exhibits a negative correlation with lmax (maximum absorption wavelength), while the

concurrent elevation of HOMO and LUMO energies induces a red-shift in lmax. Notably, the number of

sulfur atoms in the R substituent shows a positive correlation with lmax. Furthermore, a high-throughput

screening strategy was employed to identify 21 azo molecules with relatively large lmax values from 14

376 virtual samples. The predicted lmax of these identified molecules is expected to undergo a red-shift

relative to the baseline maximum lmax of 650 nm in the original dataset. This study presents

a straightforward approach for the discovery of azo dyes with extended lmax, providing a practical

reference for the targeted design of such functional materials.
1. Introduction

Azo dyes constitute a class of organic molecules dened by the
presence of one or more azo groups (–N]N–), which link two
substituent moieties (denoted as R and R0, typically aryl or alkyl
groups). They are classied into monoazo and polyazo types
based on the number of azo groups within their molecular
structure.1 Given their remarkable thermal stability and struc-
tural tunability, azo dyes have also achieved signicant
advancements in various elds such as photothermal agents,2

liquid crystal materials,3–5 nonlinear optical materials,6–9 light-
emitting diodes,10 and dye-sensitized solar cells,11,12 where
they serve as photovoltaic absorbers. However, the limited light-
harvesting capability in near-infrared (NIR) regions remains
a critical bottleneck for azo dyes, severely restricting their utility
in advanced optoelectronic applications. Take Disperse Red 1
(DR1)—a widely studied commercial azo dye commonly used in
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devices like dye-sensitized solar cells (DSSCs) and nonlinear
optical (NLO) materials—as an example: its maximum absorp-
tion wavelength peaks at only 479 nm, far below the NIR range
required for high-efficiency energy conversion systems. This
spectral limitation directly undermines its performance in
devices demanding strong NIR responses. Consequently,
developing azo-based compounds with both thermal stability
and enhanced NIR light absorption remains an urgent chal-
lenge in contemporary dye design. The traditional development
of new disperse dyes relies on a “synthesis-testing-optimiza-
tion” cycle, which entails a screening period of 6 to 18 months
and faces challenges in precisely regulating color shade.13 With
the progress of computational chemistry, time-dependent
density functional theory (TD-DFT) has emerged as an effec-
tive tool for predicting dye spectra. For instance, Alshaye et al.14

conrmed through calculations on quinolinone-based dyes that
electron-donating groups (EDGs) can induce a red shi. Addi-
tionally, Jacquemin et al. (2006)15 employed time-dependent
density functional theory (TD-DFT) to model the molecular
structures and optical spectra of thioindigo dyes and their
derivatives. Muhammad Usman Khan et al. (2024)16 investi-
gated seven novel benzodithiophene (BDT)-based donor mole-
cules (D1–D7) with the core structure of benzo[1,2-b:4,5-b0]
dithiophene via density functional theory (DFT) and time-
RSC Adv., 2025, 15, 50065–50075 | 50065
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dependent density functional theory (TD-DFT) methods. To
explore the geometric, photovoltaic, and optoelectronic prop-
erties of these newly designed sensitizers (D1–D7), the CAM-
B3LYP/6-31G(d,p) method was employed for computational
analysis. Their ndings demonstrated the potential of mole-
cules designed through DFT and TD-DFT calculations in
photovoltaic applications. Nora Hamad Al-Shaalan et al.
(2025)17 explored donor–acceptor (D–A) uorescent dyes and
nonlinear optical (NLO) phosphate systems based on
peruorobisphenol (PFBP) using DFT calculations. The analysis
conrmed strong D–A interactions and charge delocalization,
highlighting the potential of these materials in applications
such as electro-optical modulation, harmonic generation, and
ultrafast optical switching. This further illustrates the utility of
DFT calculations in the discovery of nonlinear optical materials.

Currently, the research on time-dependent density func-
tional theory (TD-DFT) is signicantly limited by its tendency to
encounter high computational cost in the context of large-scale
calculations.18 Recently, the Sarkar group attempt to simulate
the interaction between polyester and dyes using molecular
dynamics, but the computational cost is excessively high,
making it difficult to promote.19,20 Data-centric methodologies
have emerged as the fourth paradigm in materials science, with
machine learning (ML) emerging as a transformative design
approach celebrated for its efficiency, precision, and rapidity. Z.
Shaq et al. (2025)21 proposed a strategy for designing novel
monomeric substances with numerous terminal electron-
withdrawing groups, and screened out 30 small molecule
acceptors (SMAs) with the highest power conversion efficiency
(PCE) values via a trained machine learning model. T. Mubashir
et al. (2024)22 established a database containing 700 organic
semiconductors and employedmachine learning (ML) to design
a large number of organic molecules, thereby providing an
efficient and systematic framework for the design of organic
semiconductor (OSC) polymers. A. Mahmood et al. (2024)23

