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Researchers endeavor to collect odor information to prepare for the exploration of odor prediction. Such

researches will require machine learning algorithms with excellent data processing capabilities. Odor

perception also requires advanced sensor performance, including sensitivity, selectivity, stability and

minimum lower limits of detection. Gas sensing technologies play a key role in identifying gas mixtures

by providing critical response signals and characterization data. Here, we explore the recent advances in

gas sensing technologies to meet the pivotal needs of human olfactory perception. First, we summarize

the databases of olfactory perception. Then, the fundamental sensing principles of gas chromatography-

mass spectrometry and metal-oxide semiconductor, optical, and electrochemical sensors for molecular

odor prediction are briefly introduced. Finally, we connect the odor-related sensing technology with

suitable machine learning algorithms, encompassing areas like artificial neural networks (ANN), random

forest (RF), K nearest neighbors (KNN), support vector machine (SVM), extreme learning machine (ELM),

gradient boosting decision tree (GBDT), and decision tree (DT) approaches. In the future, machine

learning is expected to help build an understanding of the link between odors and human olfactory

sensory mechanisms, consequently making a significant contribution to olfactory research.
1. Introduction

Olfaction, as a critical sensory modality for environmental
perception, conveys rich chemical information—from natural
fragrances to hazardous volatiles—profoundly inuencing
animal behavior and emotional states.1

For humans, olfactory perception is a complex chemo-
sensory process that begins in the nasal cavity and culminates
in the brain. Its fundamental principle is that volatile organic
compounds (VOCs) combine to specic olfactory receptors,
triggering neural signals.2 These signals are relayed and pro-
cessed, ultimately being recognized by the cerebral cortex and
interpreted as a conscious perception of smell.

The working mechanism of olfaction can be broken down
into the following key steps: (1) odorant inhalation and trans-
port, during which airborne molecules are conveyed to the
olfactory epithelium and dissolve in the mucosal layer; (2)
olfactory receptor activation, where odorants interact with one
of the approximately 400 types of G protein-coupled receptors
located on the cilia of the olfactory sensory neurons; (3) signal
transduction and impulse generation, mediated by a cAMP-
Ltd, Chengdu 610101, China. E-mail:

du.cn

epartment of Biomedical Engineering,

na

the Royal Society of Chemistry
dependent pathway that elicits neuronal depolarization and
action potential propagation; (4) neural convergence and inte-
gration, achieved via the projection of olfactory neuron axons
onto glomerular units within the olfactory bulb, facilitating
initial odorant mapping; and (5) central processing and
perception, wherein olfactory information is relayed by mitral
cells to a distributed cortical network, including the piriform
cortex, amygdala, and entorhinal cortex, resulting in odor
identication, memory association, and emotional valuation3,4

(as shown in Fig. 1). Studies suggest the human nose can
discriminate up to a trillion olfactory stimuli,5 with distinct
molecular features eliciting divergent hedonic responses (e.g.,
pleasant aromas vs. putrid odors). While conventional odor
analysis relies on labor-intensive techniques (e.g., gas
chromatography-mass spectrometry, GC-MS, and electronic
nose6) or subjective panels, these methods lack scalability for
real-time, complex odor proling. This is primarily because the
complexity of odorant–receptor interactions and the dynamic
nature of real-world odor mixtures pose signicant challenges
for traditional analysis methods. To address these limitations,
emerging bionic and AI-driven approaches offer transformative
solutions. For instance, electronic noses and tactile-olfactory
fusion systems (e.g., star-nose-inspired bionic arrays) enable
robust odor discrimination and object recognition in non-visual
environments by mimicking multisensory biological percep-
tion. Machine learning further augments these platforms by
RSC Adv., 2025, 15, 45359–45375 | 45359
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Fig. 1 Schematic of the pathway of the biomimetic olfactory system. (a) Reproducedwith permission.7 Copyright from Springer Nature, 2024. (b)
Reproduced with permission.8 Copyright from AAAS, 2024. (c) Reproduced with permission.9 Copyright from Springer Nature, 2024.
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extracting latent structure–odor relationships from large data-
sets, enabling predictive modeling of unknown odorants based
on molecular features. In another study, a data-centric articial
olfactory system is described that addresses the limitations of
conventional sensitivity-oriented approaches by introducing an
Eigengraph-based electrochemical analysis. By mathematically
encoding implicit odor attributes as Mel-Frequency Cepstral
Coefficient (MFCC) feature vectors via the Fourier transform,
their method enables deep learning-driven in-depth analysis of
gas molecules. Experimental validation on mixed gases and
automotive exhaust demonstrates its effectiveness in gas clas-
sication. This work establishes a foundation for standardized
articial olfactory systems, offering a scalable framework for
advancing electronic nose technology.7

