

Cite this: *RSC Adv.*, 2025, **15**, 45524

A comprehensive review on the silane-acid reduction of alkenes in organic synthesis†

Bapurao B. Shingate

Target and diversity-oriented synthesis represents a versatile and efficient strategy for constructing structurally complex and privileged scaffolds from readily or commercially accessible starting materials. The combination of reagents indeed plays a pivotal role in organic synthesis, acting as chemical "tools" that enable specific reactions to occur and driving the creation of new molecules. Reagents facilitate organic transformations, including the controlling of reaction pathways and influencing the complex efficiency and selectivity of the synthesis process. This review highlights the combined use of triethylsilane and trifluoroacetic acid as a powerful system for the chemoselective and regioselective ionic hydrogenation of diverse alkenes. The transformation proceeds through protonation, followed by hydride transfer, affording valuable products with high selectivity. Furthermore, this review covers the reduction of heterocyclic skeletons to saturated compounds *via* the ionic hydrogenation method.

Received 19th September 2025
Accepted 3rd November 2025

DOI: 10.1039/d5ra07101a

rsc.li/rsc-advances

Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431 004, Maharashtra, India. E-mail: bbshingate_chamu@bamu.ac.in; bapushingate@gmail.com

† Dedicated to Late Dr Braja G. Hazra on the occasion of his death anniversary.

Bapurao B. Shingate

Bapurao B. Shingate, born in 1975 at Salagara (Divati), Dharashiv District of Maharashtra State, is a Full Professor of Organic Chemistry at the Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University (Dr BAMU), Chhatrapati Sambhajinagar, India. He earned his MSc degree from Dr BAMU (1999) and then joined for doctoral research at CSIR-National Chemical Laboratory, Pune, under the guidance of Dr Braja G. Hazra and earned a PhD degree in 2010 from Savitribai Phule Pune University, Pune. His PhD work focused on the stereoselective syntheses of steroid unnatural C(20R) aldehydes by ionic hydrogenation and their elaboration to naturally occurring 20-*epi* cholanic acid derivatives, in addition to stereoselective syntheses and ionic hydrogenation of steroid C-20 tertiary alcohols with aliphatic, vinylic, aromatic, 5- and 6-membered heterocyclic side chains. In 2008, he joined as an Assistant Professor at the Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar. His current research interests include the design and synthesis of bioactive compounds and drug analogues, development of new synthetic methodologies, multi-component reactions, heterocyclic synthesis and green chemistry. With more than 23 years of research and 17 years of teaching experience, Dr Shingate has supervised eight PhD scholars (Five of whom are

currently working) and more than 200 MSc dissertations. Dr Shingate has contributed significantly to more than 135 peer-reviewed publications (Citations: 5003, h-index: 40, i10 index: 108), in addition to 4 patents and 05 invited book chapters of high repute. Recently, he has edited a book on "Five Membered Bioactive N and O-Heterocycles" for IGI Global. His teaching expertise in various aspects of synthetic organic chemistry and research on bioactive compounds and drug analogues has been well recognized with a number of prestigious honors and awards from different academic & scientific bodies such as ICC-Dr S. M. L. Gupta Award (2014), ISCB Academic Scientist Award (2023), BENTHAM AMBASSADOR (2018–2025), GTEA-Best Chemistry Professor of the Year (2020), ISCB-Best Teacher Award (2018), Dr BAMU Research Professor Award (2017), Dr BAMU-Ideal Teacher Award (2014) and IUSSTF-Indo-US Research Fellowship Award (2013). Furthermore, he is a Fellow of the Maharashtra Academy of Sciences (2023) and the Indian Society of Chemists and Biologists (2024). Dr Shingate is highly enthusiastic about teaching synthetic organic chemistry and has delivered more than 100 lectures to post-graduate students in Maharashtra and India. He has also delivered more than 75 invited lectures at national and international conferences.

1. Introduction

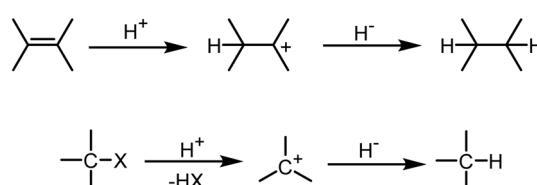
Organic synthesis has enormously contributed to improving the living standards and life expectancy of society by providing value-added materials like pharmaceuticals, polymers, textiles, dyes, agrochemicals and smart materials required for electronic device applications. Organic synthesis is considered a constructive science and has played a pivotal role in developing countless number of non-natural molecules. Organic synthesis includes the development of carbon–carbon bond(s) and carbon–heteroatom bond(s) and cleavage of these bonds.^{1–5}

The construction and cleavage of bonds using various strategies represent the central idea in organic chemistry, playing an excellent role in assembling the complex carbon frameworks. Thus, the development of different approaches has remained the main focus of synthetic organic chemistry research. The development of carbon–carbon bond is the most essential reaction due to its unique role in the formation of various classes of carbon frameworks.^{6–8} There are several significant carbon–carbon bond-forming reactions/rearrangements, and organometallic reagents have been developed and studied in detail for their applications during the current and last centuries. Furthermore, organic functional group transformations, such as oxidation and reduction, are the key steps in the synthesis of natural products, drugs and complex molecules.^{9–11}

Hydrogenation has become a significant process in synthetic organic chemistry.^{12,13} The successful synthesis of many new compounds often relies on the ability to achieve the selective reduction of a single unsaturated group within a molecule while leaving other functionalities unaffected. The selection of an appropriate hydrogenating system for targeted hydrogenation requires an understanding of the mechanism by which this system operates, and this selection relies on the behavior of the unsaturated group that interacts with the hydrogenating system.

In organic synthesis, reagents play a vital role in facilitating chemical transformations and enabling the conversion of starting materials into the desired products. They can be classified according to their functions, such as oxidizing agents, reducing agents, or those employed in specific named reactions.^{14–17} Trifluoroacetic acid (TFA) is widely used in organic synthesis as a catalyst, reagent and solvent. Several synthetic organic transformations, including rearrangements, condensations, oxidations, reductions, hydroarylations, trifluoromethylations, and functional group deprotections, have been performed using trifluoroacetic acid.^{18,19}

Organosilanes interact with various unsaturated carbon–carbon and carbon–heteroatom bonds through the addition reaction of hydrogen and silicon atoms, most probably in hydrosilylation, and they have been employed in organic synthesis.²⁰ The Si–H bond exhibits lower ionic character and shows stability in the presence of water; therefore, hydrosilylation reactions are conducted using transition metal catalysts.²¹ These compounds are comparatively less toxic, making their use potentially environmentally benign.


Recent developments have highlighted the use of sustainable and bench-stable reductants, particularly polymethylhydrosiloxane (PMHS), which offers practical and environmentally benign alternatives to conventional hydrosilanes. PMHS has been extensively utilized as a mild and efficient reducing agent in a wide range of functional group transformations, highlighting its importance in modern synthetic chemistry.^{22–24}

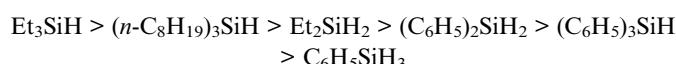
The scope of silane reductions has further expanded through enantioselective hydrosilylation, where chiral metal complexes enable asymmetric reductions of carbonyl and imine substrates to yield optically active alcohols and amines.²⁵ Furthermore, several reports have demonstrated the versatility of silanes in the reduction of diverse functional groups.^{26–28} Over the past decades, a wide range of transition metal catalysts, based on platinum, rhodium, cobalt, iron, nickel, and copper, have been developed to mediate hydrosilylation and related silane reduction reactions of olefins with high activity and selectivity.^{29,30}

Triethylsilane (TES) is a versatile reducing agent with broad applications across diverse substrates. Its unique properties highlight its significance in modern synthetic chemistry, particularly in chemo- and stereo-selective synthesis of complex molecular frameworks.^{31–33}

Ionic hydrogenation relies on the ability of an unsaturated compound to undergo protonation, generating a reactive carbocation intermediate.^{34–38} The subsequent hydride transfer from a donor species to this carbocation affords the hydrogenated product. This strategy is applicable to the reduction of a wide range of functionalities, including carbon–carbon, carbon–oxygen, and carbon–nitrogen multiple bonds, as well as certain single bonds such as carbon–halogen and carbon–oxygen linkages. The basic principle of ionic hydrogenation involves the formation of a carbocation, either by protonation of a double bond or through heterolysis of a C–X bond, followed by its reduction *via* hydride donation to form the hydrogenation product (Scheme 1).

In ionic hydrogenation, the hydrogenating pair includes a proton donor and a hydride donor that must fulfill specific criteria: (a) the proton source should be sufficiently acidic to protonate the carbon–carbon double bond, forming a carbocation, but it should not be strongly acidic to protonate the hydride source and generate hydrogen. (b) The carbocation needs to be sufficiently electrophilic to capture a hydride from the hydride source and must not react with other nucleophiles present in the reaction system, such as the conjugate base of the proton source. The typical reduction system used for ionic hydrogenation of double bonds involves trifluoroacetic acid

Scheme 1 Mechanism of ionic hydrogenation.



Scheme 2 Rate-determining step.

paired with an organosilane. Hydrosilanes have been utilized as mild reducing agents in fine organic synthesis.^{39,40}

The alkene substrate, however, must be susceptible to protonation by trifluoroacetic acid, which restricts the scope of this method primarily to the reduction of tri- and tetra-substituted alkenes as well as aryl-substituted alkenes (Scheme 2).

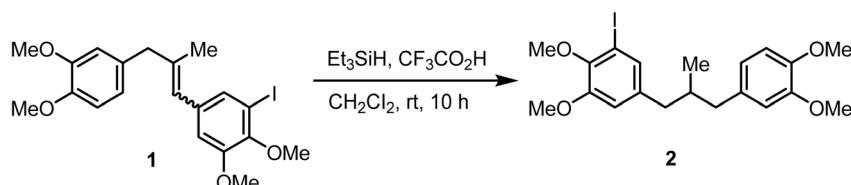
In ionic hydrogenation, the rate-determining step involves protonation of the double bond, followed by hydride transfer to the resulting carbocation. The efficiency of this process depends strongly on the nature and number of alkyl or aryl substituents attached to the silicon atom. The hydride-donating ability of silanes generally follows^{41,42} the order:

The combination of triethylsilane and trifluoroacetic acid or Lewis acids is used for reduction reactions, such as carbonyls to alcohols,^{43,44} carbonyls to alkanes,^{45,46} allylic/benzylic/tertiary/propargylic alcohols to alkanes,^{47–51} hemiaminals to hydrocarbons,⁵² lactols/hemiacetals^{53,54} to hydrocarbons and many more.^{55–62} Furthermore, triethylsilane and trifluoroacetic acid or Lewis acids are employed for the reductive cleavage of spiroketals,⁶³ benzylidene acetals,⁶⁴ oxazolidinones,⁶⁵ bicyclic lactams⁶⁶ and the reduction of imines⁶⁷ and aromatic nitro⁶⁸ functionalities.

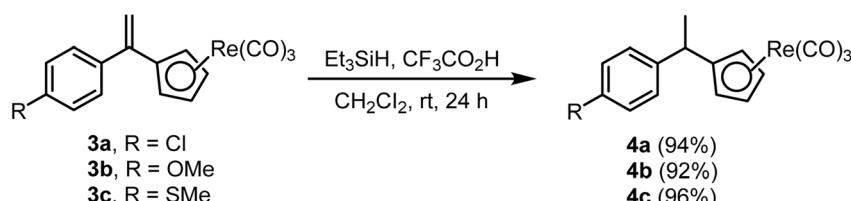
The potential of ionic hydrogenation reaction, its unique characteristics, and a comprehensive review of the application of silane-acid reductions to different types of alkenes have not been thoroughly covered in previous literature. This review

presents the combination of trifluoroacetic acid and triethylsilane for the reduction of acyclic alkenes, ketene dithioacetal, exocyclic double bonds, cyclic double bonds with and without heteroatoms and aromatic heterocycles.

2. Silane-acid reduction of alkenes

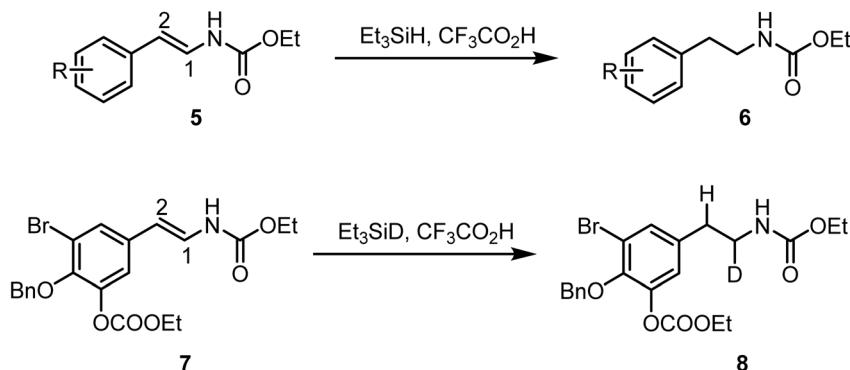
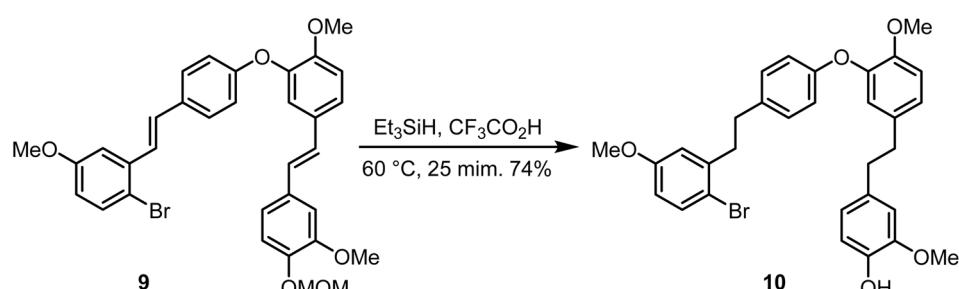

Alkenes amenable to ionic hydrogenation are those capable of generating stabilized carbocations, such as branched alkenes, alkylcyclopropenes, and substituted styrenes. In contrast, unbranched alkenes or those branched at positions other than the alkenic carbon generally do not undergo reduction. This method, therefore, enables the selective hydrogenation of highly substituted double bonds even in the presence of an unsubstituted one. This regioselectivity is opposite to that typically observed in catalytic hydrogenation.