generated an extensive polymer database through an automated
method implemented in RDKit, and identied a large number
of potential candidate materials for polymer solar cells using
machine learning (ML). Machine learning has been employed
for predicting the maximum absorption wavelength (lmax) of
azo dyes. In their 2021 study, Ksenofontov predicted the posi-
tion of the maximum absorption band of BODIPY derivatives
and synthesized 26 external datasets to validate the feasibility of
their proposed model.24 In their 2020 study, Ye and colleagues
leveraged aggregation-based descriptors combined with
machine learning algorithms to forecast the uorescence
emission maxima of organic uorescent molecules.25 In their
2021 study, Ju and colleagues expanded this framework by
integrating structural and solvation-related descriptors to
model emission wavelengths and quantum yields for over 3000
distinct organic uorophores.26 Their approach achieved
computational precision comparable to TD-DFT calculations,
demonstrating the utility of descriptor-based machine learning
in reproducing quantum chemical accuracy for large-scale
material property prediction. Furthermore, machine learning
coupled with DFT calculations has demonstrated substantial
potential in the discovery of organic molecules with tailored
50066 | RSC Adv., 2025, 15, 50065–50075
excitation energies. Greenman et al. (2022)27 integrated time-
dependent density functional theory (TD-DFT) with directed
message-passing neural networks (D-MPNN) to predict the
molecular absorption peaks in solutions. Nguyen et al. (2025)28

proposed an efficient graph neural network (GNN)-based
approach for predicting molecular optical properties, which
combines molecular graph representations with molecular
ngerprints. This integration enables the model to capture
detailed structural and electronic features as well as solvent
effects. Although the aforementioned studies have enhanced
the interpretability of conventional machine learning models,
they still lack an analysis of the impact of model training
features on the training outcomes. Deep learning, in particular,
has provided substantial support for spectral prediction tasks of
dyes with large-scale datasets,29 but single models lack the
physical interpretability of quantum chemical calculation
predictions, resulting in suboptimal prediction perfor-
mance.30,31 Therefore, it is imperative to develop a calculation-
experiment validation framework adapted to actual environ-
ments, so as to achieve accurate prediction from molecular
structure to applied color.

In this work, a novel strategy integrating computational
simulation and experimental validation is proposed.32–34 We
collected the lmax values of a total of 197 azo molecules in
different solvents—including those originally available in the
laboratory and others retrieved from publicly accessible litera-
ture—to construct the dataset. In the experiment, different
colors of azo-structured disperse dyes were selected. These
samples exhibited a maximum absorption wavelength (lmax)
range of 380–650 nm, essentially covering the visible light
region. This ensures that the computational and experimental
samples form a systematic system with sufficient representa-
tiveness. To overcome the limitation of high computational cost
in time-dependent density functional theory (TD-DFT) calcula-
tions, the Gaussian Process Regression (GPR) algorithm in
machine learning is introduced to quantify the contribution
weights of substituent descriptors to color.35,36 To address the
lack of chemical interpretability in traditional machine learning
(ML), we incorporated features such as the S0 to S1 transition
energy and HOMO energy—obtained via time-dependent
density functional theory (TD-DFT) calculations—into the
training features of the model. When implementing leave-one-
out cross-validation (LOOCV), 5-fold, and 10-fold cross-
validation protocols, the determination coefficients (R2) were
calculated as 0.837, 0.783, and 0.832, respectively. Corre-
sponding root mean square error (RMSE) values for these vali-
dation methods were 18.9, 20.734, and 21.7. These results
indicate that the model exhibits good predictive performance.
Unlike other machine learning models that primarily target the
prediction of maximum absorption wavelength (lmax), this
study uniquely integrates SHAP (Shapley Additive Explanations)
analysis to decode the correlation between training features and
corresponding lmax values. This approach enables the targeted
design of dye molecules by establishing interpretable structure–
property relationships, distinguishing it from conventional
predictive models focused solely on numerical estimation.
Ultimately, via high-throughput computational screening, 21
© 2025 The Author(s). Published by the Royal Society of Chemistry
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disperse dye structures with red-shi values exceeding those of
the known dataset were identied. These molecules hold
promise as nonlinear optical materials.
2. Methods
2.1. GPR predicts substituent-color relationships

Density Functional Theory (DFT) exhibits relatively high accu-
racy in calculating the maximum ultraviolet absorption wave-
length of dye molecules; however, it demands extremely high
computational resources. This is especially true when dealing
with large molecular structures, which require stronger
computing power and longer calculation time. To simplify this
process, this study proposes to predict the color of dye mole-
cules based on Gaussian Process Regression (GPR). GPR is
a non-parametric Bayesian technique for solving regression
problems. Its core idea is to perform probabilistic modeling on
the relationship between input data and target values, providing
predicted values along with corresponding uncertainty esti-
mates. A Gaussian process is characterized by two feature
functions: the mean function m(x) and the covariance function
k(x, x0).

f(x) ∼ GP(m(x), k(x, x0)) (1)

In eqn (1),m(x) denotes the mean function, representing the
predicted value of the function f(x), which is generally assumed
to have a zero mean. k(x, x0) describes the correlation between
any two points x and x0. All variables conforming to a Gaussian
distribution are characterized as Gaussian process regression.
The establishment of GPR involves four steps. The rst stage is
to establish the prior distribution of the training data, and the
Gaussian process assumes that this prior distribution is
consistent with the target values of the data.

y ∼ N(m(x), K(X, X)) (2)

