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ed In–CeO2/g-C3N4 S-scheme
heterojunction photocatalyst with tuned redox
ability for the photocatalytic degradation of
pharmaceutical contaminants

Mazen R. Alrahili, a Mohamed Abdel Rafea,b Magdi E. A. Zaki,c M. Khairy,c

Mohamed R. El-Aassar,d Sultan Albarakati,e Imran Shakir,f Abdullah K. Alanazig

and Muhammad Aadil *h

Herein, the synthesis of an indium-doped cerium oxide/graphitic carbon nitride (In–CeO2/g-C3N4) S-scheme

heterojunction aimed at optimizing photocatalytic degradation under visible light for the remediation of

pharmaceutical wastewater is reported. The materials were synthesized via a hydrothermal process, in

which pure CeO2 and In-modified CeO2 (In–CeO2) were initially synthesized, followed by the incorporation

of g-C3N4 to produce the heterojunction. A series of characterization methods, such as X-ray diffraction

(XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning

electron microscopy (SEM), validated the effective synthesis and structural integrity of CeO2, In–CeO2, and

In–CeO2/g-C3N4. The optical bandgap of the samples was determined, presenting a reduction from

2.97 eV for CeO2 to 2.69 eV for In–CeO2/g-C3N4, which facilitated better visible-light absorption.

Photocurrent and electrochemical impedance spectroscopy (EIS) characterizations indicated enhanced

charge separation and reduced recombination in the In–CeO2/g-C3N4 heterojunction. Photocatalytic

experiments for the degradation of levofloxacin (LVX) demonstrated that the In–CeO2/g-C3N4

heterojunction achieved 85% degradation, significantly higher than those achieved by In–CeO2 (63%) and

CeO2 (44%), highlighting the enhanced photocatalytic performance of the heterojunction. The higher

photocatalytic activity is attributed to the formation of an S-scheme charge migration channel, enabling

efficient charge separation. Results indicate that the In–CeO2/g-C3N4 heterojunction has great potential

for water purification applications, particularly in degrading drug contaminants.
1. Introduction

Utilizing visible light for the photocatalytic degradation of
organic pollutants is an economical and sustainable cleantech
solution to the escalating environmental pollution and water
contamination.1,2 Despite its promise, the development of
photocatalysts is a challenging process because the
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conventional semiconductor materials, including TiO2,3,4

ZnO,5,6 and CeO2,7,8 have low quantum efficiency due to their
electronic band structures (wide optical bandgaps), which
prevent harnessing the visible part (∼43%) of solar light, and
their photogenerated charge carriers (electron–hole pairs)
recombine rapidly limiting their availability.9–11

Cerium oxide (CeO2), commonly known as ceria, is an
emerging material in the realm of photocatalysts, which is
resistant to photocorrosion and is chemically and thermally
stable.12,13 The applicability of ceria as a promising photo-
catalyst is explicitly limited by its weak visible-light activity and
high electron–hole pair recombination, which are crucial
factors for visible-light-driven photocatalysis.14–16 Several inves-
tigations, including metal-doping, indicate that cerium oxide
modication tunes the electronic structure and enhances the
quantum efficiency.16–19 The rapid electron–hole recombination
can be suppressed by coupling ceria with another photocatalytic
material through the formation of heterostructure junctions,
thereby increasing the availability of charge carriers for photo-
catalytic reactions.20–23
RSC Adv., 2025, 15, 47271–47281 | 47271
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Assembling two different photocatalytic materials with
distinct electronic properties to construct heterostructure
junctions enhances charge separation, which is crucial for
signicant photocatalytic performance.24–26 These materials
possess distinct electronic band structures that facilitate the
migration and separation of photogenerated electron–hole
pairs, enhancing the photocatalytic performance.27,28 For
instance, S-scheme heterojunction formation involves the
interfacial contact of two photocatalysts, in which band struc-
ture alignment results in the accumulation of holes in the
valence band of one of the combining photocatalysts and elec-
trons in the conduction band of the other photocatalyst, which
is mainly compelled by the internal electric eld.29 Graphitic
carbon nitride g-C3N4 (g-CN), a polymeric compound with
a layered structure of tri-s-triazine units, exhibits high thermal
and chemical stability with excellent visible-light activity. The
distinguished properties, which include non-toxicity, a unique
metal-free framework, and a semiconductor with a medium
band gap, enable its use as a sustainable catalyst for photo-
degradation applications. Despite these characteristics, g-CN
exhibits low quantum efficiency due to a low absorptivity coef-
cient and sluggish electron–hole separation, which can be
improved by modifying g-CN. Various reports present g-CN as
a promising material for the fabrication of heterostructure
junctions, as its unique structural framework favours interfacial
contact.30,31 For instance, ZrO2/g-CN,32 Ce(MoO4)2/g-CN, g-CN/
Bi2O2CO3–Bi4O7,33 Nd/Ni–LaFeO3/g-CN,34 CdMoO4/g-CN,35 ZnO/
g-CN,36 Ni-MOF/g-CN,37 and ZnAl-LDH/g-CN38 include the g-CN-
based material designs for wastewater decontamination appli-
cations. The ndings reveal that these composite designs not
only increase the optical response but also facilitate charge
separation and transport primarily through the formation of
heterojunctions.