2.1 Reduction of acyclic alkenes


Olefinic compounds bearing bromo- or iodo-substituents are often susceptible to dehalogenation under catalytic hydrogenation conditions. In contrast, ionic hydrogenation does not typically affect such functionalities. Kramer and Waldvogel demonstrated⁶⁹ the selective ionic hydrogenation of an iodo-substituted substrate **1** with triethylsilane (Et_3SiH) and trifluoroacetic acid ($\text{CF}_3\text{CO}_2\text{H}$) in dichloromethane and obtained the saturated compound **2** in quantitative yield (Scheme 3).

The ionic hydrogenation method is also used for the reduction of double bonds in organometallic compounds. A series of compounds **4** was synthesized⁷⁰ from **3** using Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in nearly quantitative yields (Scheme 4).

Masuno and Molinski have reported⁷¹ the selective reduction of 2-aryl-1-*N*-carboalkoxyenamines **5** to the corresponding 2-arylethylamine carbamates **6** by using Et_3SiH in the presence of $\text{CF}_3\text{CO}_2\text{H}$ in excellent yields. The reaction proceeds *via* hydride addition at the C-1 position, with the rate-determining step involving proton transfer from $\text{CF}_3\text{CO}_2\text{H}$. The mechanism was further investigated by comparing the reaction rates with

Scheme 3 Ionic hydrogenation of alkenes.

Scheme 4 Reduction of the double bond in an organometallic compound.

Scheme 5 Reduction of *N*-carboalkoxyenamines using ionic hydrogenation.

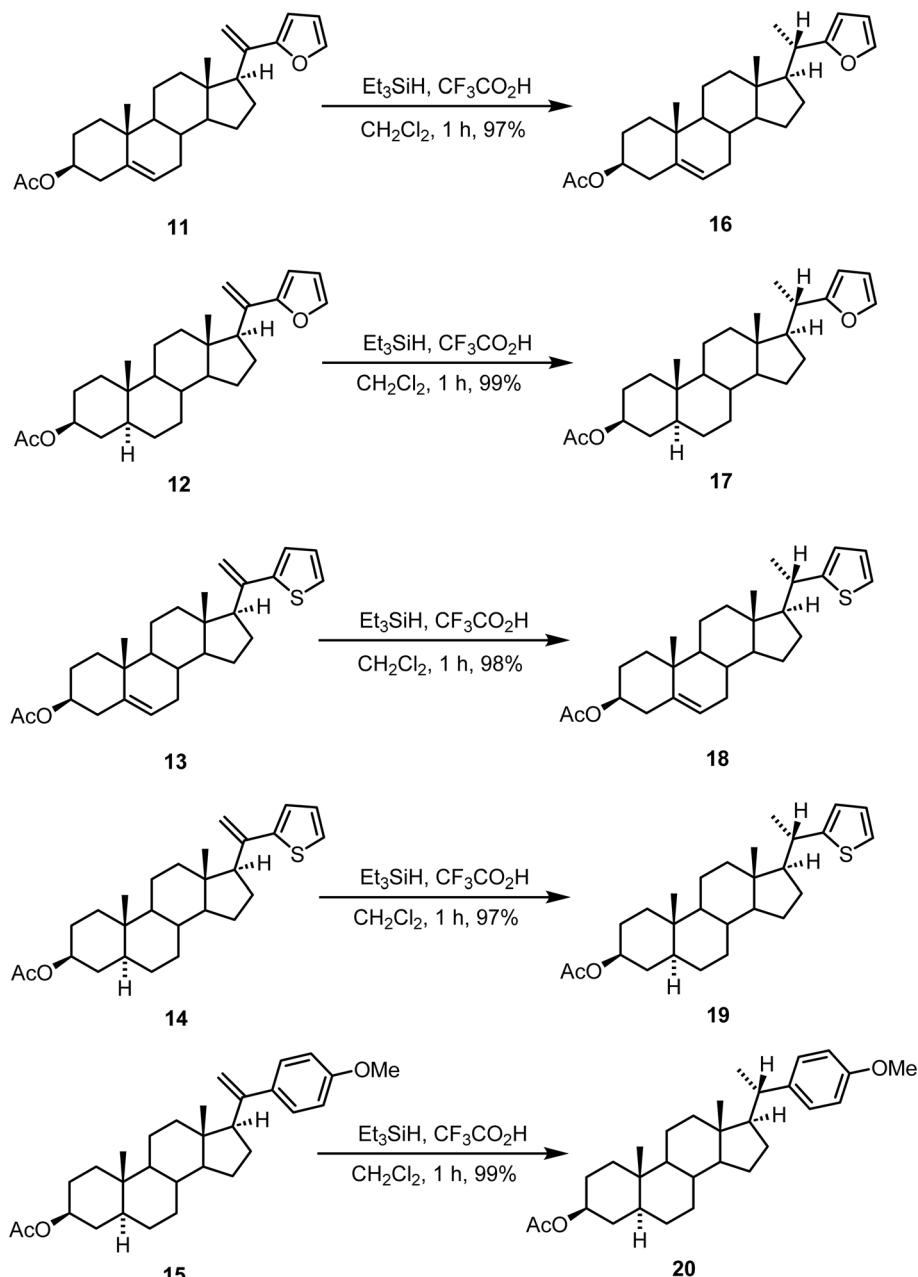
Scheme 6 Reduction of double bonds and cleavage of the MOM group.

deuterated *versus* non-deuterated reagents. When Et_3SiD was employed instead of Et_3SiH for the reduction of compound 7, efficient conversion to deuterium-labeled arylethylamine 8 was observed within a similar reaction time (Scheme 5).

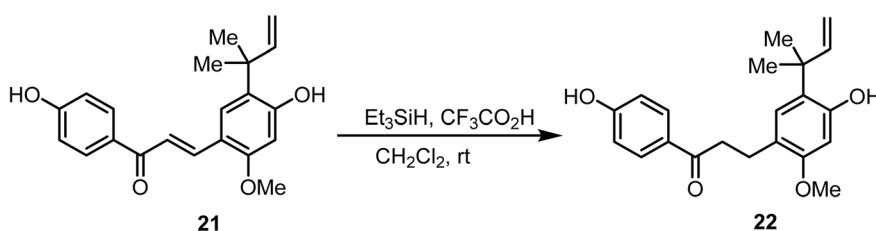
Hioki and co-workers reported the reduction⁷² of double bonds in compound 9 using triethylsilane in trifluoroacetic acid at 60 °C to compound 10, in which reductive cleavage of the MOM group also occurs (Scheme 6).

The stereoselective ionic hydrogenation of steroidal C-20(21)-olefinic double bond was achieved in excellent yields.⁷³ Ionic hydrogenation of the steroidal C-20(21)-olefinic double bond in compounds 11–15 with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in CH_2Cl_2 at 30 °C resulted in the corresponding 16–20 in almost quantitative yields (Scheme 7). Ionic hydrogenation of compounds 11 and 13 is chemoselective as the 5,6-double bond is unaffected.

Selective reduction of the chalcone double bond (α,β -unsaturated) in compound 21 was achieved⁷⁴ by ionic hydrogenation using trifluoroacetic acid as the proton donor and triethylsilane as the hydride donor. The side-chain double bond, being poorly polarized, remained unreactive under these conditions. Furthermore, employing equimolar concentrations of silane and chalcone prevented the reduction of the carbonyl group. The reaction afforded saturated ketone 22 in high yields, which was readily isolated from the mixture (Scheme 8).

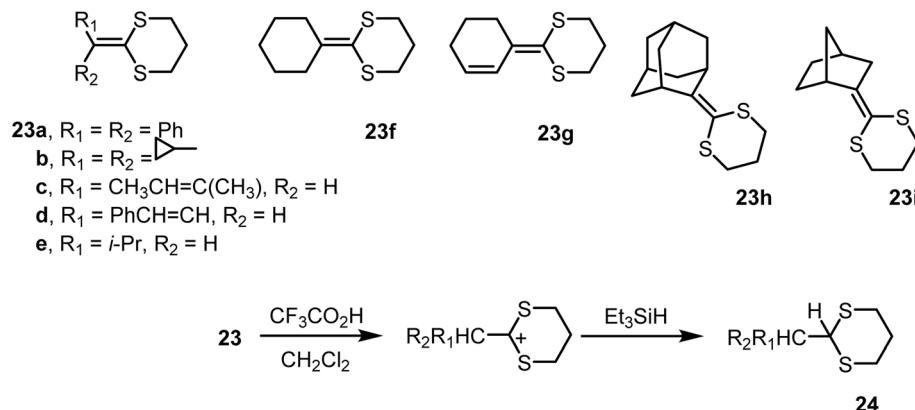

2.1.1 Reduction of ketene dithioacetals. Several ketene thioacetals were reduced⁷⁵ to thioacetals *via* a protonation–hydride transfer sequence using Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in dichloromethane, demonstrating the utility of this reaction for converting $\text{R}^1\text{R}^2\text{C}=\text{C=O}$ into $\text{R}^1\text{R}^2\text{CHCHO}$. Evidence indicated that stabilization of the adjacent carbocation through electron

donation from sulfur played a significant role in the process. Ketene thioacetals were generated by the metalation of 2-trimethylsilyl-1,3-dithiane with *n*-butyllithium in THF, followed by the reaction with aldehydes and ketones. Benzophenone was converted into diphenylacetaldehyde by the reduction of 23a ($\text{R}^1=\text{R}^2=\text{Ph}$) to 24, followed by oxidative hydrolysis of 24 to Ph_2CHCHO . The reduction step, performed with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in dichloromethane, proceeded in 87% yield (Scheme 9).

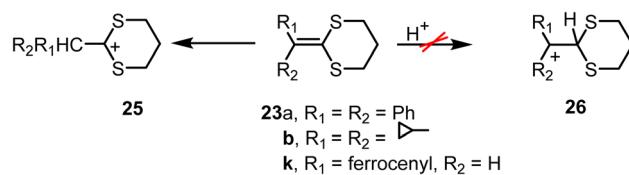

Compound 23f was prepared from cyclohexanone and reduced to 2-cyclohexyl-1,3-dithiane in 63% yield, and on hydrolysis, furnished cyclohexanecarboxaldehyde in 93% yield.⁷⁵ The diphenyl and dicyclopropyl ketene thioacetals (23a and 23b) were particularly useful in probing the site of protonation in ketene thioacetals. For the ferrocene-derived ketene thioacetal 23k, evidence indicated that protonation occurs at the carbon atom adjacent to the ferrocene moiety, generating the sulfur-stabilized carbocation 25, rather than at the dithiane ring to form the ferrocenylmethyl cation 26. This observation highlights the strong stabilizing effect of sulfur, most likely through electron donation from its lone pairs to the adjacent carbocation. This is notable because ferrocenylmethyl cations are themselves recognized as highly stable ions (Scheme 10).

Mlynarski and Banaszek reported⁷⁶ the reduction of the double bond of ketene dithioacetal 27 with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in dichloromethane at room temperature, affording the saturated compound 28 in 73% yield (Scheme 11). The primary silyl ether group of 21 is also selectively cleaved under these conditions.

Scheme 7 Stereoselective ionic hydrogenation of steroid C-20(21)-olefinic double bonds.

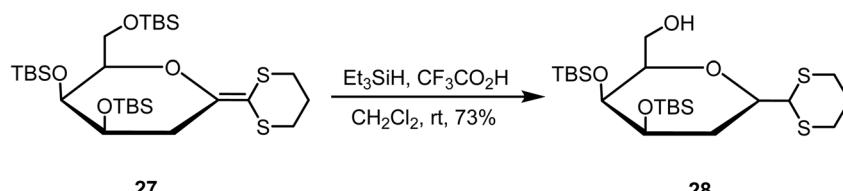


Scheme 8 Reduction of the chalcone double bond.

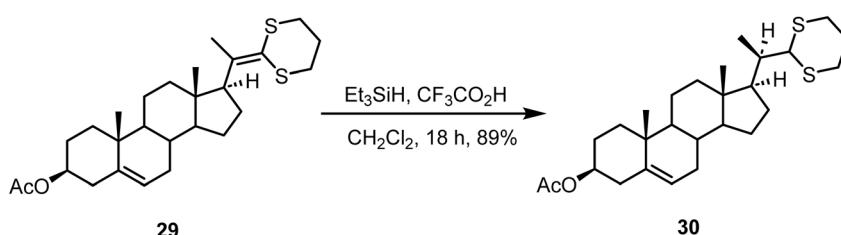

Ionic hydrogenation of the steroid C-20,22-ketene di-thiophene diacetate **29**, prepared from commercially available⁷⁷ 16-dehydropregnolone acetate with triethylsilane and

trifluoroacetic acid in dichloromethane at 25 °C for 18 h afforded^{78,79} the C(20R) saturated compound **30** in 89% yield (Scheme 12).