In this case, consider a dataset {X, y}, where X = {x1, x2, .,
xn} represents the input points and y = {y1,y2,.,yn} denotes the
associated target values. Both X and y satisfy eqn (2), in which
m(x) is the mean function, generally assumed to be a zero
vector, and K(X, X) represents the kernel matrix with parameters
k(xi, xj) describing the covariance between any two points xi and
xj. The second stage involves observational noise; in practice,
the observed values y typically include a noise component:

y = f(xi) + 3 (3)

3 ∼ Ν(0, s2) denotes independently and identically distrib-
uted Gaussian noise, representing the uncertainty of observa-
tions. The third stage involves formulating the joint
distribution. For a new test point x*, the joint distribution of its
associated predicted value f(x*) and the training target values y
is:"

y

fðx*Þ

#
� N

 "
mðXÞ
mðx*Þ

#
;

"
KðX;XÞ þ s2I KðX; x*Þ

Kðx*;XÞ Kðx*; x*Þ

#!
(4)
© 2025 The Author(s). Published by the Royal Society of Chemistry
X represents the known points, x* denotes the prediction
position, K(X, X) is the covariance between known points, K(X,
x*) stands for the covariance between known points and the
prediction point, and K(x*, x*) indicates the covariance between
prediction points. The fourth stage involves deriving the
conditional distribution from the joint distribution to obtain
the expected distribution of the test points:

f(x*)jX, y, x* ∼ N(m(x*), s2(x*) (5)

where the predicted mean value m(x*) is calculated by the
following formula:

m(x*) = K(x*, X)[K(X, X) + s2I]−1y (6)

where the predicted variance s2(x*) is calculated by the
following formula:

s2(x*) = K(x*, x*) − K(x*, X)[K(X, X) + s2I]−1$K(X, x*) (7)

In eqn (5) and (6) mentioned above, the expected mean value
characterizes the nal prediction result, while the predicted
variance represents the uncertainty of the prediction.

To establish the model in this study, it is necessary to
quantify the substituent effects of dye molecules, construct
a structure–activity relationship between substituent charac-
teristics and their maximum absorption wavelength (lmax),
realize rapid color prediction for substituent combinations, and
demonstrate the prediction reliability through condence
intervals. Firstly, the physicochemical descriptors of each
substituent need to be extracted: Hammett constants for elec-
tronic effects, van der Waals volume, etc. Secondly, the overall
molecular descriptors are obtained via Gaussian calculations,
including HOMO/LUMO energy levels and dipole moments. For
modeling with Gaussian Process Regression (GPR), the kernel
function (Matérn kernel) + noise (WhiteKernel) are set to
capture nonlinear relationships and quantify uncertainties. The
Matérn kernel served as the main component for modeling
smooth nonlinear correlations between input descriptors and
the target variable (lmax). A Matérn kernel (n = 3/2) was selected
over a squared exponential kernel (RBF) to balance the ability to
capture nonlinear relationships and resistance to overtting. It
was initialized with two key hyperparameters: a signal variance
of 1.0 (reecting the overall variability of the target variable,
lmax) and a length scale of 1.0 (regulating the sensitivity of
predictions to changes in input descriptors). These parameters
were not xed; instead, they were optimized via maximum
likelihood estimation (MLE) to maximize the marginal likeli-
hood of the training data—a critical step in GPR that balances
model t and complexity to avoid overtting. To account for
irreducible noise in the dataset (e.g., experimental measure-
ment errors and unmodeled minor descriptor effects), a White-
Kernel (white noise kernel) was integrated into themodel. It was
dened by a noise level parameter, initialized to 1 × 10−5 (a
small value to prevent initial overestimation of noise), and this
parameter was co-optimized alongside the Matérn kernel's
signal variance and length scale to ensure accurate noise
quantication. Kernel parameter optimization relied on the L-
RSC Adv., 2025, 15, 50065–50075 | 50067
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BFGS optimizer (Limited-memory Broyden–Fletcher–Goldfarb–
Shanno), the default solver for scikit-learn's GPR module. This
optimizer was chosen for its efficiency in optimizing smooth,
gradient-based objective functions. Strict convergence criteria
were imposed: a maximum of 1000 iterations to allow sufficient
exploration of the parameter space, and a function value toler-
ance of 1 × 10−5 to terminate optimization once updates to the
marginal likelihood no longer yielded a signicant improve-
ment (dened as a relative change <1 × 10−5). Existing dye
molecular structures are selected as the training set, and Leave-
One-Out Cross-Validation (LOOCV) cross-validation is adopted.
For Leave-One-Out Cross-Validation (LOOCV)—adopted to
assess the model's generalization ability given the dataset
scale—each iteration excluded one dye molecule as the test
sample and trained the GPR model on the remaining samples.
Notably, the optimal kernel parameters (determined from the
grid search) were xed during all LOOCV iterations to avoid data
leakage and ensure an unbiased evaluation of predictive
stability. Ultimately, the SHAP methodology was employed to
rank feature importance, with all ndings visualized in subse-
quent sections through dedicated graphs. Python was employed
to conduct model training, hyperparameter optimization
(through grid search coupled with cross-validation), and inter-
pretability analysis. Comprehensive model validation necessi-
tates the use of diverse evaluation metrics. Signicantly, model
tting performance was quantied using three key metrics:
root-mean-square error (RMSE), determination coefficient (R2),
and mean relative error (MRE), as dened in eqn (8)–(10). These
metrics enabled a multi-faceted assessment of predictive accu-
racy, encompassing both absolute deviation (RMSE) and rela-
tive error (MRE), alongside goodness-of-t (R2).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
yei � ypi