The human olfactory system demonstrates remarkable
discriminative capability because it contains a diverse array of
receptor cells that selectively respond to specic gas molecules.
For a long time, the replication of such biological complexity in
articial olfactory systems has been hindered by a fundamental
45360 | RSC Adv., 2025, 15, 45359–45375
challenge: the high-performance monolithic integration of
large-scale, heterogeneous sensor arrays. However, innovations
in nanomaterials and system integration technology are grad-
ually addressing this limitation. For instance, Wang et al.
demonstrated a bio-inspired olfactory chip that was integrated
with 10 000 individually addressable nanotube sensors on
a nanoporous substrate. When coupled with articial intelli-
gence, this platform achieves exceptional sensitivity and
discriminative capacity—successfully identifying 24 distinct
odors and complex gas mixtures. Furthermore, its integration
with vision sensors in a robotic dog system highlights its
potential for multimodal sensing in real-world applications.9

This shi, frommanual analysis to automated, data-driven odor
characterization models, enables high-throughput, objective
odor assessment across applications ranging from environ-
mental monitoring to biomedical diagnostics. Machine
learning can realize the prediction and classication of
unknown data by learning a large amount of data sets and
discovering the hidden rules in the data.10 In the domain of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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odor research, machine learning can realize the objective
description and odor prediction by analyzing the structural
information of odor molecules and building a prediction
model.11 Despite these advances, the practical implementation
of machine learning in odor prediction still faces challenges,
particularly in achieving generalizability across diverse sensing
data and perceptual descriptors. To bridge this gap, recent
studies have focused on developing more robust and inter-
pretable models that are capable of capturing the nonlinear
relationships between sensing data and human olfactory
perception. Such models not only require large-scale, high-
quality datasets but also sophisticated algorithms to handle
the complexity of odorant–odor associations.

This review systematically summarizes the recent advance-
ments and practical applications of olfactory perception
prediction models from sensing data, based on machine
learning (as shown in Fig. 2). The article rst introduces typical
sensing devices. Subsequently, it outlines the application cases
and experimental results of machine learning for odor predic-
tion in recent years, presenting key ndings and analyzing both
advantages and limitations. Finally, the article concludes by
exploring prospective developments and potential applications
of machine learning in odor prediction through advanced
sensing technologies.
2. Database of olfactory perception
2.1 The odorant database and olfactory perception

The growth of large models and big data is accelerating
advancements in science and technology. Olfactory datasets
play an important role in simulating the human sense of smell,
odor identication, environmental monitoring, health moni-
toring, and robotics.12 For example, Schreurs et al. described the
olfactory space and found that 40 billion possible compounds
Fig. 2 Human olfactory perception.

© 2025 The Author(s). Published by the Royal Society of Chemistry
are odorous.13 In order to understand the smell of a substance,
Keller et al. presented volunteers with a panel of odorants and
asked them to evaluate the perceptual qualities of each.14 They
established an olfactory psychophysical dataset that included
geometrical and topological properties, functional groups, and
atom types. Chacko et al. developed another odor database
comprising 480 distinct substances linked to approximately 55
000 associated perceptual responses. For each molecule, they
provided detailed perceptual ratings across three key dimen-
sions: odor intensity, pleasantness, and familiarity. Gamboa
et al. developed a comprehensive time-series dataset utilizing
a metal oxide semiconductor (MOS) gas sensor array to evaluate
the spoilage thresholds in wines, offering signicant insights
into food quality monitoring. This dataset, which is publicly
accessible, has been deposited in an open repository at https://
data.mendeley.com/datasets/vpc887d53s/, facilitating broader
research collaboration and reproducibility in the eld of food
science. The innovative approach underscores the potential of
sensor-based technologies to enhance food safety and shelf-
life assessment.15 Similarly, the e-nose dataset for meat was
used to analyze the quality of beef, as well as to discriminate
between beef and pork.16,17 Electronic nose (e-nose) sensor
arrays classify and quantify gases but suffer from measurement
dri over time due to chemosensory response changes,
compromising long-term data reliability. To enhance gas
quantication accuracy, Gordillo et al. developed a regression
approach that integrates machine learning techniques with
domain adaptation using the Kullback–Leibler importance
estimation procedure (KLIEP).