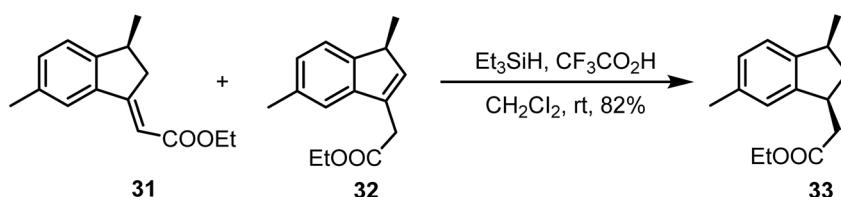
Scheme 9 Ionic hydrogenation of ketene thioacetals.


Scheme 10 Protonation of ketene dithioacetals.

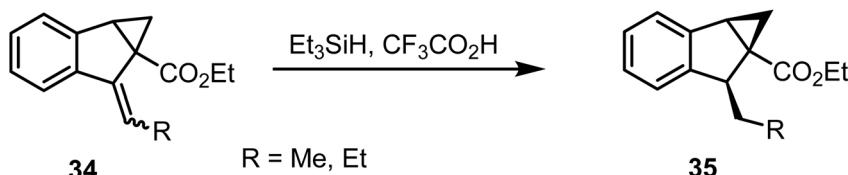
2.1.2 Reduction of exocyclic double bonds. Ho and co-workers reported⁸⁰ the reduction of double bonds from the mixture of unsaturated esters **31** and **32** using Et₃SiH and


CF₃CO₂H in CH₂Cl₂ at room temperature, which afforded the saturated ester **33** in 82% yield (Scheme 13). Notably, the ester functionality remained unaffected under these conditions.

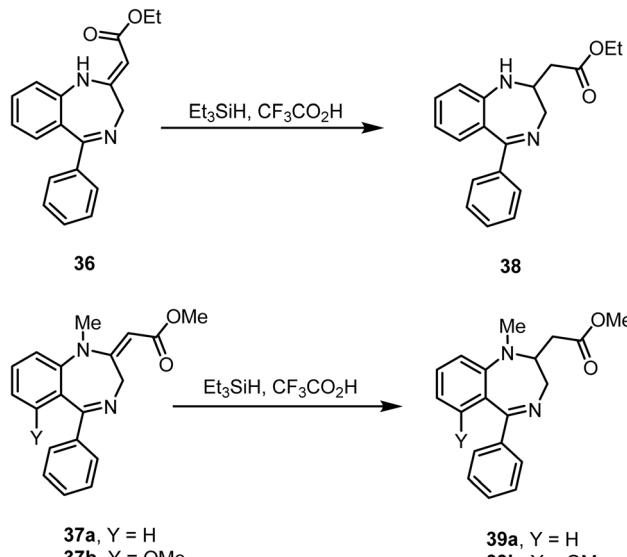
Vacher and co-workers reported⁸¹ the chemoselective reduction of an *exo*-olefin in ester **34** with triethylsilane and trifluoroacetic acid, affording ester **35** in good yields (Scheme 14). Interestingly, the cyclopropane ring remained unaffected under these conditions.


Anzini and co-workers reported⁸² the chemoselective reduction of double bonds in unsaturated esters **36**, **37a** and **37b** with triethylsilane in trifluoroacetic acid, providing the

Scheme 11 Reduction of ketene dithioacetal.



Scheme 12 Ionic hydrogenation of the steroid C-20,22-ketene dithioacetal.



Scheme 13 Reduction of unsaturated ester.

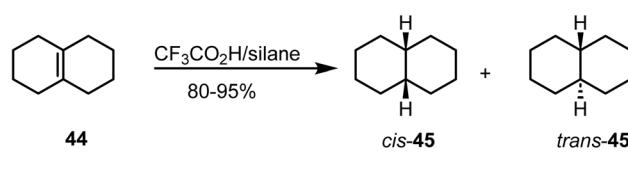
Scheme 14 Reduction of exocyclic olefins.

Scheme 15 Reduction of an exocyclic unsaturated ester.

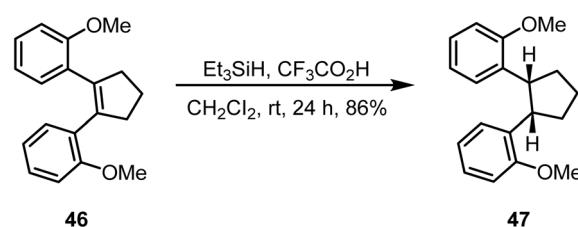
corresponding saturated esters **38**, **39a** and **39b**, respectively, in good yields (Scheme 15).

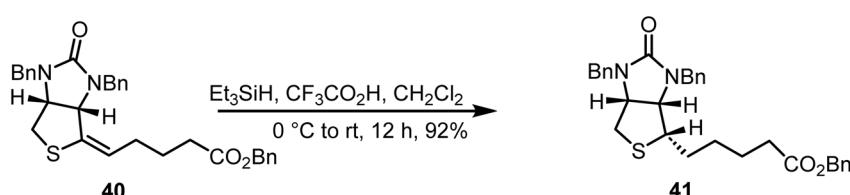
Huang and co-workers reported⁸³ the selective reduction of a double bond in compound **40** using triethylsilane and trifluoroacetic acid in dichloromethane, affording compound **41** in 92% yield (Scheme 16).

Li and co-workers reported⁸⁴ the diastereoselective reduction of dihydropyrimidine thione **42** with triethylsilane and $\text{BF}_3\text{-Et}_2\text{O}$ in dichloromethane to chiral thiourea **43** in 81% yield (Scheme 17).


2.2 Reduction of cyclic double bonds

2.2.1 Reduction of cyclic double bonds without a heteroatom in the ring. The stereoselectivity of double-bond reduction in ionic hydrogenation is governed by steric accessibility and is highly sensitive to both the substrate structure and the choice of hydride donor.⁸⁵ The ionic hydrogenation of olefin **44** (Scheme


18) illustrates that the steric size of the hydride source plays a decisive role. The ionic hydrogenation of $\Delta^{9(10)}$ -octalin with $\text{CF}_3\text{CO}_2\text{H}$ and various silanes demonstrated pronounced stereoselectivity. When BuSiH_3 was employed as the hydride


Scheme 17 Reduction of an exocyclic double bond.

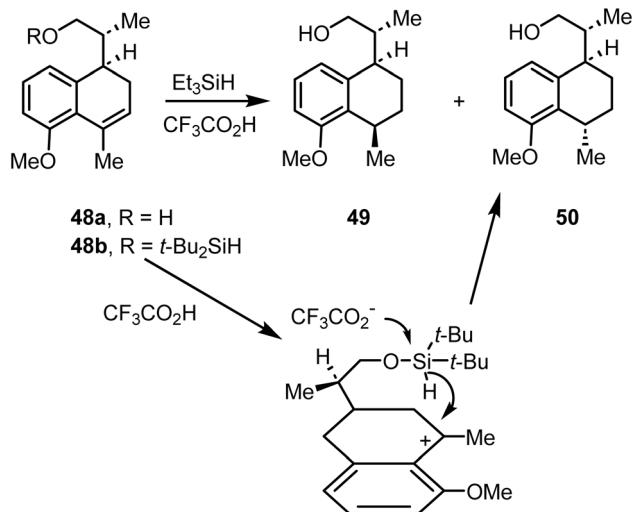
Silane	d.r. (cis/trans)
BuSiH_3	22:78
Et_3SiH	42:58
$(s\text{-Bu})_3\text{SiH}$	72:28
$(t\text{-Bu})_3\text{SiH}$	93:7

Scheme 18 Ionic hydrogenation of $\Delta^{9(10)}$ -octalin.

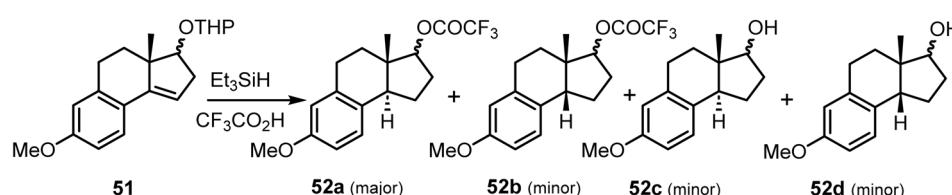
Scheme 19 Ionic hydrogenation of tetra-substituted cyclopentene.

Scheme 16 Ionic hydrogenation of an exocyclic double bond.

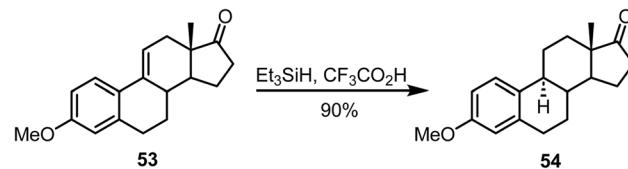
donor, the reaction furnished *cis*- and *trans*-decalin **45** in a 22 : 78 ratio. In contrast, the use of bulky $^3\text{Bu}_3\text{SiH}$ predominantly afforded the opposite stereoisomer, yielding 93% of the *cis*-decahydronaphthalene product.

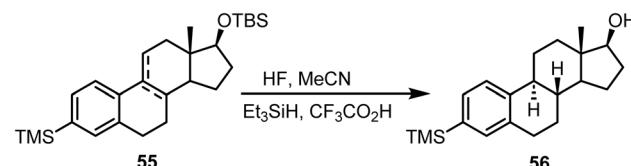

The effect of substituents on olefins is important in the reduction reaction. Whitesel and Apodaca reported⁸⁶ a tetra-substituted cyclopentene derivative **46** on ionic hydrogenation with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in dichloromethane to *cis*-cyclopentane **47** in 86% yield (Scheme 19).

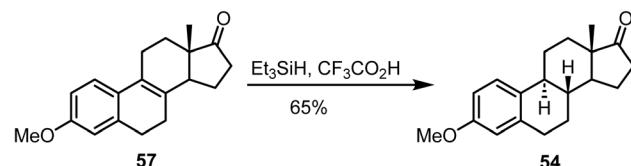
McCombie and co-workers reported⁸⁷ the ionic hydrogenation of compound **48** with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ to a 2 : 3 mixture of **49** and **50** (Scheme 20). Furthermore, the intramolecular variant of this methodology was shown to effectively control the stereochemical outcome. The silyl ether **48b** on reaction with trifluoroacetic acid in dichloromethane yielded compound **50** with >95% enantiomeric purity (Scheme 20).


Ravindranathan and co-workers reported⁸⁸ the ionic hydrogenation of compound **51** with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ at 0 °C, which afforded the isomeric mixture of trifluoroacetates **52a** and **52b** (44%, 2 : 1), along with alcohols **52c** and **52d** (28%, 2 : 1) (Scheme 21).

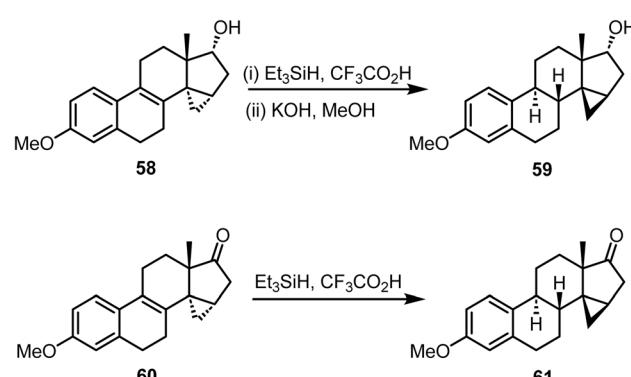
Posner and Switzer reported⁸⁹ the synthesis of estrone methyl ether with exceptionally high enantiomeric purity by ionic hydrogenation of $\Delta^{9(11)}$ -estrone derivative **53** using Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$, which afforded compound **54** in 90% yield (Scheme 22).

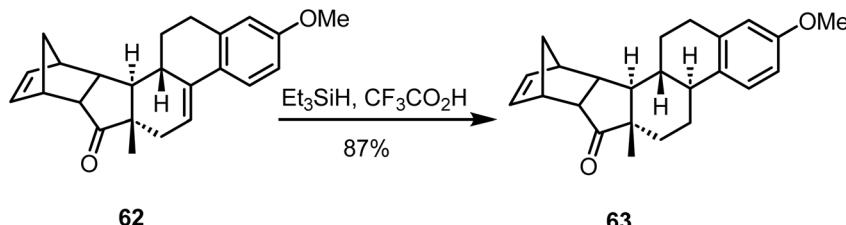

The mixture of compound **55** was first treated with HF/MeCN to remove the hydroxyl protecting group, and the resultant


Scheme 20 Ionic hydrogenation of compound **48**.


Scheme 21 Ionic hydrogenation of compound **51**.

Scheme 22 Ionic hydrogenation of $\Delta^{9(11)}$ -estrone derivative.


Scheme 23 Ionic hydrogenation of compound **55**.

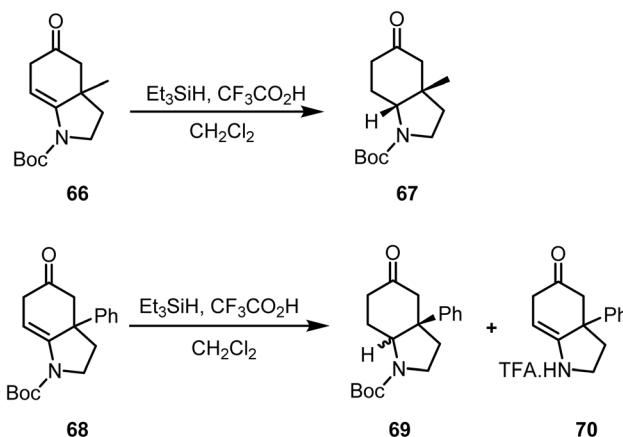

Scheme 24 Ionic hydrogenation of $\Delta^{8(9)}$ -estrone.

alcohols were subsequently subjected⁹⁰ to Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in benzene, which provided the desired *trans*-fused tetracycle **56** in 45% yield (Scheme 23).