�2vuut (8)

R2 ¼ 1�
PN
i¼1

�
yei � ypi

�2
PN
i¼1

ðyei � yeÞ2
(9)

MRE ¼ 1

N

XN
i¼1

����ypi � yei

yei

����� 100% (10)

Herein, yei and ypi designate the experimental and predicted
lmax values for individual azo dye molecules, respectively. The
symbols �ye correspond to the mean values of experimental and
predicted lmax across the entire dataset, whereas N denotes the
total sample size.
2.2. TD-DFT theoretical calculations

To validate the prediction accuracy of the Gaussian process
regression (GPR) model, we employed Time-Dependent Density
Functional Theory (TD-DFT) to calculate the maximum
absorption wavelength (lmax) of dye molecules. Initial molec-
ular structures of the dyes were built using Avogadro 1.2.0, an
open-source molecular modeling tool, while all electronic
50068 | RSC Adv., 2025, 15, 50065–50075
structure calculations—including geometric optimization and
TD-DFT spectral analysis—were carried out with the open-
source ORCA 5.0.3 package. The B3LYP hybrid functional,
characterized by its balanced description of electron exchange-
correlation and computational efficiency, has become a stan-
dard choice for dye molecule ground-state geometry optimiza-
tion and electronic structure calculation.37 The 6-31G(d,p) basis
set, which includes polarization functions on heavy atoms and
hydrogen atoms, can accurately capture the local electronic
effects of functional groups (e.g., azo groups, electron-donating/
accepting substituents) that dominate the color properties of
dyes, while avoiding excessive computational costs.38 For all
computations, we selected the B3LYP hybrid functional paired
with the 6-31G(d,p) basis set, which employs a spherical
harmonic basis set (the default conguration for this basis set
in ORCA 5.0.3). The SMD (Solvation Model Based on Density)
solvation model was used to replicate the N,N-di-
methylformamide (DMF)39 solvent environment. The con-
structed dye structures were submitted to ORCA 5.0.3 for
geometric optimization, where internal coordinates (z-matrix)
were adopted to enhance efficiency. Strict convergence criteria
were employed to ensure reliability: total energy convergence
set to 10−6 Hartree, electron density convergence at 10−4 e
Bohr−3, orbital gradient limits of 0.001 Hartree/Bohr
(maximum) and 0.0005 Hartree/Bohr (root-mean-square,
RMS), and nuclear force thresholds of 0.005 Hartree/Bohr
(maximum) and 0.003 Hartree/Bohr (RMS). These settings
aimed to secure the most stable conformations of the dye
molecules. In terms of integral parameters for both optimiza-
tion and spectral calculations, ORCA 5.0.3 was congured with
a Schwarz screening tolerance of 10−8 Hartree for Coulomb
integrals and electron density. Single-value decomposition
(SVD) settings followed the program's default precision
controls, while the exchange-correlation potential integration
utilized the “Grid5” option—ORCA's standard high-precision
grid—featuring 99 radial and 302 angular grid points per
shell, with a grid tolerance of 10−5. Integral quadrature relied
on the Lebedev–Laikov scheme and the program's pre-dened
grid weights, and no level shiing was applied to the empty
orbital diagonal elements of the Fockmatrix. Post-optimization,
we adjusted the calculation parameters to “%td nstates 10”
(ORCA's syntax for dening 10 excited states) to compute UV-
visible absorption spectra, maintaining consistency with the
integral and SVD settings used during optimization. This
workow yielded the UV-visible absorption spectra of each dye
molecule in DMF.40 All calculations—both optimization and
spectral analysis—were validated via frequency calculations to
conrm the absence of imaginary frequencies, thereby verifying
the stability of the results and the reliability of the optimized
conformations.

3. Result and discussion
3.1. Dataset construction and collection methodology

This dataset comprises 197 pure azo dye molecular entities,
with structural diversity meticulously designed based on the key
features governing the optical properties of azo dyes. It
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Pearson correlation matrix depicting inter-feature relation-
ships, with color intensity encoding the magnitude of correlation
coefficients.
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encompasses three subcategories classied by the number of
azo groups (–N]N–): monazo, diazo, and triazo/polyazo deriv-
atives. These dyes exhibit systematic variations in core struc-
tural parameters: conjugated chain length; substituent type and
substitution position, with substituents distributed at the ortho-
, meta-, and para-positions of the aromatic rings; and aromatic
skeletons (phenyl, naphthyl, and heterocyclic cores containing
N/O/S atoms such as pyridine or thiophene). The screened
dataset was randomly partitioned into training and test subsets
at a 4 : 1 ratio. Overall, 160 samples (80%) constituted the
training cohort for model development, parameter optimiza-
tion, and 5-fold cross-validation, while the remaining 37
samples (20%) served as an independent test set for evaluating
predictive performance. To further validate the generalizability
of the model, nine newly synthesized azo dyes from our labo-
ratory were incorporated into an extended validation cohort.
The lmax values of all samples range from 380 to 650 nm,
effectively covering the entire visible light spectrum.
3.2. Feature construction and transformation