They trained and tested their model on a three-year dataset
from a 16-sensor e-nose array to validate its accuracy and
robustness.18 QuantumScents introduces a quantum
mechanics-enhanced derivative of the Leffingwell data set,
featuring 3.5 k diverse molecules (2–30 heavy atoms) with 3D
RSC Adv., 2025, 15, 45359–45375 | 45361
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coordinates, PBE0 energy, dipole moments, and Hirshfeld
charges. Burns et al. demonstrated the utility of Hirshfeld
charges for molecular scent classication using a message
passing neural network. The dataset and related resources are
freely accessible on Zenodo (https://zenodo.org/doi/10.5281/
zenodo.8239853).19

PubChem, established in 2004 under the National Institutes
of Health (NIH) Molecular Libraries Roadmap Initiatives, has
evolved into a pivotal chemical information repository for the
scientic community. It encompasses three interconnected
databases: substance, compound, and BioAssay, which collec-
tively provide comprehensive data on chemical substances,
their unique structures, SMILES, CID, chemical properties, and
biological activities. Another study delineated the architecture
and functionalities of the substance and compound databases,
detailing data sources, organization, submission protocols,
chemical structure standardization, and search interfaces.
Additionally, it introduces PubChem3D, offering theoretical 3D
structures of compounds, and PubChemRDF, facilitating data
sharing and integration through RDF-formatted resources.20

Nevertheless, comprehensive odor databases, integrating
both chemical concentration proles and corresponding olfac-
tory analysis results, remain notably absent in the current
literature. A preliminary database framework of multi-source
measurement data will be meaningful. The above database is
anticipated to provide an online platform for storing, sharing,
retrieving, updating, and mining odor perceptional data. It is
expected to make a website available; thus, workers,
researchers, and research institutions in the area of olfactory
studies could register, upload and analyze data to help enrich
the multi-source measurement database. Researchers can also
download and retrieve relevant data from the website within
certain limits of authority. Besides inputting data manually,
articial intelligence algorithms can be used to extract, calcu-
late and analyze data through the database. Odor measurement
data shows source characteristics, and each olfactory data point
can include mass spectrometry, MOS measurement, electro-
chemical, and optical sensor data, as well as data from molec-
ular structure and olfaction. Multiple measurement data
sources can uncover information about the substance in
multiple dimensions. Meanwhile, users can search the data
based on olfactory characteristics, such as the odorous and
odorless, or by inputting keywords into the search options.
2.2 The algorithm between an odorant database and
olfactory perception

Databases and algorithms maintain a symbiotic relationship in
data-driven research, where databases provide organized data
storage and retrieval mechanisms, while algorithms enable
systematic data processing, pattern recognition, and knowledge
extraction through computational operations. Specically,
advanced algorithmic approaches play a crucial role in uncov-
ering latent patterns and correlations within complex datasets.
Algorithms can mine the potential value of data and better
understand the relationships between substances and olfactory
data. The algorithms utilized for olfactory analysis encompass
45362 | RSC Adv., 2025, 15, 45359–45375
articial neural networks (ANN), random forests (RF), K-nearest
neighbors (KNN), support vector machines (SVM), extreme
learning machines (ELM), gradient boosting decision trees
(GBDT), decision trees (DT), and principal components analysis
(PCA). The performance of articial neural network algorithms
in olfactory analysis demonstrates a positive correlation with
dataset size, as larger datasets signicantly enhance themodel's
analytical capabilities. Furthermore, ANN operates as a black-
box model with limited interpretability, and RF is a white box.
In other words, the RF is more interpretable than ANN. Other
algorithms, such as layer neural networks, deep neural
networks, deep belief networks, gradient boosting machine,
LightGBM, and adaptive boosting k-nearest neighbors, have
been constructed to predict odor perception.
3. Odor impression prediction
research