Based on the facts described above, we synthesized a visible-
light-activated In–CeO2/g-CN S-scheme heterojunction to facil-
itate charge separation and transport, thereby augmenting the
effective photocatalytic removal of pharmaceutical pollutants.
The hydrothermal method was used to synthesize pure CeO2

and its indium-modied form, In–CeO2, while melamine was
calcinated for its thermal polymerization to prepare g-CN. Both
the components, In–CeO2 and g-CN, were subjected to ultra-
sonication to fabricate the In–CeO2/g-CN heterojunction. The
synthesized materials were characterized to investigate their
crystal structure formation, thermal stability, microstructure,
optical activity, and electrochemical response. The photo-
catalytic efficiency of In–CeO2/g-CN was estimated by degrading
levooxacin, a typical pollutant, showcasing the effect of
heterojunction formation on photocatalytic performance. The
present work aims to signicantly contribute to the design of
heterojunction materials for the photocatalytic degradation of
pharmaceutical contaminants in wastewater remediation.

2. Experimental
2.1 Chemicals

The chemicals, including ceric ammonium nitrate (Sigma-
Aldrich, (NH4)2[Ce(NO3)6], $ 98.5%), indium nitrate (Sigma-
47272 | RSC Adv., 2025, 15, 47271–47281
Aldrich, In(NO3)3, 99.99%), and melamine (Sigma-Aldrich,
Powder, 99%), were used in the synthesis of CeO2, In–CeO2,
and In–CeO2/g-CN materials. Levooxacin (LVX, C18H20FN3O4),
ethylenediaminetetraacetic disodium salt (Sigma-Aldrich,
EDTA-2Na, 99%), silver nitrate (AgNO3), isopropyl alcohol
(Sigma-Aldrich, IPA, 99%), and benzoquinone (Sigma-Aldrich,
BZQ, 99%) were used in the photocatalytic activity investiga-
tion. All the standards were prepared in DI water (k < 6 mS cm−1).
2.2 CeO2 and In–CeO2 synthesis

The facile hydrothermal method was applied to synthesize pure
CeO2 and In–CeO2 materials. Initially, 3 g of (NH4)2[Ce(NO3)6]
was added to 70 mL of DI water while stirring until the forma-
tion of a clear solution, followed by the addition of 0.15 g
In(NO3)3. The pH was raised to ∼10 with drop-by-drop addition
of NH4OH, and the solution was poured into a Teon cup
enclosed in an autoclave (stainless steel-made), following the
heating of the solution at 180 °C for 12 h. The precipitates
collected were thoroughly washed with DI water multiple times
to neutralize the pH and remove unreacted precursors, and then
dried at 55 °C for 2 h.
2.3 Preparation of g-CN powder

The g-CN powder was prepared from melamine through
thermal condensation.39 Experimentally, 2 g of the precursor
powder was placed in a 25 cc (porcelain) crucible and heated at
550 °C for 6 h at 5 °Cmin−1. Upon the completion of the heating
process, the crucible was removed from the furnace and allowed
to cool naturally in the air. The pale, yellowish-colored g-CN
formed was collected and stored in a dry environment.
2.4 In–CeO2/g-CN construction