Sugahara and Ogasawara reported⁹¹ the ionic hydrogenation of $\Delta^{8(9)}$ -estrone derivative **57** with triethylsilane and trifluoroacetic acid, which afforded compound **54** in 65% yield (Scheme 24).

Scheme 25 Ionic hydrogenation of $\Delta^{8(9)}$ -estrone derivatives.

Scheme 26 Chemoselective ionic hydrogenation of **62**


Schwarz and coworkers reported⁹² the ionic hydrogenation of 3-methoxy-14 α ,15 α -methylenestra-1,3,5(10),8-tetraen-17 α -ol **58** with triethylsilane and trifluoroacetic acid, resulting in 3-methoxy-14 β ,15 β -methylenestra-1,3,5(10)-trien-17 α -ol **59**, rather than the 14 α ,15 α -methylene-9 β product. Furthermore, ionic hydrogenation of the 8-double bond in compound **60** predominantly yielded an 8 β ,9 α -dihydro product. However, this ionic hydrogenation process was accompanied by an additional inversion of the 14 α ,15 α -methylene bridge to compound **61** (Scheme 25).

Takano and co-workers reported⁹³ the chemoselective ionic hydrogenation of **62** using triethylsilane and trifluoroacetic acid, which afforded the *trans*-B/C fused product **63** in 87% yield (Scheme 26). This intermediate **63** was converted to (+) estrone via a multistep synthesis.

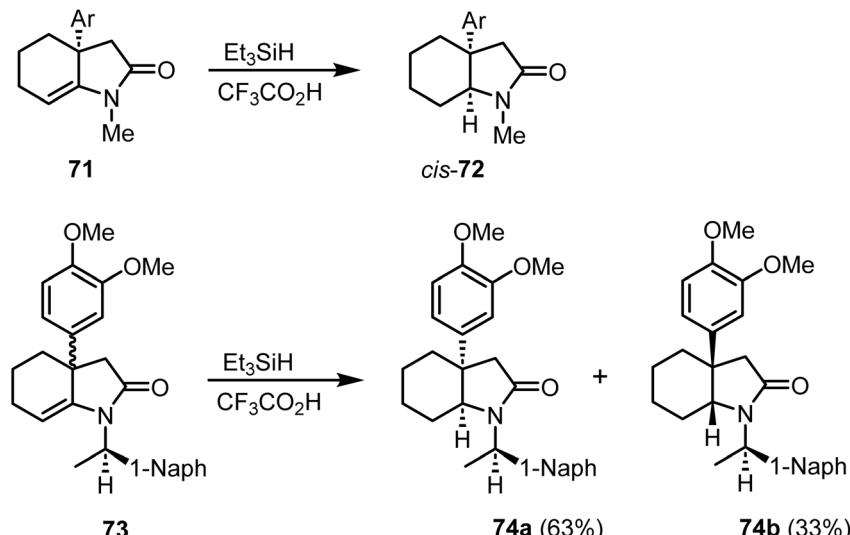
Cannon and co-workers reported⁹⁴ the reduction of a fused carbocyclic ring system containing a carbon–carbon double bond shared by two rings. The ionic hydrogenation with trifluoroacetic acid and triethylsilane in dichloromethane at room temperature yielded the *trans*-fused ring fusion. In this study, application of this hydrogenation method to a series of tetrahydroquinolines **64** provided the corresponding *trans*-fused lactams **65** in 33–95% yield (Scheme 27).

Under ionic reduction conditions (triethylsilane/trifluoroacetic acid), the enamine group of methyl-*N*-Boc-hexahydro-1*H*-indolin-5(6*H*)-one **66** was reduced⁹⁵ to afford exclusively a *cis*-fused product **67**. In contrast, the reduction of phenyl-*N*-Boc-hexahydro-1*H*-indolin-5(6*H*)-one **68** furnished a distereomeric mixture **69**, along with a minor amount of the Boc-deprotected compound **70** (Scheme 28).

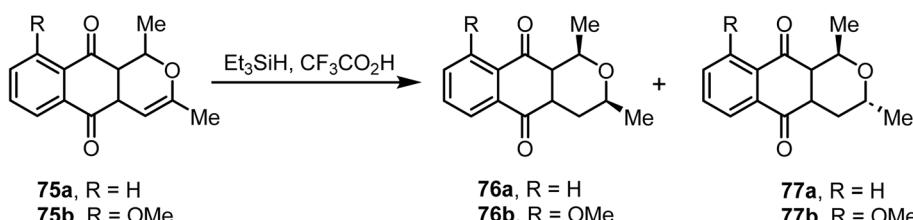
Saito *et al.* reported⁹⁶ the ionic hydrogenation of compound 71 with triethylsilane and trifluoroacetic acid, which furnished



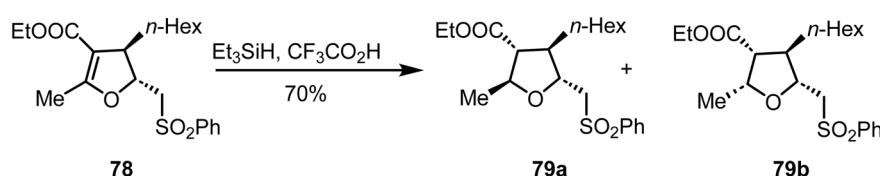
Scheme 28 Reduction of enamines by ionic hydrogenation.

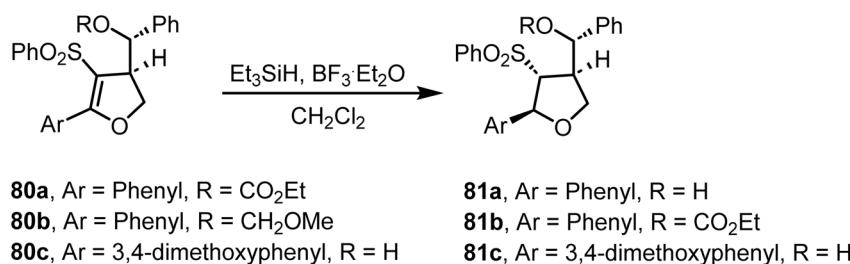

the *cis*-fused aryl octahydroindol-2-one **72** as the sole product (Scheme 28). Similarly, reduction of the distereomeric mixture of hexahydroindol-3-ones **73** under similar conditions afforded octahydroindol-2-one **74a** as the major product and its isomer **74b** as a minor product (Scheme 29).

2.2.2 Reduction of cyclic double bonds with a heteroatom


in the ring. The reduction^{97,98} of naphthopyrandione **75b** with triethylsilane and trifluoroacetic acid afforded eleutherin **76b** and isoeleutherin **77** (Scheme 30). Eleutherin **76b** and isoeleutherin **77** are antibiotics found in *Eleutherine bulbosa*. Similarly, the reduction of compound **75a** under identical reaction conditions at room temperature afforded *cis*-1,3-dimethyl-3,4-dihydro-1*H*-naphtho[2,3-*c*]pyran-5,10-dione **76a** in excellent yield. Furthermore, compound **75b** under similar

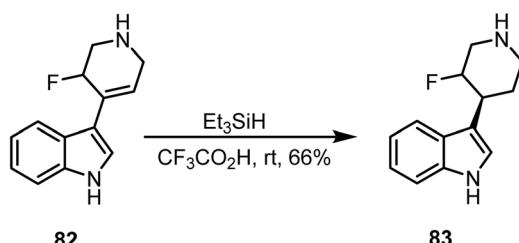
Scheme 27 Reduction of a fused double bond.

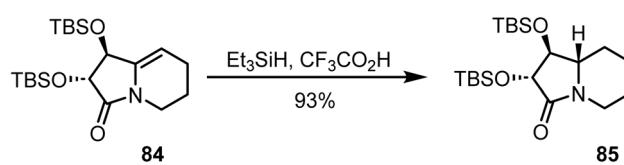

Scheme 29 Reduction of a fused double bond by ionic hydrogenation


Scheme 30 Ionic hydrogenation of a double bond

reaction conditions resulted in a 1:5 mixture of **76b** and its diastereoisomer (\pm)-isoeleutherin **77** in moderate yields (Scheme 30). In these transformations, the hydride source from triethylsilane determines the stereochemical outcome of the products.

The highly substituted dihydrofuran derivative **78** on ionic hydrogenation⁹⁹ with Et₃SiH in CF₃CO₂H at 60 °C afforded an 86:14 mixture of enantiomerically pure tetrahydrofurans **79a** and **79b** in 70% yield (Scheme 31).


Scheme 31 . Reduction of dihydrofuran derivative 78.

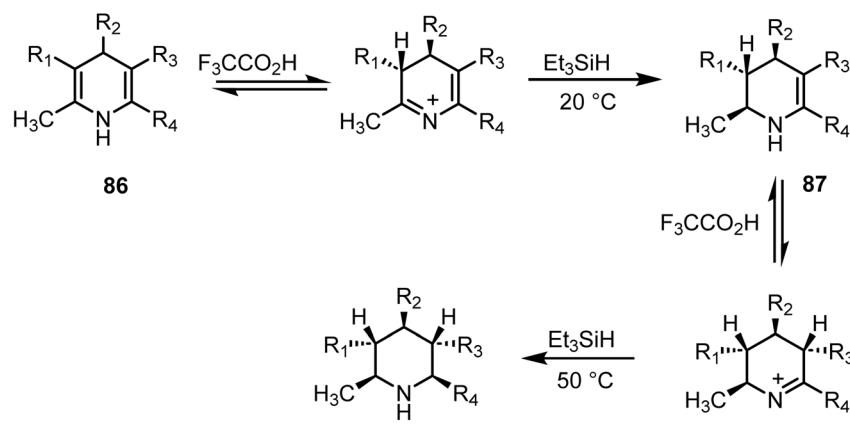

Scheme 32 Reduction of dihydrofuran derivatives.

The stereoselective reduction¹⁰⁰ of compounds **80** using ionic hydrogenation with Et_3SiH and $\text{BF}_3 \cdot \text{Et}_2\text{O}$ resulted in the corresponding tetrahydrofuran derivatives (Scheme 32). Reduction of the double bond in **80b** was readily achieved by treating with Et_3SiH and $\text{BF}_3 \cdot \text{Et}_2\text{O}$ in dichloromethane, obtaining the alcohol **81a** in 83% yield. Similarly, the tetrahydrofurans **81b** and **81c** were synthesized in 75% and 85% yields, respectively, from **80a** and **80c** (Scheme 32).

The substitution at the C-3 position of the indole nucleus with certain double-bonded compounds can be selectively reduced by ionic hydrogenation.¹⁰¹ The tri-substituted double bond in tetrahydropyridine **82** on ionic reduction with trifluoroacetic acid and triethylsilane afforded *trans*-fluoropiperidine **83** in 66% yield (Scheme 33).

Scheme 33 Reduction of a tetrahydropyridine by ionic hydrogenation.

Scheme 34 Stereoselective reduction of unsaturated lactam.


Ha and co-workers reported¹⁰² the stereoselective reduction of unsaturated lactam **84** with Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$, which provided the saturated lactam **85** in 93% yield, serving as an intermediate in the synthesis of alkaloid (+)-lentiginosine (Scheme 34).

Rosentreter reported¹⁰³ the ionic hydrogenation of substituted 1,4-dihydropyridine **86** using triethylsilane and trifluoroacetic acid. With 1 equivalent of triethylsilane at room temperature, the partially reduced pyridine **87** was obtained selectively. Furthermore, the use of 3 equiv. of triethylsilane at 50 °C produced the corresponding piperidine derivatives **88** (Scheme 35).

Baldwin and co-workers demonstrated^{104,105} the synthesis of acromelic acid analogues *via* ionic hydrogenation of substituted dihydropyrrole derivatives **89** using triethylsilane in trifluoroacetic acid at 60 °C. This reaction resulted in epimers of the protected acromelic acid analogues **90a** and **90b** (1 : 1 ratio) in satisfactory yields (Scheme 36).

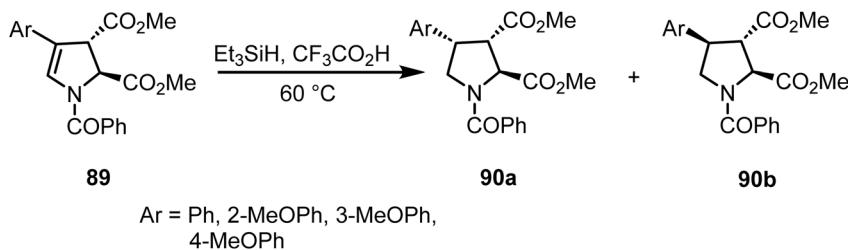
Magnus and co-workers reported¹⁰⁶ a synthetic strategy for the formation of 1,3-*cis*-substituted tetrahydroisoquinolines from *ortho*-iodo imines *via* Larock isoquinoline synthesis, organolithium addition to unactivated isoquinolines, and ionic hydrogenation. Compound **91**, on reaction with $\text{CF}_3\text{CO}_2\text{H}$ and triethylsilane in CH_2Cl_2 at -10 °C to 25 °C, afforded compound **92** in 97% yield (Scheme 36). Furthermore, reduction of the carbamate moiety in **93** using Et_3SiH and $\text{CF}_3\text{CO}_2\text{H}$ in CH_2Cl_2 led to the competitive formation of **94b** in 61% yield and the expected product **94** in 31% yield (Scheme 37). Moreover, performing the same reaction in the presence of benzyl alcohol (15 equiv.) enhanced the yield of **94** to 71%, while **94b** was obtained in 22% yield.