In recent years, odor impression prediction (e.g., pleasantness,
intensity, and familiarity) has become a hot topic in olfactory
research. The relevant researchmethods can be categorized into
three broad groups: mass spectrometry, electronic nose (e-
nose), and molecular characterization.
3.1 Mass spectrometry

In numerous studies, gas chromatography-mass spectrometry
is typically used to detect and quantify volatile organic
compounds (VOCs). The test sample is added to the inlet
through an injection tank and then passed through a capillary
column with the help of carrier gas, usually an inert gas. At the
column outlet, VOCs in the sample are ionized, passed through
an electromagnetic eld, and ltered by mass-to-charge ratio.
The mass spectrometer ultimately analyzes the mass-to-charge
ratio to provide a ngerprint of the sample. As one of the
most common analytical techniques, Gas Chromatography-
Mass Spectrometry (GC-MS) is the gold standard for VOCs
analysis. To address the limitations of GC-MS, researchers have
developed various advanced analytical platforms, such as
selective ion ow tube-mass spectrometry (SIFT-MS), ion
mobility spectrometry (IMS), solid-phase microextraction/gas
chromatography-mass spectrometry (SPME/GC-MS), and
proton-transfer reaction-mass spectrometry (PRT-MS).

When the concentration of volatile organic compounds is at
the parts per billion level, the identication of VOCs is typically
achieved by gas chromatography-mass spectrometry (GC-MS).
For example, a recent study measured 19 odorants in wine
using GC-MS, and built a relationship between the odorants'
concentrations with an electronic nose.21 Another investigation
of VOCs using GC-MS was conducted to analyze the inuence of
ageing method and ageing time on roast beef tenderloin.22

Signicant differences in biomarker proles were observed
between wet-aged and dry-aged beef, with notably higher
concentrations of alkyl-pyrazines, 3-hydroxy-2-butanone, and 2-
acetyl-2-thiazoline detected in dry-aged samples compared to
their wet-aged counterparts. Other types of VOCs have also been
explored using GC-MS. For instance, a study used GC-MS for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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classifying gluten and non-gluten cereal our,23 constructing
a model that achieved an impressive 85.71% accuracy in di-
stinguishing botanical origins. In a separate investigation, the
aromatic prole of wine was systematically analyzed utilizing
GC-MS. This study represents the rst documented identica-
tion of ethyl formate, methyl acetate, and amyl acetate as
constituent compounds in Sauvignon Blanc wine.24 Meanwhile,
the authors used articial neural networks (ANN) to model wine
aroma and sensory quality, and the accuracy of the model was
95.4%. Similarly, gas chromatography was used to analyze Wuyi
rock tea, and the multilayer perceptron obtained an average
accuracy of 92.7% from 330 tea samples.25 In another study,
conducted by Chen et al., an experiment was designed to
investigate freshness biomarkers in sh. The researchers
utilized a Random Forest algorithm to analyze the correlation
between sensory sh odor and long-chain polyunsaturated fatty
acids. The model revealed that specic chemical classes,
including aldehydes, ketones, alcohols, and furans, were
signicantly associated with the perception of shiness. These
ndings provide valuable insights into the chemical basis of
odor-related freshness indicators in sh.26
3.2 Electronic nose

Electronic nose (E-nose) systems are an array of gas sensors.
They are fundamentally inspired by the human nose and are
designed to identify, recognize, and analyze volatile organic
compounds or gas biomarkers in various environments. An
electronic nose prototype can be classied into metal oxide
semiconductor, optical sensor, and electrochemical systems.