Aer the structures of azo dyes were transformed to SMILES
format, RDkit-derived molecular objects yielded a total of 5188
structural descriptors.41 To mitigate the risk of overtting,
feature screening was conducted to enhance the model's
predictive performance. This study employed a two-stage
feature selection strategy, taking into account the high dimen-
sionality of original features. First, the variable autocorrelation
screening method was implemented using a threshold of 0.9 to
remove collinear features and mitigate potential redundancy.
Subsequently, Maximum Relevance and Minimum Redundancy
(MRMR) was integrated with GPR to determine the optimal
feature subset for model construction. Model performance was
evaluated using the determination coefficient (R2) and root-
mean-square error (RMSE), with these metrics serving as key
indicators of predictive accuracy.42,43 The determination coeffi-
cient (R2) and root-mean-square error (RMSE) for leave-one-out
cross-validation (LOOCV) are presented in Fig. 1.44 In the GPR
Fig. 1 LOOCV-derived RMSE and R2 during feature engineering. The
violet marker indicates the optimal R2/RMSE combination, with blue/
green lines representing RMSE/R2 trends.

© 2025 The Author(s). Published by the Royal Society of Chemistry
model, excessively high dimensionality will lead to low
computational efficiency, overtting, and kernel function
failure; excessively low dimensionality will result in undertting
due to information loss.45 To achieve a balance between feature
dimensionality and model performance, iterative validation
revealed that 12 features yielded optimal R2 and RMSE metrics.
As depicted in Fig. 2, Pearson correlation coefficients below 0.90
for all feature pairs indicate negligible collinearity between
selected descriptors. Table 1 summarizes the key molecular
descriptors curated through systematic feature engineering,
including both quantum chemical parameters derived from TD-
DFT calculations and topological indices characterizing
molecular conjugation.

3.3. Model selection

Selection of a suitable machine learning (ML) algorithm facili-
tates the accurate prediction of the lmax of azo dyes. In this
work, ve commonly used ML algorithms were employed,
including Gaussian Process Regression (GPR), Extreme
Gradient Boosting (XGBoost), Random Forest Regression (RFR),
Decision Tree Regression (DTR), and Support Vector Regression
with radial basis function kernel (SVR-RBF). Table 2 presents
various evaluation metrics of the regression models based on
different algorithms in the Leave-One-Out Cross-Validation
(LOOCV) framework. Our results demonstrate that the GPR
algorithm exhibits the highest coefficient of determination (R2)
value as well as the lowest root mean square error (RMSE) and
relative error, enabling it to achieve superior predictive perfor-
mance for the lmax of azo dyes.

3.4. Tuning of hyper-parameters

Hyperparameter tuning constitutes a key procedure in machine
learning. With the aim of further boosting the model's effi-
ciency and performance, a grid search approach was utilized to
identify the optimal hyperparameters for GPR. This method
centered on hyperparameters such as kernel function type and
RSC Adv., 2025, 15, 50065–50075 | 50069
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Table 1 Selected critical descriptors from two-stage feature engineering

Feature Description

R_F[C–N] Frequency of C–N within topological frameworks
R_nS Sulfur atom count
R_nO Oxygen atoms count
R_NaasC Count of aasC-type atoms46,47

R_piPC05 5th-order molecular multiple-path count
R_SM05_AEA (dm) 5th-order spectral moment derived from the dipole moment-weighted augmented edge adjacency matrix48

R_SM06_AEA (dm) 6th-order spectral moment derived from the dipole moment-weighted augmented edge adjacency matrix
R_TDDFT_E_S0S1 TD–DFT calculated S0 / S1 transition energy (eV)
R_TDDFT_E_HOMO TD–DFT calculated HOMO energy (eV)
R_TDDFT_E_LUMO TD–DFT calculated LUMO energy (eV)
R_TDDFT_E_S0S2 TD–DFT calculated S0 / S2 transition energy (eV, for multi – state coupling)
R_TDDFT_Solv_3 Solvent dielectric constant used in TD–DFT (for PCM model)

Table 2 Evaluation metrics of regression models with different algo-
rithms in LOOCVa

Algorithm model R2 RMSE MRE

GPR 0.837 18.9 0.043
XGBoost 0.823 23.42 0.047
RFR 0.809 25.28 0.051
SVR 0.638 39.81 0.099
DTR 0.773 31.64 0.052

a Note: the hyper-parameters of all algorithms were adopted as default
values prior to parameter optimization.
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noise standard deviation ratio. Following optimization, the RBF
kernel was selected as the kernel function, characterized by
a length scale of 1, an amplitude of 0.5, and a noise standard
deviation set at 0.03. The RMSE derived from LOOCV served as
the criterion throughout the hyperparameter optimization
process.
3.5. Evaluation of model performance

In the present study, RMSE, R2, and MRE were employed as
metrics to objectively assess model performance; specically,
superior performance is indicated by smaller RMSE and MRE
values coupled with a larger R2.49 Given the small dataset size,
LOOCV results offer a more objective evaluation of the model,
while 5-fold and 10-fold CV results act as supplementary
assessments. Fig. 3 depicts the experimental lmax values and
GPR-predicted results under LOOCV, test set, 5-fold CV, and 10-
fold CV scenarios. The dataset includes model performance
metrics across various cross-validation protocols to assess
prediction robustness.