Roach and co-workers reported¹⁰⁷ the ionic hydrogenation of dihydroquinoline **95** with triethylsilane and trifluoroacetic acid

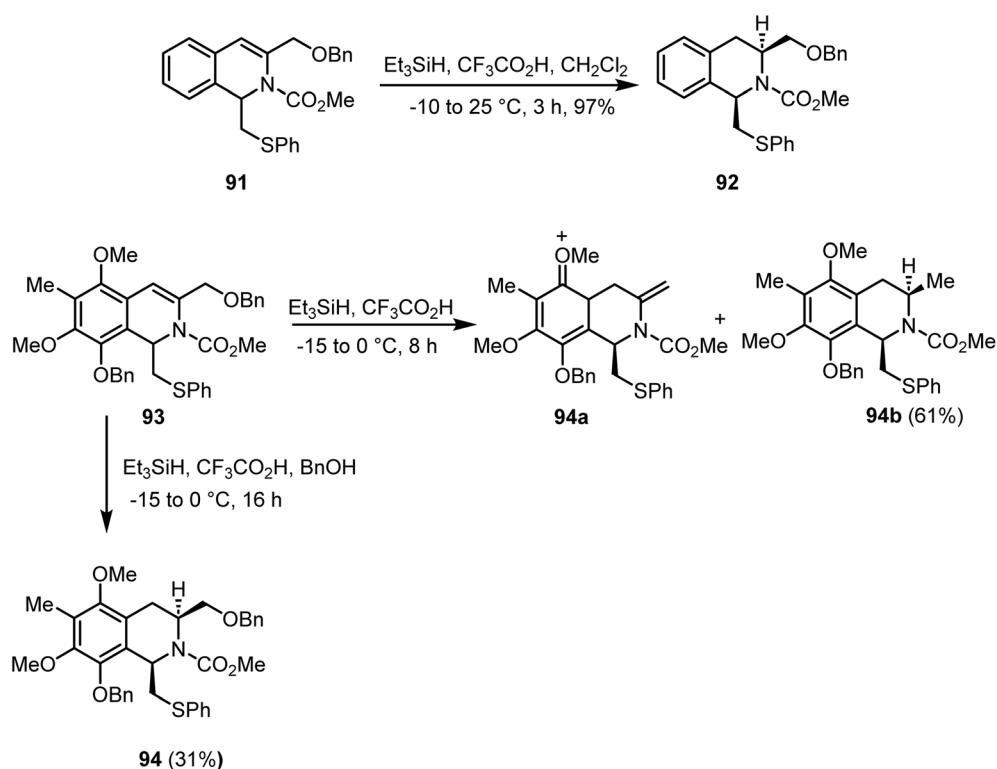
a, $\text{R}_1 = \text{CO}_2\text{Me}$, $\text{R}_2 = \text{Ph}$, $\text{R}_3 = \text{CO}_2\text{Me}$, $\text{R}_4 = \text{Me}$

b, $\text{R}_1 = \text{CO}_2\text{Me}$, $\text{R}_2 = 2\text{-NO}_2\text{-Ph}$, $\text{R}_3 = \text{CO}_2\text{Me}$, $\text{R}_4 = \text{Me}$

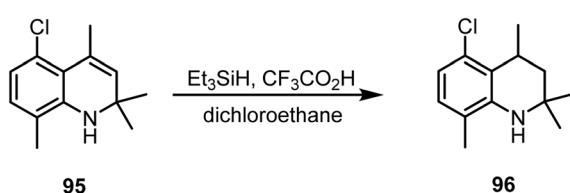
c, $\text{R}_1 = \text{CO}_2\text{Me}$, $\text{R}_2 = 2\text{-CF}_3\text{-Ph}$, $\text{R}_3 = \text{CO}_2\text{Me}$, $\text{R}_4 = \text{Me}$


d, $\text{R}_1 = \text{COMe}$, $\text{R}_2 = 3\text{-NO}_2\text{-Ph}$, $\text{R}_3 = \text{COMe}$, $\text{R}_4 = \text{Me}$

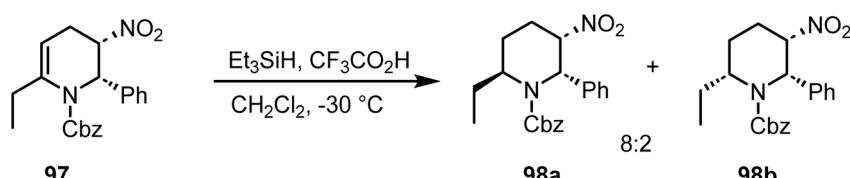
e, $\text{R}_1 = \text{CO}_2\text{Me}$, $\text{R}_2 = 3\text{-NO}_2\text{-Ph}$, $\text{R}_3 = \text{CN}$, $\text{R}_4 = \text{Me}$


f, $\text{R}_1 = \text{CO}_2\text{Et}$, $\text{R}_2 = 3\text{-NO}_2\text{-Ph}$, $\text{R}_3 = \text{CO}_2\text{Et}$, $\text{R}_4 = \text{CO}_2\text{Et}$

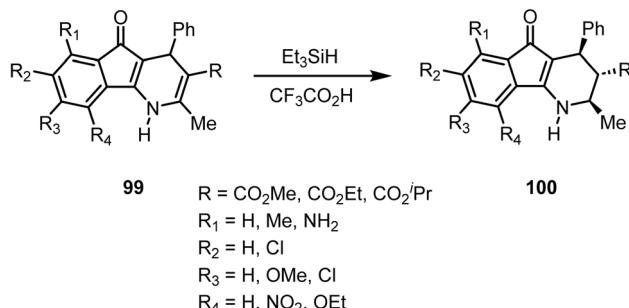
Scheme 35 Ionic hydrogenation of 1,4-dihydropyridine derivatives.



Scheme 36 Ionic hydrogenation of dihydropyrrole derivatives.


Scheme 37 Ionic hydrogenation of double bonds in compounds 91 and 93.

Scheme 38 Ionic hydrogenation of dihydroquinoline.

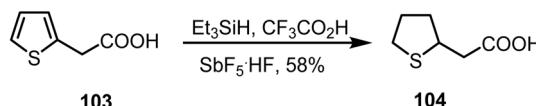

in dichloroethane at 80 °C, yielding compound 96, as shown in Scheme 38.

Humphrey and co-workers reported¹⁰⁸ the regioselective reduction of the double bond in 95 with triethylsilane and trifluoroacetic acid in dichloromethane at -30 °C, which resulted in an 8 : 2 *trans/cis* ratio of 98a and 98b (Scheme 39). Compound 98a was obtained in 72% yield after crystallization. Moreover, the reaction conditions do not affect the reducible functionalities, NO₂ and Cbz, present in compound 97.

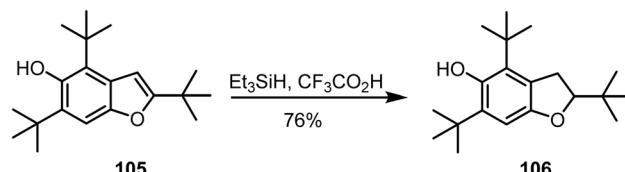
Scheme 39 Regioselective reduction of tetrahydropyridine derivatives.

Scheme 40 Regio- and chemo-selective reduction of dihydropyridine derivatives.

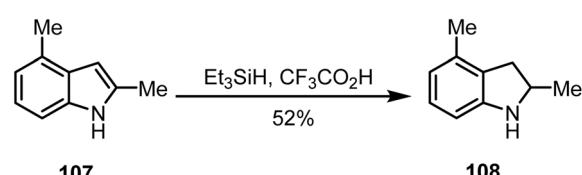
Stupnikova and co-workers reported¹⁰⁹ the reduction of 5-oxo-4-phenyl-1*H*-4,5-dihydroindeno[1,2-*b*]pyridines **99** with triethylsilane in trifluoroacetic acid, which afforded the corresponding 1,2,3,4-tetrahydroindeno[1,2-*b*]pyridines **100** with a *trans*-configuration, as shown in Scheme 40.

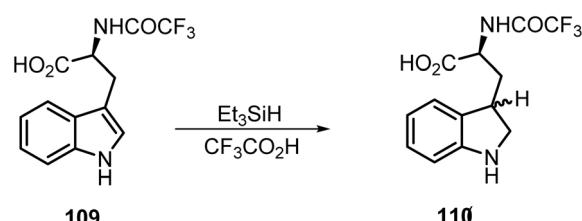

Ibrahim-Quali reported¹¹⁰ the reduction of the $\Delta^{9,11}$ double bond in compound **101** using 10 equiv. of triethylsilane and 50 equiv. of trifluoroacetic acid, and after hydrolysis of the 17-trifluoroacetate group, the desired steroid analogue **102** was obtained in 73% yield (Scheme 41).

2.3 Reduction of cyclic double bonds in aromatic heterocycles

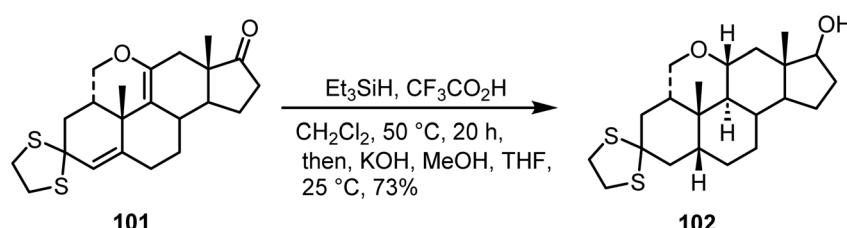

The salient feature of ionic hydrogenation is that sulfur-containing compounds can be reduced, which typically poison catalysts in conventional hydrogenation methods. Using the silane-trifluoroacetic acid system, substrates such as thiophenes, benzothiophenes and octahydrothioxanthenes were successfully converted to their dihydro- and tetra-hydro derivatives. Thiophene-2-acetic acid **103** on ionic hydrogenation¹¹¹ with Et₃SiH in CF₃CO₂H containing a trace amount of superacid (HSbF₆) afforded tetrahydro-thiophene-2-acetic acid **104** in 58% yield (Scheme 42).

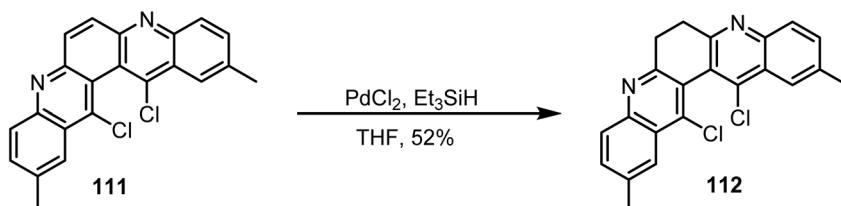
The highly substituted benzofuran derivative **105** on ionic hydrogenation¹¹² with triethylsilane and trifluoroacetic acid from 0 °C to room temperature afforded the racemic dihydro-derivative **106** in 76% yield (Scheme 43).


Electron-deficient aromatic heterocycles, such as pyridines and related compounds, are unreactive under ionic hydrogenation conditions. Therefore, this method is most suitable for the more reactive five-membered ring heteroaromatics.

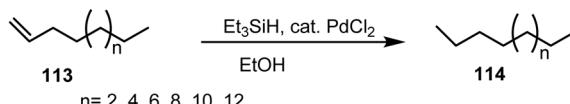

Scheme 42 Ionic hydrogenation of thiophene.

Scheme 43 Ionic hydrogenation of a benzofuran derivative


Scheme 44 Reduction of indole derivative 107


Scheme 45 Reduction of indole derivative 109

Moreover, indoles and pyrroles can be effectively reduced *via* ionic hydrogenation. Stachel and co-workers reported the ionic hydrogenation¹¹³ of 2,4-dimethyl indole **107** with triethylsilane in trifluoroacetic acid, which yielded 2,4-dimethyl-dihydroindole **108** in 52% yield (Scheme 44).


Carr and co-workers reported¹¹⁴ the ionic hydrogenation of the trifluoroacetyl derivative of L-tryptophan **109** at the C-2 double bond using $\text{CF}_3\text{CO}_2\text{H}$ and Et_3SiH . This led to a diastereomeric mixture of indolines **110** (45:55) in good yield (Scheme 45).

Scheme 41 Reduction of double bonds and keto functionality

Scheme 46 Selective reduction of the 6,7-double bond in compound 111.

Scheme 47 Reduction of 1-alkenes by triethylsilane and PdCl₂.

2.4 Miscellaneous

Lartia and coworkers reported¹¹⁵ the selective reduction of the 5,7-double bond in compound **111** using triethylsilane and palladium chloride, which afforded the 6,7-dihydrogenated product **112** in 52% yield (Scheme 46).

Mirza-Aghayan and co-workers reported¹¹⁶ the reduction of 1-alkenes **113** using triethylsilane and palladium(II) chloride in ethanol at room temperature, which afforded the corresponding alkanes **114** in excellent yields (Scheme 47).

Olah and co-workers reported¹¹⁷ the reduction of alkenes using triethylsilane, trifluoroacetic acid and ammonium fluoride in dichloromethane, which afforded the corresponding alkanes in good yields.