The g-CN-based heterojunction of modied In–CeO2 was
formed using an ultrasonication method. In the experiment,
0.9 g of In–CeO2 was poured into DI water (100 mL) and soni-
cated with an ultrasonic probe for 1 hour. Similarly, in a beaker
(100 mL, DI water), 0.1 g of g-CN powder was separately soni-
cated. The resulting suspensions were mixed, followed by
sonication again for 1 hour to enhance the interaction and
dispersion of In–CeO2 with g-CN, assembling the In–CeO2/g-CN
heterojunction (Fig. 1).
2.5 Characterization

The crystal structure formation and phase purity of the fabri-
cated materials were investigated by powder XRD (X-ray
Diffractometer, Shimadzu 6100 AS, Cu-Ka radiation, l = 0.154
nm) and FTIR spectroscopy (Shimadzu IRAffinity-1S Spectro-
photometer), while for thermal stability, TGA (Thermo Plus Evo,
TG8120 Rigaku) was performed. The morphology was explored
by SEM (Scanning electron microscope, FEI S50) and optical
activity by UV-vis spectroscopy (Double-Beam Spectrophotom-
eter, Jenway/6850). The electrochemical response was recorded
on a three-electrode potentiostat (reference electrode = Ag/
AgCl, working electrode = indium tin oxide-coated glass, and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic of the synthesis of CeO2 and In–CeO2 (hydrothermal), g-CN (calcination), and In–CeO2/g-CN (ultrasonication).
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auxiliary electrode = Pt wire) in 1 M Na2SO4 electrolytic
solution.
2.6 Photocatalytic (PC) efficiency

The PC efficiency of CeO2, In–CeO2, and In–CeO2/g-CN photo-
catalysts was evaluated by degrading LVX under a Xe lamp
(300 W, UV cutoff lter l > 420 nm) placed 20 cm above the
reaction mixture. Initially, 0.05 g of CeO2, In–CeO2, and In–
CeO2/g-CN were dispersed in LVX (10 mg L−1, 100 mL) solutions
in three separate beakers. The resultant mixtures (LVX + pho-
tocatalyst) were kept in the dark and stirred for 40 minutes to
acquire LVX adsorption–desorption equilibria on the catalyst
surface. Aerward, the solutions were exposed to light to
initiate LVX degradation, following the separation of samples
from the working mixture to investigate the degradation
process. The catalyst In–CeO2/g-CN was recovered by centrifu-
gation and reused for LVX degradation under the same condi-
tions. The percentage degradation (D) was calculated using the
relation D(%)= (1− Ct/C0)× 100,40 where Ct represents the LVX
concentration at the specied time interval, while Co is its initial
concentration.
3. Results and discussion
3.1 Structural features

The crystal structure formation and phase purity of the
synthesized materials were veried via XRD patterns (2q =
© 2025 The Author(s). Published by the Royal Society of Chemistry
10°–80°), which are shown in Fig. 2(a). The peaks present at 2q
= 28.56°, 33.16°, 47.45°, 56.34°, 59.14°, 69.53°, 76.92°, and
79.12°, corresponding to the (111), (200), (220), (311), (222),
(400), (331), and (420) diffraction planes, are consistent with
the standard data (00-034-0394), conrming the formation of
CeO2.41 The indium-modied material shows a variation in its
diffraction peaks, which correspond to the structural changes
caused by the different ionic sizes of dopant indium and the
cerium host.42 Notably, the absence of any additional
diffraction peaks for pure CeO2 and its indium-modied
composition In–CeO2 conrms the phase purity and inser-
tion of indium ions in the CeO2 lattice. The lower-intensity
diffraction peaks in the XRD pattern of In–CeO2/g-CN corre-
spond to the interaction between In–CeO2 and g-CN, causing
microstructural changes.43,44 The distinct lattice vibrations of
the synthesized materials were conrmed from the FTIR
spectra, as displayed in Fig. 2(c). The presence of distinctive
Ce–O and Ce–O–Ce vibrations at 460 cm−1 and 1052 cm−1