3.2.1 Metal-oxide semiconductors. Resistive metal oxide
semiconductor (MOS) sensors are the most widely used gas
sensors.27 As shown in Fig. 3(a), current electronic noses are not
yet comparable to the human nose,28 but researchers are using
large arrays of sensors to mimic human olfaction as closely as
possible. The structure of this MOS gas sensor is coated with
a metal oxide gas-sensitive thin lm on its surface, which is
used to adsorb and detect target gases (Fig. 3(b)).29
Fig. 3 (a) Sensor array used as an electronic nose. Reproduced with perm
framework. Reproduced with permission.29 Copyright from MDPI, 2025.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The sensitizing material of the MOS is commonly an n-type
semiconductor, such as ZnO, SnO2, In2O3, TiO2, Fe2O3 or
WO3.30 Zinc oxide (ZnO) is regarded as an ideal material for
making gas sensors because of its high electron mobility,
photoelectric response, wide bandgap, and excellent thermal
and chemical stability. As shown in Table 1, oxygen molecules
in the air adsorb electrons from the conduction band and form
different ionized oxygen (O− 2, O−, and O2−) at different
working temperatures. The relevant reactions can be expressed
as follows:

The process of developing ionized oxygen can generate an
electron depletion layer (EDL) near the surface of the MOS. A
broad EDL in the MOS will form a sensitive material in a highly
resistive state. Upon reducing the gas, the adsorbed electrons
transfer from the gas to the MOS, and the thickness of the EDL
becomes narrow, leading to a low-resistance sensor. The p-type
MOS reacts with gases in the opposite way to the n-type. The
change in resistance between the two gases is the detection
signal of the MOS electronic nose.

MOS gas sensors are mainly noble-metal-decorated MOS,
metal-ion-doped MOS, and composite MOS (as shown in Table
2). According to Yang's report,35 noble metal (Au, Pt) decorated
WO3 exhibited an excellent response to methyl salicylate with
a low limit of detection (100 ppb) compared to pure WO3

nanobers. The sensor also showed an excellent response when
using metal-ion-doped MOS. For example, Co-doped In2O3 di-
splayed an exceptional response toward triethylamine with an
obvious response of 3500.36 Sensors using composite MOS can
construct heterojunctions, thereby accelerating the transport of
electrons at the interface and ultimately altering the thickness
of the EDL at the surface of the MOS. For example, a sensor
based on a MoS2/TiO2 composite displayed a selective response
to ethanol and methanol at the ppm level. Furthermore, the
sensor also exhibited long-term stability and anti-humidity
resistance in the range of 20% to 90%.37

Studies have revealed that different nanostructured shapes
(e.g., nanoparticles, nano-thinlms, nanotubes, nanoowers,
nanosheets, nanowires, nanorods, and nanobers) have a high
ission.28 Copyright fromWiley, 2024. (b) Schematic of a commonMOS

RSC Adv., 2025, 15, 45359–45375 | 45363
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Table 1 Reaction processes on an MOS gas sensor

Analytes Reaction process Temperature Ref.

Ionized oxygen O (gas) 4 O2 (ads) RT 31
O2 (ads) + e− 4 O2

− (ads) T < 100 °C 32
O2

− (ads) + e− 4 2O− (ads) 100 °C < T < 300 °C 33
O− (ads) + e− 4 O2− (ads) T > 300 °C 34

Table 2 Brief summary of MOS gas sensors

Material Target gas Opt (°C) Tres Trec Synthesis method Con (ppm) Res Ref.

Ag/ZnO Ethanol 325 NA NA Sol–gel 50 32.5 38
Eu/SnO2 Acetone 280 4 3 Electrospinning 100 32.2 39
Ni/ZnO H2S 215 50 124 Electrospinning 50 474 40
Mo/SnO2 Ethanol 220 7 103 Electrospinning 100 46.8 41
Co/ZnO Acetone 370 60 77 Hydrothermal 5 18.5 42
Cr/ZnO Ethanol 300 NA NA Hydrothermal 400 45 43
Dy/In2O3 Ethanol 250 5 248 Hydrothermal 100 85 43
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surface-to-volume ratios, which indicate that gases are easily
diffused from the surface of the material (as shown in Fig. 4).
Suitable nanostructures contribute to the design of high-
performance gas sensors. Characteristic gaseous biomarkers
are produced when food spoils during production and trans-
portation. Therefore, the assessment of food freshness is
important for food quality and safety. For example, a SnSe2/
WO3-composite-based gas sensor was designed to evaluate egg
spoilage at room temperature.48 The sensor demonstrated
Fig. 4 (a) Scanning electron microscopy images of nanofibers. Reprod
electron microscopy images of nanotubes. Reproduced with permissio
images of nanoflowers reproduced with permission.46 Copyright from Els
Reproduced with permission.47 Copyright from Elsevier, 2024.