3. Summary

This review compiles a diverse and valuable collection of methodologies for the synthesis of fine chemicals, intermediates of complex molecules, natural products, and bioactive compounds. A wide range of alkene-containing substrates has been successfully reduced *via* ionic hydrogenation using triethylsilane and trifluoroacetic acid/Lewis acid, and related information is collected from the literature and described here. As demonstrated over the past four to five decades, continued advancement in this field holds promise for broader applications of ionic hydrogenation in synthetic organic chemistry. Future innovations will depend on a deeper mechanistic understanding and strategic application of the principles outlined in this review. We dedicate this work to the researchers who have contributed to the field of ionic hydrogenation and hope it serves to inspire the next generation of chemists to further expand its scope and utility.

Conflicts of interest

The author declares that there is no financial or personal conflict of interest that could influence the integrity or outcomes of this study.

Abbreviations

Ac	acetyl
Ar	aryl
aq.	aqueous
Bn	benzyl
Boc	<i>tert</i> -butyloxycarbonyl
°C	degree Celsius
cat.	catalytic
Cbz	benzyloxycarbonyl
dr	distereomeric ratio
equiv.	equivalent
Et	ethyl
h	hour (s)
MOM	methoxy methyl
Nap	naphthyl
Ph	phenyl
PMHS	polymethylhydrosiloxane
rt	room temperature
TBS	tertiary butyl dimethylsilyl
TES	triethylsilane
TFA	trifluoroacetic acid
THF	tetrahydrofuran
THP	tetrahydropyranyl
TMS	trimethylsilyl

Data availability

The information and data referenced in this review are derived from publicly accessible scientific publications, such as peer-reviewed journal articles. Proper attribution has been provided for all cited sources within the manuscript.

Acknowledgements

I sincerely acknowledge various research colleagues for the reprints or preprints and also for their valuable suggestions and discussions. I would like to thank Professor R. A. Mane, Professor M. S. Shingare and Professor B. R. Sathe for their timely help and co-operation during the preparation of this review.

References

- 1 K. C. Nicolaou and J. S. Chen, The art of total synthesis through cascade reactions, *Chem. Soc. Rev.*, 2009, **38**, 2993–3009, DOI: [10.1039/B903290H](https://doi.org/10.1039/B903290H).

2 K. C. Nicolaou and C. R. H. Hale, The endeavor of total synthesis and its impact on chemistry, biology and medicine, *Natl. Sci. Rev.*, 2014, **1**, 233–252, DOI: [10.1093/nsr/nwu001](https://doi.org/10.1093/nsr/nwu001).

3 K. C. Nicolaou and S. Rigol, Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine, *Nat. Prod. Rep.*, 2020, **37**, 1404–1435, DOI: [10.1039/D0NP00003E](https://doi.org/10.1039/D0NP00003E).

4 S. Zhi, X. Ma and W. Zhang, Consecutive multicomponent reactions for the synthesis of complex molecules, *Org. Biomol. Chem.*, 2019, **17**, 7632–7650, DOI: [10.1039/C9OB00772E](https://doi.org/10.1039/C9OB00772E).

5 B. Zhang, J. He, Y. Gao, L. Levy, M. S. Oderinde, M. D. Palkowitz, T. G. Murali Dhar, M. D. Mandler, M. R. Collins, D. C. Schmitt, P. N. Bolduc, T. Chen, S. Clementson, N. N. Petersen, G. Laudadio, C. Bi, Y. Kawamata and P. S. Baran, Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling, *Nature*, 2023, **623**, 745–751, DOI: [10.1038/s41586-023-06677-2](https://doi.org/10.1038/s41586-023-06677-2).

6 G. Brahmachari, Design for carbon–carbon bond forming reactions under ambient conditions, *RSC Adv.*, 2016, **6**, 64676–64725, DOI: [10.1039/C6RA14399G](https://doi.org/10.1039/C6RA14399G).

7 D. Ravelli, S. Prottì and M. Fagnoni, Carbon–carbon bond forming reactions *via* photogenerated intermediates, *Chem. Rev.*, 2016, **116**, 9850–9913, DOI: [10.1021/acs.chemrev.5b00662](https://doi.org/10.1021/acs.chemrev.5b00662).

8 M. Y. Riu, S. Popov, B. Wigman, Z. Zhao, J. Wong, K. N. Houk and H. M. Nelson, Carbon–carbon bond forming reactions of vinyl cations: A personal perspective, *Eur. J. Org. Chem.*, 2024, **27**, e202400567, DOI: [10.1002/ejoc.202400567](https://doi.org/10.1002/ejoc.202400567).

9 I. A. Shibley, K. E. Amaral, D. J. Aurentz and R. J. McCaully, Oxidation and reduction reactions in organic chemistry, *J. Chem. Educ.*, 2010, **87**, 1351–1354, DOI: [10.1021/ed100457z](https://doi.org/10.1021/ed100457z).

10 G. D. Yadav, R. K. Mewada, D. P. Wagh and H. G. Manyar, Advances and future trends in selective oxidation catalysis: A critical review, *Catal. Sci. Technol.*, 2022, **12**, 7245–7269, DOI: [10.1039/D2CY01322C](https://doi.org/10.1039/D2CY01322C).

11 T. Punniyamurthy, S. Velusamy and J. Iqbal, Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, *Chem. Rev.*, 2005, **105**, 2329–2364, DOI: [10.1021/cr050523v](https://doi.org/10.1021/cr050523v).

12 M. Mayer, M. Wohlgemuth, A. S. Straub, S. Grätz and L. Borchardt, Hydrogenation of organic molecules *via* direct mechanocatalysis, *Angew. Chem., Int. Ed.*, 2025, **64**, e202424139, DOI: [10.1002/anie.202424139](https://doi.org/10.1002/anie.202424139).

13 B. G. Reed-Berendt, D. E. Latham, M. B. Dambatta and L. C. Morrill, Borrowing hydrogen for organic synthesis, *ACS Cent. Sci.*, 2021, **7**, 570–585, DOI: [10.1021/acscentsci.1c00125](https://doi.org/10.1021/acscentsci.1c00125).

14 P. Wyatt and S. Warren, *Organic Synthesis Strategy and Control*, Wiley, 2007.

15 J. J. Li, *Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications*, Springer, 4th edn, 2008.

16 W. Carruthers, *Modern Methods of Organic Synthesis*, Cambridge, 4th edn, 2015.

17 J. Clayden, N. Greeves and S. Warren, *Organic Chemistry*, Oxford University Press, 2nd edn, 2014.

18 S. E. Lopez and J. Salazar, Trifluoroacetic acid: Uses and recent applications in organic synthesis, *J. Fluorine Chem.*, 2013, **156**, 73–100, DOI: [10.1016/j.jfluchem.2013.09.004](https://doi.org/10.1016/j.jfluchem.2013.09.004).

19 M. M. Alam, R. Varala and V. Seema, A decennial update on the applications of trifluoroacetic acid, *Mini-Rev. Org. Chem.*, 2024, **21**, 455–470, DOI: [10.2174/1570193X20666230511121812](https://doi.org/10.2174/1570193X20666230511121812).

20 M. A. Brook, Silicon in Organic, *Organometallic, and Polymer Chemistry*, Wiley, New York, 2000, vol. 8.

21 I. Ojima, *The Chemistry of Organic Silicon Compounds*, ed. S. Patai and Z. Rappoport, Wiley, New York, 1989, pp. 1479–1526.

22 M. M. Alam, V. Seema, N. Dubasi, M. Kurra and R. Varala, Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-Covering up to March 2022, *Mini-Rev. Org. Chem.*, 2023, **20**, 708–734, DOI: [10.2174/1570193X20666221021104906](https://doi.org/10.2174/1570193X20666221021104906).

23 J. P. Patel, A.-H. Li, H. Dong, V. L. Korlipara and M. J. Mulvihill, Polymethylhydrosiloxane (PMHS)/trifluoroacetic acid (TFA): A novel system for reductive amination reactions, *Tetrahedron Lett.*, 2009, **50**, 5975–5977, DOI: [10.1016/j.tetlet.2009.08.048](https://doi.org/10.1016/j.tetlet.2009.08.048).

24 Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama and H. Nagashima, Hydrosilane reduction of tertiary carboxamides by iron carbonyl catalysts, *Angew. Chem., Int. Ed.*, 2009, **48**, 9511–9514, DOI: [10.1002/anie.200905025](https://doi.org/10.1002/anie.200905025).

25 G. L. Larson and R. J. Liberatore, Organosilanes in metal-catalyzed, enantioselective reductions, *Org. Process Res. Dev.*, 2021, **25**, 1719–1787, DOI: [10.1021/acs.oprd.1c00073](https://doi.org/10.1021/acs.oprd.1c00073).

26 M. Mirza-Aghayan and A. S. Moieni, Recent progress in palladium-catalyzed reduction with organosilanes, *J. Organomet. Chem.*, 2025, **1025**, 123484, DOI: [10.1016/j.jorgancem.2024.123484](https://doi.org/10.1016/j.jorgancem.2024.123484).

27 C. Chatgilialoglu, Silanes as new reducing agents in organic synthesis, in *Free Radicals in Synthesis and Biology*, ed. F. F. Minisci, NATO ASI Series, Springer, Dordrecht, 1989, vol. 260, DOI: [10.1007/978-94-009-0897-0_10](https://doi.org/10.1007/978-94-009-0897-0_10).

28 Y. Nagai, Hydrosilanes as reducing agents. A review, *Org. Prep. Proc. Int.*, 1980, **12**, 13–48, DOI: [10.1080/00304948009355421](https://doi.org/10.1080/00304948009355421).

29 B. Marciniec, Catalysis by transition metal complexes of alkene silylation – recent progress and mechanistic implications, *Coord. Chem. Rev.*, 2005, **249**, 2374–2390, DOI: [10.1016/j.ccr.2005.02.025](https://doi.org/10.1016/j.ccr.2005.02.025).

30 S. Rendler and M. Oestreich, Polishing a diamond in the rough: “Cu-H” catalysis with silanes, *Angew. Chem., Int. Ed.*, 2007, **46**, 498–504, DOI: [10.1002/anie.200602668](https://doi.org/10.1002/anie.200602668).

31 V. Rucilova and M. Soural, Recent advances in the applications of triethylsilane in organic synthesis, *Synthesis*, 2018, **50**, 3809–3824, DOI: [10.1055/s-0037-1610107](https://doi.org/10.1055/s-0037-1610107).

32 S. J. Connelly, W. Kaminsky and D. M. Heinekey, Structure and solution reactivity of (triethylsilylum) triethylsilane cations, *Organometallics*, 2013, **32**, 7478–7481, DOI: [10.1021/om400970j](https://doi.org/10.1021/om400970j).

33 H. H. Anderson, Reactions of triethylsilane and diethylsilane with inorganic halides and acids, *J. Am. Chem. Soc.*, 1958, **80**, 5083–5085, DOI: [10.1021/ja01552a022](https://doi.org/10.1021/ja01552a022).

34 D. N. Kursanov and Z. N. Parnes, Ionic Hydrogenation, *Russ. Chem. Rev.*, 1969, 812–821, DOI: [10.1070/RC1969v038n10ABEH001842](https://doi.org/10.1070/RC1969v038n10ABEH001842).

35 D. N. Kursanov, Z. N. Parnes and N. M. Loim, Applications of ionic hydrogenation to organic synthesis, *Synthesis*, 1974, 633–651, DOI: [10.1055/s-1974-23387](https://doi.org/10.1055/s-1974-23387).

36 Z. N. Parnes and M. I. Kalinkin, Ionic hydrogenation of organic compounds (review), *Pharm. Chem. J.*, 1979, **13**, 846–852, DOI: [10.1007/BF00772227](https://doi.org/10.1007/BF00772227).

37 D. N. Kursanov, Z. N. Parnes, M. I. Kalinkin and N. M. Loim, Ionic hydrogenation and related reactions, *Soviet Scientific Reviews, Supplement Series Chemistry*, ed. M. E. Volpin, 1985.

38 *Stereoselective Synthesis*, ed. G. Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Houben-Weyl, Stuttgart, New York, Workbench edn, 1996, E21 edn, vol. 7, pp. 4311–4316.

39 M. A. Brook, *Silicon in Organic, Organometallic Polymer Chemistry*, Wiley, New York, 2000, p. 171.

40 J. Pietruszka, in *Science of Synthesis*, ed. D. Bellus, S. V. Ley, R. Noyori, M. Regitz, P. J. Reider, E. Schaumann, I., Shinkai, E. J. Thomas and B. M. Trost, Thieme: Stuttgart, 2002, vol. 4, p. 159.

41 D. N. Kursanov, Z. N. Parnes, G. I. Bassova, N. M. Loim and V. I. Zdanovich, Ionic hydrogenation of the ethylene bond and the double bond of the carbonyl group, *Tetrahedron*, 1967, **23**, 2235–2242, DOI: [10.1016/0040-4020\(67\)80059-0](https://doi.org/10.1016/0040-4020(67)80059-0).

42 F. A. Carey and H. S. Tremper, Carbonium ion-silane hydride transfer reactions. I. Scope and stereochemistry, *J. Am. Chem. Soc.*, 1968, **90**, 2578–2583, DOI: [10.1021/ja01012a023](https://doi.org/10.1021/ja01012a023).

43 N. Kamaragurubaran, K. Juhl, W. Bøgevig, A. Zhuang and K. A. Jorgensen, Direct *L*-proline-catalyzed asymmetric alpha-amination of ketones, *J. Am. Chem. Soc.*, 2002, **124**, 6254–6255, DOI: [10.1021/ja026412k](https://doi.org/10.1021/ja026412k).

44 P. D. Thornton and D. J. Burnell, Pauson-Khand and ring-expansion approach to the aquariene ring system, *Org. Lett.*, 2006, **8**, 3195–3198, DOI: [10.1021/ol0609715](https://doi.org/10.1021/ol0609715).