conrms the formation of the synthesized materials.45 The
peaks at 1640 cm−1, 1426 cm−1, 1324 cm−1, and 1252 cm−1 in
the spectra of g-CN and In–CeO2/g-CN can be attributed to
C–N heterocyclic and aromatic stretching vibrations, while
the peak at 810 cm−1 corresponds to the bending vibration (s-
triazine units) of the g-CN framework.46–48 The additional –OH
stretching and –OH bending observed indicate moisture
adsorption on the material's surface.49,50 The thermal TGA
plots showcasing the mass loss of the material against the
RSC Adv., 2025, 15, 47271–47281 | 47273
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Fig. 2 (a) XRD patterns, (b) enlarged view of the diffraction patterns (2q = 26–32°), (c) FTIR spectra, and (d) TGA plots of the synthesized pure
CeO2, modified In–CeO2, and the In–CeO2/g-CN heterojunction.
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applied temperature of CeO2, In–CeO2, and In–CeO2/g-CN are
shown in Fig. 2(d). In the lower temperature zone (<300 °C),
minute weight losses of 2.29% (CeO2), 3.03% (In–CeO2), and
3.60% (In–CeO2/g-CN) were observed, which are due to
moisture removal. For the g-CN-based heterojunction mate-
rial, in the higher temperature zone (400–600 °C), 7.93% of
weight loss was witnessed, which corresponds to g-CN
combustion.51
Fig. 3 SEM images of (a) CeO2, (b) In–CeO2, and (c and d) In–CeO2/g-CN.
3.2 Morphological analysis

The microstructure and morphology of the synthesized CeO2,
In–CeO2, and In–CeO2/g-CN materials were examined by SEM
analysis, and the micrographs are presented in Fig. 3. For CeO2,

a ne granular-type aggregation was observed, while for In–
CeO2, the symmetry changes to irregular-sized crystallites with
varying sizes. Indium modication not only changes the
microstructure from granules to crystallites, but also from
aggregation to dispersion of the material. The g-CN integration
further increases dispersion, preventing agglomeration, as
evident in Fig. 3(d), which is substantial for photocatalytic
applications.
47274 | RSC Adv., 2025, 15, 47271–47281 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) UV-visible absorption spectra and (b) bandgap calculation from the Tauc plot model of the synthesized CeO2, In–CeO2, g-CN, and In–
CeO2/g-CN.
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3.3 Optical properties

The optical properties of CeO2, In–CeO2, g-CN, and In–CeO2/g-
CN materials were investigated by UV-vis absorption spectros-
copy, and the absorption spectra observed for different mate-
rials are presented in Fig. 4(a). The synthesized materials
feature absorption edges extending into the visible region.
Notably, indium-modication and heterojunction formation
with g-CN considerably enhances visible-light absorption, as
evident from the red-shi in the absorption edge.52,53 Fig. 4(b)
presents the Tauc plots generated to calculate the optical
bandgap (Eg),54 and the materials CeO2, In–CeO2, g-CN, and In–
CeO2/g-CN feature an Eg of 2.97 eV, 2.89 eV, 2.77 eV, and 2.69 eV,
respectively. The In–CeO2/g-CN heterojunction (Eg = 2.69 eV)
exhibits increased absorption, facilitating the separation of
electron–hole pairs under visible light and rendering it prom-
ising for photocatalytic applications.
Fig. 5 (a) Nyquist plots and (b) photocurrent responses of the CeO2, In–

© 2025 The Author(s). Published by the Royal Society of Chemistry
3.4 Electrochemical response

The electrochemical responses of CeO2, In–CeO2, g-CN, and In–
CeO2/g-CN materials were investigated to elucidate charge
transfer kinetics and electron–hole recombination rates. The
EIS results, presented as Nyquist plots in Fig. 5(a), reveal
a distinct electrochemical response. The semicircle diameter in
the Nyquist plot reects the charge transfer resistance (Rct) at
the working electrode–electrolyte interface.55 Notably, the In–
CeO2/g-CN heterojunction exhibits a smaller semicircle diam-
eter compared to its components, g-CN and In–CeO2, indicating
lower Rct and faster charge transfer kinetics.56–58 The light-on
photocurrent generation for the materials CeO2, In–CeO2, g-
CN, and In–CeO2/g-CN is presented in Fig. 5(b). The signi-
cantly increased photocurrent density observed for In–CeO2/g-
CN can be attributed to enhanced charge separation due to
band structure alignment, which suppresses rapid electron–
CeO2, g-CN, and In–CeO2/g-CN materials.

