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s W–Y, new 24-homoscalaranes
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Three new scalarane-type sesterterpenoids, lendenfeldaranes W–Y (1–3), along with a known analogue,

lendenfeldarane D (4), were isolated from a marine sponge identified as Lendenfeldia species. The

structures of all isolates were determined based on spectroscopic methods. Scalarane 1 exhibited

significant activity in enhancing alkaline phosphatase (ALP) activity.
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1 Introduction

Sponges of the genus Lendenfeldia (phylum Porifera, class
Demospongiae, subclass Keratosa, order Dictyoceratida, family
Thorectidae, subfamily Phyllospongiinae) are broadly distributed
across shallow coral reefs in the Asia–Pacic region. These
marine invertebrates have attracted signicant scientic atten-
tion owing to their rich repertoire of secondary metabolites,
many of which display noteworthy pharmacological potential.
Among these, sesterterpenoids-particularly 26-carbon homo-
scalarane and 24-homoscalarane derivatives, represent the
dominant chemical constituents of Lendenfeldia species. A
variety of biological activities have been reported for these
compounds, including anti-inammatory,1–4 cytotoxic,5–11

antimicrobial,12–14 and anti-osteoporotic effects,15 under-
standing their promise as valuable leads in drug discovery and
biomedical research.

In our previous work, we reported the isolation of a series of
scalarane-type sesterterpenoids from a Lendenfeldia sponge
collected in the coastal waters of Taiwan, together with an
evaluation of their biological activities. Building on this
research, we have now isolated three new 24-homoscalaranes,
designated lendenfeldaranes W–Y (1–3), along with a known
analogue, lendenfeldarane D (4) (ref. 9) (Fig. 1). The structures
of compounds 1–3 were established through detailed spectro-
scopic analyses. Furthermore, their anti-osteoporotic potential
was assessed by examining their ability to enhance ALP activity
in MG63 osteoblast-like cells.
2 Results and discussion

Lendenfeldarane W (1) was obtained as an amorphous solid.
Themolecular formula was determined to be C28H44O6 from the
(+)-HRESIMS ion atm/z 499.30284 [M + Na]+ (calcd for C28H44O6

+ Na, 499.30301), corresponding to seven degrees of
RSC Adv., 2025, 15, 44877–44882 | 44877
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Fig. 1 Structures of lendenfeldaranes W–Y (1–3), lendenfeldarane D (4), felixin B (5), and felixin A (6).

Table 1 1H and 13C NMR data for lendenfeldaranes W–Y (1–3)

Position

1 2 3

dH
a (J in Hz) dC

b, Mult.c dH
a (J in Hz) dC

b, Mult.c dH
a (J in Hz) dC

b, Mult.c

1a 0.59 dddd
(13.2, 13.2, 3.6, 1.2)

34.0, CH2 0.55 dddd
(13.8, 13.8, 3.6, 1.2)

34.6, CH2 0.53 dddd
(13.2, 13.2, 3.6, 1.2)

34.5, CH2

b 2.10 br d (13.2) 1.99 m 2.13 m
2a 1.47 ddddd

(18.0, 3.6, 3.6, 3.6, 3.6)
18.3, CH2 1.44 md 18.2, CH2 1.45 md 18.4, CH2

b 1.56 md 1.56 m 1.54 m
3a 1.44 m 41.7, CH2 1.46 m 41.4, CH2 1.44 br d (13.2)d 41.6, CH2

b 1.21 dd (13.2, 3.6) 1.14 m 1.19 dd (13.2, 4.8)
4 33.0, C 33.0, C 32.9, C
5 1.01 dd (13.2, 2.4) 57.0, CH 1.02 dd (12.0, 1.8) 57.1, CH 1.00 dd (12.0, 1.8) 56.6, CH
6a 1.56 md 17.6, CH2 1.60 m 17.7, CH2 4.60 m 68.4, CH
b 1.41 ddd (13.2, 13.2, 3.6) 1.44 md