45 A. Schmidt and W. Boland, General strategy for the synthesis of B₁ phytosteranes, dinor isoprostanes, and analogs, *J. Org. Chem.*, 2007, **72**, 1699–1706, DOI: [10.1021/jo062359x](https://doi.org/10.1021/jo062359x).

46 M. Biava, G. C. Porretta, A. Cappelli, S. Vomero, F. Manetti, M. Botta, L. Sautebin, A. Rossi, F. Makovec and M. Anzini, 1,5-Diarylpyrrole-3-acetic acids and esters as novel classes of potent and highly selective cyclooxygenase-2 inhibitors, *J. Med. Chem.*, 2005, **48**, 3428–3432, DOI: [10.1021/jm049121q](https://doi.org/10.1021/jm049121q).

47 A. Benardieu, J. Benz, A. Binggeli, D. Blum, M. Boehringer, U. Grether, H. Hilpert, B. Kuhn, H. P. Marki, M. Meyer, K. Puntener, S. Raab, A. Ruf, D. Schlatter and P. Mohr, Aleglitazar, a new, potent, and balanced dual PPAR α / γ agonist for the treatment of type II diabetes, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 2468–2473, DOI: [10.1016/j.bmcl.2009.03.036](https://doi.org/10.1016/j.bmcl.2009.03.036).

48 Y. Zheng and Y. Li, Novel stereoselective synthesis of 7 β -methyl-substituted 5-androstene derivatives, *J. Org. Chem.*, 2003, **68**, 1603–1606, DOI: [10.1021/jo020290x](https://doi.org/10.1021/jo020290x).

49 B. B. Shingate, B. G. Hazra, V. S. Pore, R. G. Gonnade and M. M. Bhadbhade, Stereoselective syntheses of unnatural steroid C(20*R*) aldehydes by ionic hydrogenation of C-20 tertiary alcohols, *Tetrahedron Lett.*, 2006, **47**, 9343–9347, DOI: [10.1016/j.tetlet.2006.10.116](https://doi.org/10.1016/j.tetlet.2006.10.116).

50 S. Simaan, J. S. Siegel and S. E. Biali, Tris(aryl methyl) derivatives of 1,3,5-trimethoxy- and 1,3,5-triethylbenzene, *J. Org. Chem.*, 2003, **68**, 3699–370, DOI: [10.1021/jo034016u](https://doi.org/10.1021/jo034016u).

51 L. Kuno, N. Seri and S. E. Biali, Tetraaddition of PhLi to a ketocalixarene derivative, *Org. Lett.*, 2007, **9**, 1577–1580, DOI: [10.1021/o1070429w](https://doi.org/10.1021/o1070429w).

52 V. A. Soloshonok, H. Ueki, R. Tiwari, C. Cai and V. J. Hruby, Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and (*S*)- or (*R*)-3-(*E*-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: Practical method for preparation of β -substituted pyroglutamic acids and prolines, *J. Org. Chem.*, 2004, **69**, 4984–4990, DOI: [10.1021/jo0495438](https://doi.org/10.1021/jo0495438).

53 M. A. Brimble, R. M. Davey, M. D. McLeod and M. Murphey, Synthesis of 3-azido-2,3,6-trideoxy- β -D-arabinohexopyranosyl pyranonaphthoquinone analogues of medermycin, *Org. Biol. Chem.*, 2003, **1**, 1690–1700, DOI: [10.1039/B301449P](https://doi.org/10.1039/B301449P).

54 K. Rathwell, J. Sperry and M. A. Brimble, Synthesis of triazole analogues of the nanaomycin antibiotics using 'click chemistry', *Tetrahedron*, 2010, **66**, 4002–4009, DOI: [10.1016/j.tet.2010.04.048](https://doi.org/10.1016/j.tet.2010.04.048).

55 T. Liu, X. Wang and D. Yin, Recent progress towards ionic hydrogenation: Lewis acid catalyzed hydrogenation using organosilanes as donors of hydride ions, *RSC Adv.*, 2015, **5**, 75794–75805, DOI: [10.1039/C5RA15172D](https://doi.org/10.1039/C5RA15172D).

56 R. M. Bullock, Catalytic ionic hydrogenations, *Chem. Eur. J.*, 2004, **10**, 2366–2374, DOI: [10.1002/chem.200305639](https://doi.org/10.1002/chem.200305639).

57 J. K. Augstine, P. Algarsamy and V. Akabote, Novel and highly regioselective Friedel-Crafts alkylation of 3,5-dimethoxy-aniline using an aldehyde and triethylsilane as reducing agent, *Synlett*, 2008, 2429–2432, DOI: [10.1055/s-2008-1078207](https://doi.org/10.1055/s-2008-1078207).

58 A. Mahadevan, H. Sard, M. Gonzalez and J. C. McKew, A general method for C₃ reductive alkylation of indoles, *Tetrahedron Lett.*, 2003, **44**, 4589–4591, DOI: [10.1016/S0040-4039\(03\)01010-4](https://doi.org/10.1016/S0040-4039(03)01010-4).

59 S. Baskaran, E. Hanan, D. Byun and W. Shen, A facile reduction of 2-aminopyrimidines with triethylsilane and trifluoroacetic acid, *Tetrahedron Lett.*, 2004, **45**, 2107–2111, DOI: [10.1016/j.tetlet.2004.01.056](https://doi.org/10.1016/j.tetlet.2004.01.056).

60 B.-C. Chen, J. E. Sundeen, P. Guo, M. S. Bednarz and R. Zhao, Novel triethylsilane mediated reductive N-alkylation of amines: improved synthesis of 1-(4-imidazolyl)methyl-4-sulfonylbenzodiazepines, new farnesyltransferase inhibitors, *Tetrahedron Lett.*, 2001, **42**, 1245–1246, DOI: [10.1016/S0040-4039\(00\)02257-7](https://doi.org/10.1016/S0040-4039(00)02257-7).

61 H. Imagawa, T. Tsuchihashi, R. K. Singh, H. Yamamoto, T. Sugihara and M. Nishizawa, Triethyl- (or trimethyl)-silyl triflate-catalyzed reductive cleavage of triphenylmethyl (trityl) ethers with triethylsilane, *Org. Lett.*, 2003, **5**, 153–155, DOI: [10.1021/ol0271988](https://doi.org/10.1021/ol0271988).

62 J. E. Aaseng and O. R. Gautun, Synthesis of substituted (*S*)-2-aminotetralins *via* ring-opening of aziridines prepared from l-aspartic acid β -*tert*-butyl ester, *Tetrahedron*, 2010, **66**, 8982–8991, DOI: [10.1016/j.tet.2010.09.025](https://doi.org/10.1016/j.tet.2010.09.025).

63 S. Lee, T. G. LaCour, D. Lantrip and P. L. Fuchs, Redox refunctionalization of steroid spiroketals. Structure correction of Ritterazine M, *Org. Lett.*, 2002, **4**, 313–316, DOI: [10.1021/ol0165894](https://doi.org/10.1021/ol0165894).

64 Y. Yang, Y. Li and B. Yu, Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal β -N-acetylglucosaminidases, *J. Am. Chem. Soc.*, 2009, **131**, 12076–12077, DOI: [10.1021/ja9055245](https://doi.org/10.1021/ja9055245).

65 A. B. Hughes and B. E. Sleefs, Effective methods for the synthesis of *N*-methyl β -amino acids from all twenty common α -amino acids using 1,3-oxazolidin-5-ones and 1,3-oxazinan-6-ones, *Helv. Chim. Acta*, 2006, **89**, 2611–3637, DOI: [10.1002/hlca.200690235](https://doi.org/10.1002/hlca.200690235).

66 J. E. Resek, Intramolecular ene reaction of a chiral bicyclic lactam, *J. Org. Chem.*, 2008, **73**, 9792–9794, DOI: [10.1021/jo801696r](https://doi.org/10.1021/jo801696r).

67 K. A. Kumar, T. S. Sreelekha, K. N. Shivkumara, K. C. Prakasha and D. C. Gowda, Zinc-catalyzed reduction of imines by triethylsilane, *Synth. Commun.*, 2009, **39**, 1332–1341, DOI: [10.1080/00397910802521246](https://doi.org/10.1080/00397910802521246).

68 M. Mirza-Aghayan, R. Boukherroub and M. Rahimifard, Palladium-catalyzed reduction of nitroaromatic compounds to the corresponding anilines, *Appl. Organomet. Chem.*, 2010, **24**, 477–480, DOI: [10.1002/aoc.1645](https://doi.org/10.1002/aoc.1645).

69 B. Kramer and S. R. Waldvogel, Highly modular construction of differently substituted dihydrodibenzo[a,c]cycloheptenes: Fast and efficient access to derivatives of 2,2'-cyclo-7,8'-neolignans, *Angew. Chem., Int. Ed.*, 2004, **43**, 2446–2449, DOI: [10.1002/anie.200353597](https://doi.org/10.1002/anie.200353597).

70 F. L. Bideau, J. Henique, P. Pigeon, J.-M. Joerger, S. Top and G. Jaouen, A short route to cyclopentadienyltricarbonylrhenium substituted derivatives, *J. Organomet. Chem.*, 2003, **668**, 140–144, DOI: [10.1016/S0022-328X\(02\)02090-9](https://doi.org/10.1016/S0022-328X(02)02090-9).

71 M. N. Masuno and T. F. Molinski, Regioselective cationic reduction of 2-aryl-1-*N*-(ethoxycarbonyl)enamines to 2-arylethylamine carbamates, *Tetrahedron Lett.*, 2001, **42**, 8263–8266, DOI: [10.1016/S0040-4039\(01\)01780-4](https://doi.org/10.1016/S0040-4039(01)01780-4).

72 H. Hioki, N. Shima, K. Kawaguchi, K. Harada, M. Kubo, T. Esumi, T. Nishimaki-Mogami, J.-i. Sawada, T. Hashimoto, Y. Asakawa and Y. Fukuyama, Synthesis of riccardin C and its seven analogues. Part 1: The role of their phenolic hydroxy groups as LXR α agonists, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 738–741, DOI: [10.1016/j.bmcl.2008.12.022](https://doi.org/10.1016/j.bmcl.2008.12.022).

73 B. B. Shingate and B. G. Hazra, Ionic hydrogenation-directed stereoselective construction of C-20(*H*) stereogenic center in steroid side chains: Scope and limitations, *Tetrahedron*, 2017, **73**, 2396–2414, DOI: [10.1016/j.tet.2017.03.029](https://doi.org/10.1016/j.tet.2017.03.029).

74 S. F. Nielsen, A. Kharazmi and S. B. Christensen, Modifications of the α , β -double bond in chalcones only marginally affect the antiprotozoal activities, *Bioorg. Med. Chem.*, 1998, **6**, 937–945, DOI: [10.1016/S0968-0896\(98\)00051-0](https://doi.org/10.1016/S0968-0896(98)00051-0).

75 F. A. Carey and A. S. Court, Silicon-containing carbanions. II. Ketene thioacetal synthesis *via* 2-lithio-2-trimethylsilyl-1,3-dithiane, *J. Org. Chem.*, 1972, **37**, 1926–1929, DOI: [10.1021/jo00977a015](https://doi.org/10.1021/jo00977a015).

76 J. Mlynarski and A. Banaszek, Synthetic routes to methyl 3-deoxy-aldulosonic acid methyl esters and their 2-deoxy isomers based on the Horner-Emmons and Peterson reaction of sugar lactones, *Tetrahedron*, 1999, **55**, 2785–2794, DOI: [10.1016/S0040-4020\(99\)00049-6](https://doi.org/10.1016/S0040-4020(99)00049-6).

77 The plant dioscoria, which is cultivated in many parts of India, is an abundant source of diosgenin. 16-Dehydropegnolone acetate is prepared commercially from diosgenin following Marker's procedure, R. E. Marker, R. B. Wagner, P. R. Ulshafer, E. L. Wittbecker, D. P. J. Goldsmith and C. H. Rouf, Steroidal Sapogenins, *J. Am. Chem. Soc.*, 1947, **69**, 2167–2230, DOI: [10.1021/ja01201a032](https://doi.org/10.1021/ja01201a032).

78 B. B. Shingate, B. G. Hazra, V. S. Pore, R. G. Gonnade and M. M. Bhadbhade, Ionic hydrogenation of C-20, 22-ketene dithioacetal: stereoselective synthesis of steroid C (20*R*) aldehydes, *Chem. Commun.*, 2004, 2194–2195, DOI: [10.1039/B407952C](https://doi.org/10.1039/B407952C).

79 B. B. Shingate, B. G. Hazra, V. S. Pore, R. G. Gonnade and M. M. Bhadbhade, Stereoselective syntheses of 20-*epi* cholanic acid derivatives from 16-dehydropregnenolone acetate, *Tetrahedron*, 2007, **63**, 5622–5635, DOI: [10.1016/j.tet.2007.04.014](https://doi.org/10.1016/j.tet.2007.04.014).

80 T.-L. Ho, K.-Y. Lee and C.-K. Chen, Structural amendment and stereoselective synthesis of Mutisianthol, *J. Org. Chem.*, 1997, **62**, 3365–3369, DOI: [10.1021/jo970073+](https://doi.org/10.1021/jo970073+).

81 B. Vacher, P. Funes, P. Chopin, D. Cussac, P. Heusler, A. Tourette and M. Marien, Rigid analogues of the α 2-adrenergic blocker atipamezole: Small changes, big consequences, *J. Med. Chem.*, 2010, **53**, 6986–6995, DOI: [10.1021/jm1006269](https://doi.org/10.1021/jm1006269).