RSC Adv., 2025, 15, 47271–47281 | 47275
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hole recombination.59,60 The heterojunction formation
enhances charge transport, thereby increasing the availability of
electron–hole pairs or their participation in the photocatalytic
process.

3.5 PC activity

The PC activity of CeO2, In–CeO2, and In–CeO2/g-CN materials
was estimated by degrading LVX. The UV-vis absorption data of
the LVX samples separated from the aliquot at specied time
intervals (in the presence of In–CeO2/g-CN) are presented in
Fig. 6(a). The absorption intensity at lmax corresponds to the
LVX concentration, which decreases, indicating LVX degrada-
tion. The absorption intensity rapidly declines in the presence
of the photocatalyst In–CeO2/g-CN as compared to In–CeO2 and
CeO2, which degrade LVX to a lower extent. In Fig. 6(b), the LVX
degradation (%) over the synthesized catalysts is presented,
which follows the order, CeO2 (44%) < In–CeO2 (63%) < In–
Fig. 6 (a) UV-vis absorption spectra of the samples collected during LVX
the catalytic efficiency.

Fig. 7 (a) Kinetic studies of LVX degradation over CeO2, In–CeO2, and I

47276 | RSC Adv., 2025, 15, 47271–47281
CeO2/g-CN (85%). The order of photocatalytic efficiency is
consistent with the optical properties and electrochemical
responses of the photocatalysts, which feature facilitated elec-
tron–hole separation and transport in In–CeO2/g-CN, revealing
its promising potential for photocatalytic applications.

The kinetics study of LVX degradation over the photo-
catalysts, CeO2, In–CeO2, and In–CeO2/g-CN, is shown in
Fig. 7(a), which presents 1st-order kinetics for LVX degradation.
The rate constants were calculated as 0.0075 min−1,
0.0123 min−1, and 0.0198 min−1, corresponding to CeO2, In–
CeO2, and In–CeO2/g-CN. The scavenging study presented in
Fig. 7(b) for LVX degradation in the presence of a photocatalyst
with the highest photocatalytic efficacy, In–CeO2/g-CN, was
performed using EDTA, AgNO3, IPA, and BQ for trapping holes
(h+), electrons (e−), hydroxyl radicals (HOc), and superoxide
radicals (cO2

−), respectively. In the presence of AgNO3, the
decline in LVX degradation was not signicant, but in the
degradation in the presence of In–CeO2/g-CN and (b) comparison of

n–CeO2/g-CN, and (b) scavenging studies over In–CeO2/g-CN.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Detailed comparison of the present work with previous studies

Sr. no. Photocatalyst Pollutant Conditions D(%) References

1 Ag-doped g-CN/Biochar Ciprooxacin (CIP) 50 ppm CIP, 50 mg catalyst, visible-light,
4 h

70% 61

2 ZnO/g-CN Methyl orange (MO) 10 ppm MO, 50 mg catalyst, 400 W lamp 83.71% 62
3 Ni-doped a-Fe2O3/g-CN Ciprooxacin (CIP) 10 mg per L CIP, 15 mg catalyst, solar

light ∼660 Wm−2
82.1% 63

4 g-CN/Bi2O2CO3 Carbamazepine (CBZ) 20 ppm CBZ, 1 g of catalyst, sunlight,
180 minutes

98% 64

5 ZnCr2O4/g-CN Ciprooxacin (CIP) 10 mg per L CIP, 75 mg of catalyst,
Halogen lamp, 120 minutes

74.36% 65

6 Bi2MoO6/g-CN Ciprooxacin (CFX) 10 mg per L CFX, 0.05 g of catalyst, LED
light, 90 minutes

89.04% 66

7 In–CeO2/g-CN Levooxacin (LVX) 10 mg per L LVX, 50 mg catalyst, Xe lamp
(300 W, UV cutoff lter l > 420 nm), and
80 minutes