7a 1.06 ddd (13.2, 12.6, 3.6) 41.5, CH2 1.11 ddd (13.2, 13.2, 4.2) 40.8, CH2 1.40 md 2.18 m 44.3, CH2

b 1.97 ddd (12.6, 3.6, 3.6) 1.80 ddd (13.2, 3.6, 3.6)
8 36.7, C 37.2, C 39.1, C
9 1.35 br d (12.6) 52.5, CH 1.40 dd (13.2, 4.2) 52.7, CH 1.40 br d (13.8)d 53.0, CH
10 41.7, C 40.1, C —e

11a 1.88 ddd (15.0, 3.0, 2.4) 25.1, CH2 2.07 m 24.3, CH2 1.98 m 25.0, CH2

b 2.26 ddd (15.0, 12.6, 3.0) 2.17 m
12 4.96 dd (3.0, 3.0) 74.1, CH 5.00 dd (3.0, 2.4) 76.0, CH 4.63 dd (3.0, 1.8) 77.6, CH
13 42.1, C 41.2, C 39.5, C
14 2.14 dd (3.0, 2.4) 52.0, CH 2.12 dd (14.4, 4.2) 48.8, CH 1.57 m 56.1, CH
15 5.98 dd (10.2, 2.4) 132.2, CH 2.55 dd (17.4, 4.2)-Ha 34.9, CH2 2.26 m 2.34 md —e

2.43 dd (17.4, 14.4)-Hb

16 5.71 dd (10.2, 3.0) 127.4, CH 197.4, C 6.64 dd (3.0, 3.0) 139.6, CH
17 80.2, C 136.7, C —e

18 2.47 s 62.8, CH 7.31 s 163.5, CH 1.93 d (17.4)-Ha 35.2, CH2

2.27 br d (17.4)-Hb

19 0.89 s 33.9, CH3 0.89 s 33.7, CH3 0.88 s 33.8, CH3

20 0.78 s 21.9, CH3 0.84 s 21.8, CH3 0.78 s 21.9, CH3

21 1.08 s 17.3, CH3 1.01 s 15.8, CH3 1.24 s 16.9, CH3

22a 4.04 d (12.0) 62.6, CH2 4.63 d (12.0) 64.6, CH2 4.05 d (11.4) 62.9, CH2

b 3.88 d (12.0) 4.12 d (12.0) 3.92 dd (11.4, 1.2)
23 0.84 s 16.6, CH3 1.17 s 18.6, CH3 0.92 s 20.8, CH3

24 4.41 q (6.6) 85.1, CH 197.8, C 199.4, C
25 5.28 d (3.0) 97.8, CH 2.44 s 30.7, CH3 2.34 sd 25.4, CH3

26 1.18 d (6.6) 15.7, CH3

OAc-12 2.15 s 170.4, C 2.07 s 170.3, C 21.2, CH3 2.10 s 170.1, C
21.4, CH3 21.4, CH3

OAc-22 2.07 s 170.8, C
21.2, CH3

OH-17 2.31 br s
OH-25 2.73 br d (3.0)

a Spectra recorded at 600 MHz in CDCl3.
b Spectra recorded at 150 MHz in CDCl3.

c Multiplicity was deduced by 13C, HSQC, and HMBC spectra.
d Signals overlapped. e — signals were not observed.
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unsaturation. The IR spectrum showed absorptions at 3419 and
1735 cm−1, indicating the presence of hydroxy and ester
carbonyl groups.