In a study by Gopala Krishna and co-workers, QSPR models
were developed to model lmax for triphenylamine, phenothia-
zine, and indoline dye systems. The approach yielded test set R2

values of 0.606, 0.624, and 0.759 for the respective dye classes,
leveraging molecular descriptors to establish structure–activity
relationships. In contrast, the current research leverages a GPR
model for azo dye lmax prediction, yielding a test set R

2 of 0.736,
which stands as a favorable outcome. As depicted in Fig. 3(a),
the LOOCV set achieves R2 = 0.837, RMSE = 18.9, and MRE =
50070 | RSC Adv., 2025, 15, 50065–50075
0.043, presenting a relatively concentrated distribution of
prediction errors where the maximum absolute wavelength
difference is less than 15 nm. Analysis of the molecular struc-
tures in this set reveals that most molecules possess canonical
structural motifs of azo dyes, and such structures occupy a high
proportion in the training dataset. As depicted in Fig. 3(b), the
test set achieves R2 = 0.736, RMSE = 31.518, and MRE = 0.051,
the test set contains outlier data with substantial deviations,
where wavelength differences exceed 35 nm. Analysis of the
deviant dye molecular structures reveals the presence of
heterocycles in all such molecules. As depicted in Fig. 3(c), the
5-fold CV set achieves R2 = 0.783, RMSE = 20.734, and MRE =

0.043, exhibiting an error distribution between that of LOOCV
and the test set where the average absolute wavelength differ-
ence is 15.2 nm. Analysis of the molecular structures in this set
indicates that the structural differences between the training
and validation subsets are relatively small, resulting in good
model stability depicted in Fig. 3(d), the 10-fold CV set achieves
R2 = 0.832, RMSE = 21.7, and MRE = 0.049, having a relatively
compact error distribution where the maximum absolute
wavelength difference is 28 nm. Analysis of the molecular
structures in this set shows that the model's generalization
ability is close to that of LOOCV, further verifying the reliability
of the GPRmodel with a small dataset. Given the low prevalence
of molecules with analogous molecular structures in the
training dataset, accurately predicting lmax for these test set
compounds presents a substantial challenge. In contrast,
wavelength predictions for azo dyes with canonical structural
motifs align closely with the expected accuracy benchmarks, as
corroborated by the model's performance metric.

3.6. Model reliability analysis

To assess the reliability of the model predictions, uncertainty
quantication analysis was performed by leveraging the prob-
abilistic output characteristic of Gaussian Process Regression
(GPR). For samples in both the training and test sets, the 95%
condence intervals (corresponding to predicted values ±2
times the standard deviation) and prediction standard devia-
tions were calculated. The results demonstrate that the average
prediction standard deviation of the training set is 11.2 nm,
with 95% condence intervals generally less than ±25 nm. For
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Comparison of experimental lmax values against GPR-predicted results in (a) LOOCV, (b) independent test set, (c) 5-fold CV, and (d) 10-
fold CV frameworks.
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the test set, the average prediction standard deviation is 16 nm,
where azo dye molecules containing heterocyclic skeletons (e.g.,
pyridine derivatives) exhibit a signicant increase in prediction
standard deviation (average of 20.7 nm), which is directly
associated with the insufficient representation of such struc-
tures in the training set. Statistical methods were employed to
verify the signicance and stability of the model performance.
Bootstrap resampling (1000 iterations) was employed to calcu-
late the 95% condence intervals (CIs) of the coefficient of
determination (R2): R2= 0.837 for the training set (95% CI [0.80,
0.87]) and R2 = 0.736 for the test set (95% CI [0.68, 0.79]),
indicating the statistical stability of the model performance. A
paired t-test was conducted between the machine learning
predictions and TD-DFT calculated values on the test set,
yielding p = 0.25 (p > 0.05), with no signicant difference
observed between the two.

Collectively, the uncertainty quantication and statistical
validation results conrm that the GPR model constructed in
this study not only achieves practical-level numerical prediction
accuracy but also possesses statistical signicance and cate-
gorical generalization. It provides reliable theoretical guidance
for the prediction of spectral properties of azo dyes.
Fig. 4 SHAP value (impact on model output).
3.7. Model explanation

The SHAP (SHapley Additive exPlanations) framework was
utilized to interpret the descriptors and target variables within
the GPR model.50–52 As an additive feature attribution approach
grounded in cooperative game theory, SHAP allows for the
quantication of feature signicance and delivers both local
© 2025 The Author(s). Published by the Royal Society of Chemistry
and global model interpretations. In this model, each feature
acts as a “contributor,” where the SHAP value associated with
a feature in a given sample quanties its marginal contribution
to the target variable for that specic observation. Visualizing
SHAP values for all features across the dataset enables a clear
demonstration of each descriptor's relative importance to the
model's predictive logic, highlighting how individual features
inuence the target variable at both the global and local levels.