85% Present study
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presence of IPA, the degradation dropped considerably. The
scavenging investigation presents the contribution of active
species in the order e− < h+ < cO2

− < HOc for LVX degradation. A
detailed comparison of the present work with previous ndings
is presented in Table 1.
Fig. 8 (a) Schematic of the proposed S-scheme In–CeO2/g-CN hete
alignments to study the stability of the catalyst.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Electronic band structure alignment and energy band ener-
gies hold vital signicance in designing heterojunction mate-
rials with a specic scheme for charge migration. To get
insights into the mechanism of LVX degradation over In–CeO2/
g-CN, the energy band values, VB maxima (EVB) and CB minima
rojunction and (b) reusability and (c) before-and-after XRD pattern

RSC Adv., 2025, 15, 47271–47281 | 47277
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(ECB) of g-CN and In–CeO2 were explored by applying the
relations:67,68

ECB = c − Ee − 0.5 Eg

EVB = ECB + Eg

Here, “c” is electronegativity, and Ee= 4.5 eV denotes the energy
of a free electron on the hydrogen scale. The calculated energy
band values were EVB = +2.42 eV for In–CeO2 and ECB = –

0.28 eV, while EVB = +1.43 eV and ECB = −1.34 eV for g-CN.
Thermodynamically, pure In–CeO2 is unable to generate cO2

−

radicals due to ECB being higher than the required reduction
potential (O2/cO2

− = −0.33 eV vs. NHE,69). Pure g-CN is unable
to generate HOc radicals as it has an EVB value lower than the
required oxidation potential (HO−/HOc = 1.99 eV and H2O/HOc
= 2.23 eV vs. NHE,70). But the scavenging studies reveal the
generation of both cO2

− and HOc radicals, which degrade LVX.
As shown in (Fig. 8), the low-redox-potential carriers, e− of In–
CeO2 and h+ of g-CN, recombine, leaving behind the active e− (g-
CN) and h+ (In–CeO2),71,72 which participate in the reduction
and oxidation reactions producing active radical species that
degrade LVX.

The reusability and structural stability of In–CeO2/g-CN were
studied by LVX degradation in different runs, and the results
are presented in Fig. 8(b and c). The photocatalyst retains∼95%
of its initial activity aer multiple cycles, indicating good
structural stability and recyclability; minor losses are likely due
to insufficient catalyst recovery. The diffraction pattern of the
recovered catalyst displays its structural stability, as no signi-
cant change was detected.
4. Conclusion

Pure CeO2 and its indium-modied composition, In–CeO2, were
hydrothermally fabricated, while g-CN was synthesized through
melamine calcination. The In–CeO2 material was dispersed on
g-CN through ultrasonication to construct the S-scheme In–
CeO2/g-CN heterojunction. XRD and FTIR analyses veried the
formation of CeO2, In–CeO2, and In–CeO2/g-CN, with thermal
stability indicated by TGA. SEM micrographs showcased the
dispersion of In–CeO2, with g-CN preventing agglomeration.
The In–CeO2/g-CN heterojunction increased visible-light
absorption under l > 420 nm illumination and facilitated
charge separation via band structure alignment, forming an S-
scheme of charge migration. The PC efficiency was evaluated
by LVX degradation in the presence of catalysts, CeO2, In–CeO2,
and In–CeO2/g-CN. The In–CeO2/g-CN catalyst exhibited
a maximum LVX degradation of 85% (0.0198 min−1) compared
to CeO2 and In–CeO2, which degraded LVX to an extent of 44%
(0.0075 min−1) and 63% (0.0123 min−1), respectively. The
formation of the In–CeO2/g-CN S-scheme heterojunction
enables the recombination of low-redox-potential charge
carriers (with low redox ability), preventing active charge
carriers (high redox ability) from recombining and making
them available for photocatalytic reactions. Despite the
improved activity, the study is limited to a single pollutant and
47278 | RSC Adv., 2025, 15, 47271–47281
Xe-lamp illumination conditions; future work will evaluate
performance under solar-simulated visible light and conduct
advanced interfacial analyses such as XPS.
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