The 1H NMR data for 1 (Table 1) displayed four tertiary
methyl singlets at dH 0.78 (H3-20), 0.84 (H3-23), 0.89 (H3-19), and
1.08 (H3-21); one secondary methyl doublet at dH 1.18 (3H, d, J=
6.6 Hz, H3-26); two olenic protons at dH 5.98 (1H, dd, J = 10.2,
2.4 Hz, H-15) and 5.71 (1H, dd, J= 10.2, 3.0 Hz, H-16); and three
oxymethine protons at dH 5.28 (1H, d, J = 3.0 Hz, H-25), 4.96
(1H, dd, J= 3.0, 3.0 Hz, H-12), and 4.41 (1H, q, J= 6.6 Hz, H-24).
In addition, an oxymethylene group was evident from the di-
astereotopic geminal protons at dH 4.04 (1H, d, J = 12.0 Hz, H-
20a) and 3.88 (1H, d, J = 12.0 Hz, H-20b). The 13C NMR and
HSQC spectra revealed 28 carbon signals (Table 1), comprising
one 1,2-disubstituted double bond (dC 132.2/CH-15; 127.4/CH-
16), one acetal carbon (dC 97.8/CH-25), one oxygenated quater-
nary carbon (dC 80.2/C-17), two oxymethines (dC 85.1/CH-24;
74.1/CH-12), one oxymethylene (dC 62.6/CH2-22), four tertiary
methyls (dC 33.9/CH3-19; 21.9/CH3-20; 17.3/CH3-21; 16.6/CH3-
23), one secondary methyl (dC 15.7/CH3-26), six aliphatic
methylenes (dC 41.7/CH2-3; 41.5/CH2-7; 34.0/CH2-1; 25.1/CH2-
11; 18.3/CH2-2; 17.6/CH2-6), four aliphatic methines (dC 62.8/
CH-18; 57.0/CH-5; 52.5/CH-9; 52.0/CH-14), four non-oxygenated
quaternary carbons (dC 41.7/C-10; 36.7/C-8; 33.0/C-4; 42.1/C-13),
and one acetoxy group (dC 21.4/acetate methyl; 170.4/acetate
carbonyl).

Analysis of the NMR data indicated that two degrees of
unsaturation were attributed to one acetoxy group and a 1,2-
disubstituted olen, while the remaining ve degrees of unsa-
turation dened a pentacyclic homoscalarane skeleton. This
inference was supported by the 1H–1H COSY correlations of 1
(Fig. 2), which established six partial spin systems: H2-1/H2-2/
H2-3, H-5/H2-6/H2-7, H-9/H2-11/H-12, H-14/H-15/H-16, H-18/H-
25, and H-24/H3-26. Key 2J- and 3J-HMBC correlations from
protons to quaternary carbons, such as H2-3, H-5/C-4; H2-7, H-9,
H-15/C-8; H-5, H-9/C-10; H-15, H-18, H-25/C-13; and H-15, H-16,
H-18, H-24, H-25, H3-26/C-17, conrmed a 6/6/6/6/5 fused
pentacyclic 24-homoscalarane framework.

The oxymethylene unit (dC 62.6) correlated with the methy-
lene protons at dH 4.04 and 3.88 in the HSQC spectrum, and
these protons showed 2J- and 3J-HMBC correlations to C-10 (dC
41.7), C-1 (dC 34.0) and C-9 (dC 52.5), indicating a hydroxymethyl
Fig. 2 Key COSY and HMBC correlations of 1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
substituent at C-10 (Fig. 2). Further HMBC correlations, H3-19/
C-3, C-4, C-5, C-20; H3-20/C-3, C-4, C-5, C-19; H3-21/C-7, C-8, C-9,
C-14; H3-23/C-12, C-13, C-14, C-18; and H3-26/C-17, C-24,
established the position of Me-19, Me-20, Me-21, Me-23, and
Me-26 at C-4, C-4, C-8, C-13, and C-24, respectively.

An acetoxy substituent was placed at C-12, an oxymethine
center, based on the chemical shis of H-12 (dH 4.96, dd, J= 3.0,
3.0 Hz) and C-12 (dC 74.1), which closely matched those re-
ported for felixin D (dH 4.91, dd, J = 3.2, 2.4 Hz; dC 74.6),6

a known 24-homoscalarane analogue possessing an identical
functional group. Although no HMBC correlation was observed
between H-12 and the acetate carbonyl, the substitution pattern
was conrmed by comparison. The hydroxy group at C-25 was
deduced from the COSY correlation between the hydroxy proton
(dH 2.73, d, J = 3.0 Hz, OH-25) and the acetal proton at dH 5.28
(br d, J = 3.0 Hz, H-25). Formation of a cyclic ether linkage
between C-24 and C-25 was evidenced by the HMBC correlation
from H-25 (dH 5.28) to the oxymethine carbon at C-24 (dC 85.1).
The chemical shi of C-25 (dC 97.8) was consistent with its
assignment as an acetal carbon.