45364 | RSC Adv., 2025, 15, 45359–45375
a response value of 33.8% toward 10 ppm of H2S. In another
work, the Pd-decorated ZnO was prepared using a simple wet
chemical method. The sensor detected meat spoilage by
monitoring 400 ppm methyl amine with a response value of
99.5%.49

The morphology, limit of detection (LOD), response/recovery
time, and optimal working temperature are all signicant
aspects of sensing performance. These factors provide
uced with permission.44 Copyright from Elsevier, 2024. (b) Scanning
n.45 Copyright from Elsevier, 2023. (c) Scanning electron microscopy
evier, 2024. (d) Scanning electron microscopy images of nanospheres.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a comprehensive summary of the characteristics of MOS gas
sensors.

3.2.2 Optical gas sensors. Optical gas sensors utilize the
interaction between light and target gas molecules to detect and
quantify gas concentrations. Compared to traditional electro-
chemical or MOS sensors, they generally offer higher selectivity,
sensitivity, faster response times, and greater resistance to
poisoning or aging, making them widely applicable in various
elds. The basic principle of all optical gas sensors is based on
optical phenomena that occur when light interacts with matter.
When a beam of light passes through a gas, the gas molecules
change the light's absorption,54 uorescence,55 scattering,56 and
refractive index57 in specic ways, and these changes are map-
ped to the concentration of the gas (as shown in Fig. 5(a)).
Optical sensors exhibit better selectivity for gas detection and
can work at ambient temperature conditions. For instance,
Wang et al. developed a ZIF-67-based sensor that demonstrated
remarkable selectivity for 2-chloroethyl ethyl sulde (CEES)
detection, effectively distinguishing it from seven potential
interfering gases51 (as shown in Fig. 5(b)). Most importantly, the
optical gas sensor has excellent moisture resistance, ultrafast
response (0.5 s), long-term stability and reusability, and an
ultralow detection limit (19.1 ppb) for CEES at 95% RH. As
shown in Fig. 5(c), the test gas concentration can be determined
by its infrared absorption characteristics utilizing non-
dispersive infrared spectroscopy (NDIR). The NDIR sensor
with nanoantenna integrated narrowband detectors can detect
the gases of H2S, CO2, CH4, NO, CO, SO2, NO2, and CH2O.52

Meanwhile, the NDIR can also recognize gases in a mixture and
exhibit an ultralow detection limit toward CH4 (63 ppm), CO2 (2
ppm), and CO (11 ppm). By combining metal elements with
light-emitting diodes, a ChemLED array was successfully
fabricated. The fabricated device, comprising 100 distinct
ChemLED units, demonstrated responsive characteristics
toward gas mixtures, enabling the articial olfactory system to
accurately predict both the gas concentrations and chemical
compositions.50 In a similar manner to MOS noses, colorimetric
sensors can mimic human olfaction. The mechanisms of
colorimetric sensor arrays can provide color changes when the
sensor array responds to analyte types, and the color difference
maps can typically provide lower limits of detection, at the ppb
level53 (as shown in Fig. 5(d)). The odor visualization was also
applied to freshness monitoring. For example, ammonium
quaternized cellulose nanobers (C-CNFs) were designed to
recognize volatile organic compounds (VOCs) at 60% RH. The
C-CNFs exhibited a low detection limit for ammonia (2 ppm),
trimethylamine (3 ppm), dimethylamine (21 ppm), putrescine
(1 ppm), and cadaverine (1 ppm). The integration of colori-
metric sensor arrays with convolutional neural network (CNN)
technology enables the detection of key freshness biomarkers,
including ammonia, trimethylamine, dimethylamine, putres-
cine, and cadaverine. This combined analytical model demon-
strates exceptional performance in freshness monitoring,
achieving a high predictive accuracy of 99%.58 In order to meet
natural olfaction features, one study bridges the gap between
articial and biological olfaction by employing a biologically
inspired processing algorithm applied to a highly redundant
© 2025 The Author(s). Published by the Royal Society of Chemistry
sensor array. Using a webcam to capture RGB color intensities
from 15 optical indicators exposed to chemical vapors, each
pixel was treated as a sensor, yielding ∼28 000 copies repre-
senting 45 cross-selective virtual receptors. This redundancy
facilitated the modeling of the olfactory bulb as a network of
inhibitory and excitatory elements, while a Self-Organizing Map
(SOM) generated an over-segmented reference space to track the
real-time adsorption–desorption pathways of activated neurons.
The system demonstrated robust odor identication, despite
65% sensor anomalies, offering a scalable platform for imple-
menting algorithms that mimic biological olfaction
pathways.59,60