In the visualization results of Fig. 4, features are vertically
ordered in descending order of their impact on the prediction
target. Each data point corresponds to a sample in the model
RSC Adv., 2025, 15, 50065–50075 | 50071
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Fig. 5 jSHAP valuej(average impact on model output magnitude).
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training set, where the color intensity indicates the magnitude
of the feature value (with red representing higher values and
blue representing lower values). The horizontal axis represents
the distribution range of SHAP values, ranging from negative to
positive values from le to right. Fig. 5 depicts the compre-
hensive correlation landscape between predictor variables and
the target property, with feature importance quantied via the
mean absolute SHAP values. This metric serves as a proxy for
each feature's relative inuence: higher values denote stronger
associations with variations in the target variable.

The subsequent analysis focuses on the most impactful
descriptors identied from this ranking. Below, we dissect the
top-performing features, elucidating their structural or
Fig. 6 SHAP values for descriptors exerting substantial influence on the
R_TDDFT_E_LUMO; and (d) R_nS.

50072 | RSC Adv., 2025, 15, 50065–50075
physicochemical meanings and their mechanistic roles in gov-
erning the target property.

3.7.1. R_TDDFT_E_S0S1. R_TDDFT_E_S0S1 denotes the S0
to S1 transition energy calculated via time-dependent density
functional theory (TD-DFT) (eV). As revealed by the SHAP
univariate plot, among all molecular structural features
(Fig. 6(a)), the S0 to S1 transition energy exerts the most prom-
inent inuence on lmax and exhibits a negative correlation with
lmax This indicates that reducing the S0 to S1 transition energy is
conducive to the red-shi of lmax in azo molecules.

3.7.2. R_TDDFT_E_HOMO and R_TDDFT_E_LUMO.
R_TDDFT_E_HOMO represents the energy of the highest occu-
pied molecular orbital (HOMO) calculated calculated via density
functional theory (DFT) (eV), while R_TDDFT_E_LUMO denotes
the energy of the lowest unoccupied molecular orbital (LUMO)
also obtained through DFT calculations (eV). The SHAP values of
these two features are shown in Fig. 6(b) and (c). Both features
exhibit a positive correlation with lmax, with quantitative trends:
for R_TDDFT_E_HOMO, every 0.5 eV increase in energy corre-
lates with a 15 nm red-shi in lmax (95% CI: [12, 18] nm); for
R_TDDFT_E_LUMO, a 0.5 eV increase correlates with a 12 nm
red-shi (95% CI: [9, 15] nm) They synergistically inuence
electron transition characteristics by regulating the “orbital
energy gap (HOMO–LUMO)”. Specically, a higher HOMO energy
implies a lower binding energy of electrons in the highest occu-
pied orbital, making it easier for electrons to be excited from this
orbital. In contrast, a higher LUMO energy elevates the energy
level of the lowest unoccupied orbital, bringing it closer to that of
the HOMO. Together, these two effects ultimately narrow the
model, including: (a) R_TDDFT_E_S0S1; (b) R_TDDFT_E_HOMO; (c)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Maximum absorption wavelength under different methoda

Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

ML 651.04 651.73 651.92 652.1 652.59 652.67 652.83 653.16 653.39 653.52
TD-DFT 702.35 642.04 661.28 668.56 489.65 611.43 671.74 591.62 622.97 637.25

a Note: the unit of maximum absorption wavelength (lmax) is nm.
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electron transition energy gap between the ground state and the
excited state. Additionally, SHAP interaction analysis revealed
a nonlinear synergistic effect between R_TDDFT_E_HOMO and
R_TDDFT_E_LUMO: when HOMO energy > −5.0 eV and LUMO
energy > −1.0 eV, the combined SHAP contribution increased
exponentially, far exceeding the additive effect of individual
descriptors. This nonlinearity underscores the complex orbital-
interaction mechanisms in azo dye electron transitions, consis-
tent with theoretical frameworks in organic photochemistry. In
the dataset, among molecules that simultaneously satisfy
“HOMO energy > −5.0 eV” and “LUMO energy > −1.0 eV”, over
80% of the samples exhibit a lmax exceeding 500 nm. In sharp
contrast, for molecules with “HOMO energy < −5.5 eV” and
“LUMO energy < −1.5 eV”, only approximately 10% reach this
wavelength range. This result conrms that the synergistic
elevation of HOMO and LUMO energies can effectively narrow
the orbital energy gap, reduce the electron transition energy, and
thereby shi the lmax of azo dye molecules toward longer wave-
lengths (i.e., induce a red-shi).