Of the six oxygen atoms in the molecular formula, ve were
accounted for by an acetal (including one hydroxy group), an
additional hydroxy group, and an acetoxy substituent. The
remaining oxygen atom was assigned as a hydroxy group
attached to C-17, supported by the downeld chemical shi of
the oxygenated quaternary carbon (dC 80.2).

The stereochemistry of 1 was determined by analysis of NOE
correlations in the NOESY spectrum (Fig. 3). Following the
established convention for scalarane-type sesterterpenoids, H-5
and the hydroxymethyl group at C-10 were assigned to the a-
and b-faces, respectively, based on the absence of an NOE
correlation between H-5 and H2-22.16,17 In the NOESY spectrum
of 1, H-9 showed correlations with H-5 and H-14, but not with
H3-21 and H2-22, indicating that H-9 and H-14 reside on the
a face, whereas Me-21 and the C-10 hydroxymethyl group are
positioned on the b-face. Correlations of H3-23 with both H3-21
and H-12 established the b-orientations of Me-23 and H-12. H-
18 correlated with H-14, but not with H3-23, placing H-18 on
the a-face, while H-25 correlated with H-12 and H3-23, sup-
porting its b-orientation. Additionally, a correlation between H-
Fig. 3 Stereo-view of 1 (generated by computer modeling) and
calculated distances (Å) between selected protons with key NOESY
correlations.

RSC Adv., 2025, 15, 44877–44882 | 44879
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Fig. 5 Stereo-view of 2 (generated by computer modeling) and
calculated distances (Å) between selected protons with key NOESY
correlations.

Fig. 6 Key COSY and HMBC correlations of 3.
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15 and H-16 conrmed the Z-geometry of the C-15/16 double
bond. The hydroxy proton at C-25 (OH-25) showed correlation
with OH-17, indicating the a-orientation of the hydroxy group at
C-17. Taken together, these data established the absolute
conguration of 1 as 5S, 8R, 9S, 10R, 12S, 13S, 14S, 17R, 18R,
24S, 25R. Notably, compound 1 represents the rst reported
example of a 17-hydroxy scalarane derivative.

Lendenfeldarane X (2) was assigned a molecular formula of
C29H42O6 based on its (+)-HRESIMS ion at m/z 509.28714 (calcd
for C29H42O6 + Na, 509.28736), corresponding to nine degrees of
unsaturation. Analysis of the 1H and 13C NMR data (Table 1)
indicated that 2 belongs to the 24-homoscalarane class, closely
resembling the known analogue felixin B (5) (Fig. 1), originally
isolated from the Formosan marine sponge Ircinia felix.6 The
key structural difference between 2 and 5 lies in the substitution
at C-10: in 5, a hydroxymethyl group is present (dH 4.03, 1H, d, J
= 11.6 Hz; 3.89, 1H, d, J = 11.6 Hz/dC 63.0, CH2-22; dC 41.8, C-
10),6 whereas in 2 this functionality is replaced by an acetox-
ymethyl group (dH 4.63, 1H, d, J = 12.0 Hz; 4.12, 1H, d, J = 12.0
Hz/dC 64.6, CH2-22; dC 40.1, C-10). Detailed interpretation of the
2D NMR spectroscopic data of 2 corroborated this substitution,
thereby establishing its planar structure (Fig. 4).

NOESY correlations of 2 established the congurations of the
stereogenic centers in rings A–D, which were consistent with
those of 1 and 5 (Fig. 5). The olenic proton H-18 (dH 7.31)
exhibited correlations withH-12 (dH 5.00) andH3-23 (dH 1.17), but
not with the acetyl methyl H3-25 (dH 2.44), supporting an s-cis
diene conguration for C-18/17/24. Based on these data, the
stereogenic carbons were assigned as 5S, 8R, 9S, 10R, 12S, 13S,
14S. Thus, the structure of lendenfeldarane X (2) was established.