82 M. Anzini, L. Canullo, C. Braile, A. Cappelli, A. Gallelli, S. Vomero, M. C. Menziani, P. G. De Benedetti, M. Rizzo, S. Collina, O. Azzolina, M. Sbacchi, C. Ghelardini and N. Galeotti, Synthesis, biological evaluation, and receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as κ -opioid receptor agonists endowed with antinociceptive and antiamnesic activity, *J. Med. Chem.*, 2003, **46**, 3853–3864, DOI: [10.1021/jm0307640](https://doi.org/10.1021/jm0307640).

83 J. Huang, F. Xiong and F.-E. Chen, Total synthesis of (+)-biotin *via* a quinine-mediated asymmetric alcoholysis of *meso*-cyclic anhydride strategy, *Tetrahedron: Asymmetry*, 2008, **19**, 1436–1443, DOI: [10.1016/j.tetasy.2008.05.020](https://doi.org/10.1016/j.tetasy.2008.05.020).

84 N. Li, X.-H. Chen, J. Song, S.-W. Luo, W. Fan and L.-Z. Gong, Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: Reversal of the stereochemistry by tuning the 3,3'-disubstituents of phosphoric acids, *J. Am. Chem. Soc.*, 2009, **131**, 15301–15310, DOI: [10.1021/ja905320q](https://doi.org/10.1021/ja905320q).

85 M. P. Doyle and C. C. McOske, Silane reductions in acidic media. 10. Ionic hydrogenation of cycloalkenes. Stereoselectivity and mechanism, *J. Org. Chem.*, 1978, **43**, 693–696, DOI: [10.1021/jo00398a039](https://doi.org/10.1021/jo00398a039).

86 J. K. Whitesell and R. Apodaca, Synthesis and resolution of a new chiral C2-symmetric bisphenol: *Trans*-1,2-bis(2-hydroxyphenyl)cyclopentane, *Tetrahedron Lett.*, 1997, **38**, 2589–2592, DOI: [10.1016/S0040-4039\(97\)00421-8](https://doi.org/10.1016/S0040-4039(97)00421-8).

87 S. W. McCombie, B. Cox, S.-I. Lin, A. K. Ganguly and A. T. McPhail, Controlling benzylic functionality and stereochemistry: 1. Synthesis of the secopseudopterosin aglycone, *Tetrahedron Lett.*, 1991, **32**, 2083–2086, DOI: [10.1016/S0040-4039\(00\)71242-1](https://doi.org/10.1016/S0040-4039(00)71242-1).

88 T. Ravindranathan, S. P. Chavan, S. S. Patil and G. Pai, A novel one-pot annelation, decarboxylation reaction: Synthesis of (\pm)-*trans*-benzohydridane, *Tetrahedron Lett.*, 2002, **43**, 1889–1891, DOI: [10.1016/S0040-4039\(02\)00131-4](https://doi.org/10.1016/S0040-4039(02)00131-4).

89 G. H. Posner and C. Switzer, Total synthesis of natural estrone and estradiol methyl ethers in extremely high enantiomeric purity *via* an asymmetric Michael addition to an unsaturated sulfoxide, *J. Am. Chem. Soc.*, 1986, **108**, 1239–1244, DOI: [10.1021/ja00266a019](https://doi.org/10.1021/ja00266a019).

90 J. H. Rigby, N. C. Warshakoon and A. J. Payen, Studies on chromium(0)-promoted higher-order cycloaddition-based benzannulation. Total synthesis of (+)-Estradiol, *J. Am. Chem. Soc.*, 1999, **121**, 8237–8245, DOI: [10.1021/ja991016w](https://doi.org/10.1021/ja991016w).

91 T. Sugahara and K. Ogasawara, Enantioconvergent synthesis of (+)-estrone from racemic 4-*tert*-butoxy-2-cyclopentenone, *Tetrahedron Lett.*, 1996, **37**, 7403–7406, DOI: [10.1016/0040-4039\(96\)01688-7](https://doi.org/10.1016/0040-4039(96)01688-7).

92 S. Schwarz, B. Undeutsch and H. Gorls, Ionic hydrogenation of 3-methoxy-14 α ,15 α -methylenestr-1,3,5(10),8-tetraen-17 α -ol: A correction, *Steroids*, 1996, **61**, 48–49, DOI: [10.1016/0039-128X\(95\)00175-P](https://doi.org/10.1016/0039-128X(95)00175-P).

93 S. Takano, M. Moriya and K. Ogasawara, A concise stereocontrolled total synthesis of (+)-estrone, *Tetrahedron Lett.*, 1992, **33**, 1909–1910, DOI: [10.1016/S0040-4039\(00\)74175-X](https://doi.org/10.1016/S0040-4039(00)74175-X).

94 J. C. Cannon, Y. Chang, V. E. Amoo and K. A. Walker, Stereospecific route to *trans*-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolines, *Synthesis*, 1986, 494–496, DOI: [10.1055/s-1986-31687](https://doi.org/10.1055/s-1986-31687).

95 M. A. Brodney, M. L. Cole, J. A. Freemont, S. Kyi, P. C. Junk, A. Padwa, A. G. Riches and J. H. Ryan, Stereoselective reductions of *N*-Boc-hexahydro-1*H*-indolin-5(6*H*)-ones, *Tetrahedron Lett.*, 2007, **48**, 1939–1943, DOI: [10.1016/j.tetlet.2007.01.078](https://doi.org/10.1016/j.tetlet.2007.01.078).

96 M. Saito, J. Matsuo and H. Ishibashi, Stereoselective synthesis of *cis* and *trans*-fused 3a-aryloctahydroindoles using cyclization of *N*-vinyl α -(methylthio)acetamides: synthesis of (-)-mesembrane, *Tetrahedron*, 2007, **63**, 4865–4873, DOI: [10.1016/j.tet.2007.03.153](https://doi.org/10.1016/j.tet.2007.03.153).

97 K. Kobayashi, M. Uchida, T. Uneda, K. Yoneda, M. Tanmatsu, O. Morikawa and H. Konishi, An efficient method for the one-pot construction of the 1*H*-naphtho[2,3-*c*]pyran-5,10-dione system, *J. Chem. Soc., Perkin Trans. 1*, 2001, 2977–2982, DOI: [10.1039/B106933K](https://doi.org/10.1039/B106933K).

98 K. Kobayashi, M. Uchida, T. Uneda, M. Tanmatsu, O. Morikawa and H. Konishi, One-pot preparation of 1*H*-naphtho[2,3-*c*]pyran-5,10-diones and its application to concise total synthesis of (\pm)-eleutherin and (\pm)-isoeleutherin, *Tetrahedron Lett.*, 1998, **39**, 7725–7728, DOI: [10.1016/S0040-4039\(98\)01683-9](https://doi.org/10.1016/S0040-4039(98)01683-9).

99 J. L. Garrido, I. Alonso and J. C. Carretero, One-step palladium-catalyzed synthesis of substituted dihydrofurans from the carbonate derivatives of γ -hydroxy- α , β -unsaturated sulfones, *J. Org. Chem.*, 1998, **63**, 9406–9413, DOI: [10.1021/jo981391r](https://doi.org/10.1021/jo981391r).

100 A. Pelter, R. S. Ward and G. M. Little, Approaches to 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane lignans *via* asymmetric synthesis of dihydro- and tetrahydro-furan derivatives, *J. Chem. Soc., Perkin Trans. 1*, 1990, 2775–2790, DOI: [10.1039/P19900002775](https://doi.org/10.1039/P19900002775).

101 D. J. Hallett, U. Gerhard, S. C. Goodacre, L. Hitzel, T. J. Sparey, S. Thomas, M. Rowley and R. G. Ball, Neighboring group participation of the indole nucleus: An unusual DAST-mediated rearrangement reaction, *J. Org. Chem.*, 2000, **65**, 4984–4993, DOI: [10.1021/ja0004759](https://doi.org/10.1021/ja0004759).

102 D.-C. Ha, C.-S. Yun and Y. Lee, Samarium diiodide-promoted cyclization of *N*-(ω -iodoalkyl)imides to polyhydroxylated indolizidinones and pyrrolizidinones: Synthesis of (+)-Lentiginosine, *J. Org. Chem.*, 2000, **65**, 621–623, DOI: [10.1021/jo9913762](https://doi.org/10.1021/jo9913762).

103 U. Rosentreter, Stereoselective synthesis of all-*trans*-isomers of 1,2,3,4-tetrahydropyridines and piperidines from Hantzsch-type 1,4-dihydropyridines, *Synthesis*, 1985, 210–212, DOI: [10.1055/s-1985-31160](https://doi.org/10.1055/s-1985-31160).

104 J. E. Baldwin, S. J. Bamford, A. M. Fryer and M. E. Wood, A versatile approach to acromelic acid analogues, *Tetrahedron Lett.*, 1995, **36**, 4869–4872, DOI: [10.1016/0040-4039\(95\)00841-Y](https://doi.org/10.1016/0040-4039(95)00841-Y).

105 J. E. Baldwin, S. J. Bamford, A. M. Fryer, M. P. W. Rudolph and M. E. Wood, Towards a versatile synthesis of kainoids II: Two methods for establishment of C-4 stereochemistry, *Tetrahedron*, 1997, **53**, 5255–5272, DOI: [10.1016/S0040-4020\(97\)00191-9](https://doi.org/10.1016/S0040-4020(97)00191-9).

106 P. Magnus, K. S. Matthews and V. Lynch, New strategy for the synthesis of tetrahydroisoquinoline alkaloids, *Org. Lett.*, 2003, **5**, 2181–2184, DOI: [10.1021/ol034683+](https://doi.org/10.1021/ol034683+).

107 S. L. Roach, R. I. Higuchi, M. E. Adams, Y. Liu, D. S. Karanewsky, K. B. Marschke, D. E. Mais, J. N. Miner and L. Zhi, Discovery of nonsteroidal glucocorticoid receptor ligands based on 6-indole-1,2,3,4-tetrahydroquinolines, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 3504–3508, DOI: [10.1016/j.bmcl.2008.05.029](https://doi.org/10.1016/j.bmcl.2008.05.029).

108 J. M. Humphrey, E. P. Arnold, T. A. Chappie, J. B. Feltenberger, A. Nagel, W. Simon, M. Suarez-

Contreras, N. J. Tom and B. T. O'Neill, Diastereoselective synthesis of 2,3,6-trisubstituted piperidines, *J. Org. Chem.*, 2009, **74**, 4525–4536, DOI: [10.1021/jo9003184](https://doi.org/10.1021/jo9003184).

109 S. Stupnikova, E. Petushkova, D. Tanajev, V. Lusis and D. Muceniece, Synthesis and alkylation of 4-aryl-5-oxo-1h-2,3,4,5-tetrahydroindeno[1,2-*b*]pyridines, *Chem. Heterocycl. Compd.*, 2010, **46**, 859–867, DOI: [10.1007/s10593-010-0595-x](https://doi.org/10.1007/s10593-010-0595-x).

110 M. Ibrahim-Quali, Synthesis of pentacyclic steroids, *Steroids*, 2008, **73**, 775–797, DOI: [10.1016/j.steroids.2008.04.005](https://doi.org/10.1016/j.steroids.2008.04.005).

111 K. Dallas, D. K. Bates and M. Xia, Sulfenylation using sulfoxides. Intramolecular cyclization of 2- and 3-acylpyrroles, *J. Org. Chem.*, 1998, **63**, 9190–9196, DOI: [10.1021/jo00105a026](https://doi.org/10.1021/jo00105a026).

112 K. Tamura, Y. Kato, A. Ishikawa, Y. Kato, M. Himori, M. Yoshida, Y. Takashima, T. Suzuki, Y. Kawabe, O. Cynshi, T. Kodama, E. Niki and M. Shimizu, Design and synthesis of 4,6-di-tert-butyl-2,3-dihydro-5-benzofuranols as a novel series of antiatherogenic antioxidants, *J. Med. Chem.*, 2003, **46**, 3083–3093, DOI: [10.1021/jm030062a](https://doi.org/10.1021/jm030062a).

113 S. J. Stachel, M. Nilges and D. L. Van Vranken, Synthesis and isomerization of biindolinones from *collybia peronata* and *tricholoma sculpturatum*, *J. Org. Chem.*, 1997, **62**, 4756–4762, DOI: [10.1021/jo970388p](https://doi.org/10.1021/jo970388p).

114 M. A. Carr, P. E. Creviston, D. R. Hutchison, J. H. Kennedy, V. V. Khau, T. J. Kress, M. R. Leanna, J. D. Marshall, M. J. Martinelli, B. C. Peterson, D. L. Varie and J. P. Wepsiec, Synthetic studies toward the partial ergot alkaloid LY228729, a potent 5HT1A receptor agonist, *J. Org. Chem.*, 1997, **62**, 8640–8653, DOI: [10.1021/jo971256z](https://doi.org/10.1021/jo971256z).

115 R. Lartia, H. Bertrand and M. P. Teulade-Fichou, Improved synthesis of quinacridine derivatives, *Synlett*, 2006, 610–614, DOI: [10.1055/s-2006-932465](https://doi.org/10.1055/s-2006-932465).

116 M. Mirza-Aghayan, R. Boukherroub, M. Bolourchiana and M. Hosseini, Palladium-catalyzed reduction of olefins with triethylsilane, *Tetrahedron Lett.*, 2003, **44**, 4579–4580, DOI: [10.1016/S0040-4039\(03\)00981-X](https://doi.org/10.1016/S0040-4039(03)00981-X).

117 G. A. Olah, Q. Wang and G. K. Surya Prakash, Ionic hydrogenation with triethylsilane-trifluoroacetic acid–ammonium fluoride or triethylsilane–pyridinium poly(hydrogen fluoride), *Synlett*, 1992, 647–650, DOI: [10.1055/s-1992-21443](https://doi.org/10.1055/s-1992-21443).