3.7.3. R-nS. In this context, the number of sulfur atoms in
the R-substituent (R-nS) exerts the second most substantial
inuence on lmax. The SHAP univariate analysis (Fig. 6(d))
highlights that among all molecular descriptors, sulfur atom
stoichiometry exerts the most substantial inuence on the
target variable, exhibiting a pronounced positive correlation:
each additional sulfur atom correlates with a 20 nm red-shi in
lmax (95% condence interval: [15, 25] nm). Specically, 72
compounds in the dataset harbor sulfur atoms, of which 51
(71% of the total) display lmax values exceeding 500 nm.
Although molecules lacking sulfur atoms can occasionally
feature large lmax values, statistical analysis revealed this
scenario occurs in only 11.2% of cases. Moreover, SHAP inter-
action analysis between R-nS and R_TDDFT_E_HOMO revealed
a nonlinear interaction: when R-nS $ 2 and HOMO energy >
−5.0 eV, the combined SHAP contribution exhibited a super-
linear increase, demonstrating that sulfur atom incorporation
and HOMO energy elevation synergistically amplify the red-shi
effect beyond linear expectations. These ndings align with
experimental studies on sulfur-containing azo dyes, where
sulfur-induced conjugation and orbital modulation were iden-
tied as key red-shi mechanisms. Structural modication
studies indicate that introducing one or two sulfur atoms into
azo molecular frameworks facilitates a signicant red-shi in
lmax, consistent with the model's interpretive outcomes.

3.8. Model implementation and interpretive analysis

High-throughput screening is one of the key approaches for
implementing machine learning (ML) models. In this study,
high-throughput screening was performed on the collected
© 2025 The Author(s). Published by the Royal Society of Chemistry
molecular groups of azo dyes, yielding 14 376 virtual molecules.
Notably, 21 of these virtual samples showed a red-shi in their
predicted lmax (maximum absorption wavelength) compared to
the baseline maximum of 650 nm in the dataset. In previous
analogous studies, time-dependent density functional theory
(TD-DFT) has been employed to calculate the spectral properties
of azo dyes.53 The top ten virtual molecular structures were
selected for structural optimization; subsequently, their absorp-
tion spectra were calculated using time-dependent density
functional theory (TD-DFT) at the B3LYP/6-31G(d) level As shown
in Table 3, the obtained results were compared with those
derived from TD-DFT calculations and ML predictions. These
ndings indicate that predicting the lmax of dyemolecules via the
Gaussian process regression (GPR) algorithm is practically valu-
able for experimental researchers, and validate the model is
utility in guiding spectral property estimation. A critical analysis
of the lmax values between ML predictions and TD-DFT calcula-
tions in Table 3 reveals that the predicted results are in good
agreement with the calculated results for most molecules.
However, one specic azo dye molecule exhibits a signicant
deviation exceeding 150 nm. This substantial deviation is
attributed to the molecule's unique heterocyclic structure with
a highly extended conjugated system—such a structure has an
extremely low occurrence frequency in the original training
dataset. The prediction of the GPR model relies on structure–
property correlation patterns learned from the training data.
When confronted with such novel structures beyond the training
distribution, the model suffers from an inherent limitation in
extrapolation capability, leading to overestimation of the red-
shi effect and ultimately resulting in a signicant deviation.

Furthermore, to fully strengthen the conclusion's inuence,
future work will involve the synthesis of representative candi-
date molecules and experimental measurement of their
absorption spectra. Using machine learning (ML) techniques to
predict the lmax of novel azo molecules is a feasible approach.
This strategy enables prescreening of molecules with extended
lmax, thereby accelerating the material discovery process and
minimizing costs associated with TD-DFT calculations and
molecular synthesis. Azo dyes are a prominent subclass of
nonlinear optical (NLO) materials. High-quality NLO materials
must meet the criteria of red-shied maximum absorption,
larger dipole moments, and thermal stability. Absorption in the
low-energy spectral region (red region) is particularly benecial
for NLO materials, as it helps enhance their hyperpolarizability.
4. Conclusions

In this study, a machine learning (ML) model for predicting the
maximum absorption wavelength (lmax) of azo dyes was
RSC Adv., 2025, 15, 50065–50075 | 50073
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constructed based on Gaussian Process Regression (GPR)
combined with Time-Dependent Density Functional Theory
(TD-DFT) calculations. This model takes the molecular orbital
energies obtained from TD-DFT calculations and the polarity
parameters of the environment where the dye is located as input
features of the GPR model, which effectively enhances the
chemical interpretability of the model. Study reveals that the S0
to S1 transition energy exerts the most signicant inuence on
the maximum absorption wavelength (lmax), exhibiting a nega-
tive correlation. The synergistic elevation of HOMO and LUMO
orbital energies effectively induces a red-shi in lmax of azo dye
molecules, while the number of sulfur atoms in the functional
group makes a positive contribution to (lmax). Through high-
throughput screening of 14 376 virtual azo dye molecules
generated via structural derivation, we identied 21 compounds
with predicted lmax red-shied beyond the dataset's baseline
maximum. As a proof-of-concept, the top 10 candidates were
validated via TD-DFT calculations, and the results demon-
strated good agreement between ML-predicted and TD-DFT-
calculated lmax for 8 molecules These ndings highlight the
potential of the proposed ML-TDDFT framework to aid in the
screening of azo dye candidates and provide a proof-of-concept
for interpretable integrated ML-TDDFT modeling in optical
property prediction. It should be noted that the current study
has limitations, including themodest size of the dataset and the
lack of experimental validation for the identied virtual candi-
dates. Therefore, the framework requires further verication
through experimental synthesis and characterization of the
predicted compounds, as well as optimization with larger and
more diverse datasets to improve its robustness and generaliz-
ability for practical materials discovery applications.
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