Lendenfeldarane Y (3) was obtained as an amorphous
powder with the molecular formula C27H42O5, established by
(+)-HRESIMS at m/z 469.29239 (calcd for C27H42O5 + Na,
469.29245), indicating seven degrees of unsaturation. IR
absorptions at 3443, 1731, and 1664 cm−1 revealed hydroxy,
ester carbonyl, and a,b-unsaturated ketone groups. NMR data of
3 closely resembled those of felixin A (6)(ref. 6) (Fig. 1), except
for an additional oxymethine signal (dC 68.4/dH 4.60, 1H, m, CH-
6), consistent with a C-6 hydroxy substitution, further
conrmed by 1H–1H COSY crosslations of H-5/H-6/H2-7 (Fig. 6).

In the NOESY spectrum of 3 (Fig. 7), a correlation between H-
6 (dH 4.60) and H3-21 (dH 1.24) placed the C-6 hydroxy group on
Fig. 4 Key COSY and HMBC correlations of 2.

Fig. 7 Stereo-view of 3 (generated by computer modeling) and
calculated distances (Å) between selected protons with key NOESY
correlations.

44880 | RSC Adv., 2025, 15, 44877–44882
the a-face. H-16 (dH 6.64) showed a correlation with H3-25 (dH
2.34), consistent with an s-trans a,b-unsaturated ketone. The
NOESY data of 3were comparable to those of 2 and 6, indicating
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The ALP activity was assessed after treating MG63 cells with
homoscalaranes 1, 2, and 4 and alendronate sodium (positive control)
at concentration of 10 mM for 72 ha

Compounds
ALP activity
(king unit per mgprot)

MTT
(% control)

1 20.04 � 3.67b 159.90 � 2.28
2 3.81 � 1.91 30.02 � 1.75
4 −5.65 � 0.79 14.64 � 0.34
Alendronate sodium 21.45 �� 5.21b 95.14 � 12.24
Control 2.53 � 0.63 100.03 � 2.28

a Data are expressed with the mean standard error of the mean (SEM) (n
= 3). The signicance was determined with Student's t-test. b p < 0.01
and comparison with untreated cells.
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the same stereochemical framework, and the stereogenic
centers of 3 were assigned as 5S, 6S, 8R, 9S, 10S, 12S, 13R, 14S.

Compounds 1, 2, and 4 were evaluated for osteogenic activity
in MG63 cells at 10 mM (72 h). Compound 1 enhanced ALP
activity (20.04 KU per mgprot) and cell viability (159.90%),
whereas compound 2 reduced viability to 30.02%. Compound 4
was the most cytotoxic, lowering viability to 14.64% (Table 2).
3 Conclusions

Marine sponges of the genus Lendenfeldia are well known as
rich sources of scalarane-type sesterterpenoids with diverse
structures and notable biological activities.16,17 In this study,
three new 24-homoscalaranes, lendenfeldaranes W–Y (1–3),
along with a known analogue, lendenfeldarane D (4),9 were
isolated from Lendenfeldia sp. In MG63 osteoblast-like cells,
compound 1 signicantly enhanced ALP activity and cell
viability, showing effects comparable to or exceeding those of
alendronate sodium, whereas compound 4 was cytotoxic and
suppressed osteogenic differentiation. These results underscore
the osteogenic potential of scalarane derivatives and support
further investigation of sponge-derived sesterterpenoids as
candidates for bone regenerative agents.
4 Experimental
4.1 General experimental procedures

Optical rotations were measured on a JASCO P-1010 digital
polarimeter using the sodium D line (589 nm) with a 10 mm
cell. IR spectra were obtained with a Thermo Scientic Nicolet
iS5 FT-IR spectrophotometer. NMR spectra were recorded on
a 600 MHz Jeol ECZ NMR spectrometer using the residual
CHCl3 (dH 7.26 ppm) and CDCl3 (dC 77.0 ppm) as internal
standards for 1H and 13C NMR, respectively; coupling constants
(J) are presented in Hertz (Hz). ESIMS and HRESIMS were
acquired on a Thermo Fisher Orbitrap Exploris 120 (positive SI).
Crude extracts were fractionated by silica gel CC (230–400mesh,
Merck). TLC was performed on silica gel 60F254 (0.20 mm,
Macherey-Nagel) and RP-18 F254s (0.16–0.20 mm, Merck) plates,
visualized under UV and with 10% H2SO4/heat. Final purica-
tion used RP-HPLC (Luna C18(2), 5 mm, 100 Å, 250 × 21.2 mm)
on a Hitachi L-7110 pump with L-2400 PDA detector.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4.2 Animal material

A specimen of the genus Lendenfeldia was collected by SCUBA
diving along the southern coast of Taiwan in April 2019. The
material was preserved as a voucher (specimen no. 2019-04-SP)
at the National Museum of Marine Biology & Aquarium
(NMMBA), Taiwan. Species-level identication was conrmed
by Professor Yusheng M. Huang (National Penghu University of
Science and Technology).
4.3 Extraction and isolation

The freeze-dried sponge (wet/dry: 2900/213 g) was extracted
with MeOH/CH2Cl2 (1 : 1, v/v) at room temperature. The crude
extract (33.7 g) was partitioned between EtOAc and water, and
the EtOAc layer (7.93 g) was fractionated by silical gel CC (n-
hexane / n-hexane/EtOAC) to give 14 fractions (A–N). Frac-
tion G was further puried by silica gel CC (n-hexane/acetone,
8 : 1 / acetone) to yield subfractions G1–G15, and G10 was
subjected to RP-HPLC (C18, MeOH/H2O 80 : 20, 5.0 mL min−1)
to afford 3 (0.7 mg, Rt = 20.9 min), 2 (1.6 mg, Rt = 39.1 min), 4
(1.0 mg, Rt = 47.4 min), and 1 (1.2 mg, Rt = 53.4 min),
respectively.

4.3.1 Lendenfeldarane W (1). Amorphous powder; [a] −81
(c 0.09, CHCl3); IR (KBr) nmax 3419, 1735 cm−1; 1H (600 MHz,
CDCl3) and

13C NMR (150 MHz, CDCl3) data see Table 1; ESIMS:
m/z 499 [M + Na]+; HRESIMS: m/z 499.30284 (calcd for C28H44O6

+ Na, 499.30301).
4.3.2 Lendenfeldarane X (2). Amorphous powder; [a] 96 (c

0.08, CHCl3); IR (KBr) nmax 1738, 1682 cm−1; 1H (600 MHz,
CDCl3) and

13C NMR (150 MHz, CDCl3) data see Table 1; ESIMS:
m/z 509 [M + Na]+; HRESIMS: m/z 509.28714 (calcd for C29H42O6

+ Na, 509.28736).
4.3.3 Lendenfeldarane Y (3). Amorphous powder; [a] 162 (c

0.05, CHCl3); IR (KBr) nmax 3443, 1731, 1663 cm
−1; 1H (600 MHz,

CDCl3) and
13C NMR (150 MHz, CDCl3) data see Table 1; ESIMS:

m/z 469 [M + Na]+; HRESIMS: m/z 469.29239 (calcd for C27H42O5

+ Na, 469.29245).
4.3.4 Lendenfeldarane D (4). Amorphous powder; [a] 135 (c

0.08, CHCl3) (ref. 9 [a] 38 (c 0.05, CHCl3)); IR (KBr) nmax 1740,
1672 cm−1; ESIMS: m/z 523 [M + Na]+.
4.4 ALP activity assay and cell viability assays

The osteogenic activity of compounds 1, 2, and 4 was evaluated
in MG63 human osteoblast-like cells obtained from the Bi-
oresource Collection and Research Center (BCRC, Hsinchu,
Taiwan; BCRC 60279). ALP activity was measured following
treatment with test compounds according to establish protocols
with minor modications.18 Cell viability was assessed by MTT
assay: MG63 cells (1 × 103 per well) were seeded in 96-well
plates, incubated 24 h, and treated with alendronate (0.01 mM)
or compounds (10 mM) for 72 h. MTT solution (10 mL, 5 mg
mL−1) and medium (90 mL) were added for 4 h, and formazan
crystals were dissolved in 100 mL DMSO. Absorbance at 570 nm
was measured as an indicator of viability.19
RSC Adv., 2025, 15, 44877–44882 | 44881
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