3.2.3 Electrochemical gas sensors. The gas-sensing princi-
ples underlying electrochemical gas sensors are based on redox
reactions.64 The reaction generates or consumes current, which
is proportional to the gas concentration. As shown in Fig. 6(a),
such sensors are composed of a counter, a reference, and
a working electrode that are immersed in an electrolyte. Usually,
a gas-permeable membrane covers the sensing electrode to
control the volume of gas diffusing toward the electrode
surface. Electrochemical gas sensors are primarily classied
into three distinct categories according to their fundamental
operating principles: potentiometric, amperometric, and
conductometric sensors. Notably, the development of such
sensors has been signicantly inuenced by biological systems,
particularly in mimicking their efficiency and sensitivity. As
shown in Fig. 6(b), an olfactory-inspired organic electro-
chemical transistor (OI-OECT) integrates chemical sensing,
tunable memory, and selective gas recognition in a single
device. The ion-gel electrolyte enables low-voltage operation
and synaptic-like behaviors, including inhibitory postsynaptic
currents and paired-pulse facilitation. The device demonstrates
volatile-to-nonvolatile memory switching via gate voltage
modulation (0 to −1 V) and functions as an early warning
system for gas leaks (e.g., NH3 and H2S) through cumulative
exposure detection. This work provides a compact platform for
articial olfaction by combining signal transduction, adaptive
memory, and gas discrimination.62 Lu et al. reported high-
performance stretchable all-gel OECTs using semiconducting
polymer gel active layers and poly(ionic liquid) ionogel elec-
trolytes. The interconnected gel network facilitates ion trans-
port while maintaining structural integrity under strain,
achieving an optimal balance between stretchability (50%) and
electrical performance (transconductance: 86.4 mS, on/off ratio:
1.2 × 105). These devices demonstrate exceptional cycling
stability (10 000 cycles at 30% strain) and multifunctionality as
electronic skins for robotic tactile sensing, neuromorphic
synapses, and gas sensors for food quality monitoring63 (as
shown in Fig. 6(c) and (d)). Inspired by the neuronal network
within the olfactory bulb glomerulus, one study reported an
articial chemosensory synapse that chemically modulates
neurotransmitter-like excitatory/inhibitory responses, mirror-
ing synaptic plasticity in olfactory pathways. The device, based
on a exible organic electrochemical transistor gated by
a chemoreceptive ionogel, demonstrates long-term memory
retention and erasure through ion dynamics, mimicking key
functions of the human olfactory system. This innovation
RSC Adv., 2025, 15, 45359–45375 | 45365
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Fig. 5 (a) Biological olfaction system and ChemLED. Reproduced with permission.50 Copyright from Wiley, 2024. (b) Sensor reflection spectra
after gas exposure and the associated wavelength shift distribution. Reproduced with permission.51 Copyright from Elsevier, 2024. (c) Eight target
gases detected by the proposed non-dispersive infrared architecture. Reproduced with permission.52 Copyright from Springer Nature, 2020. (d)
Optical nose for distinguishing meat products. Reproduced with permission.53 Copyright from the American Chemical Society, 2021.
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Fig. 6 (a) Schematic illustration of the electrochemical gas sensor. Reproduced with permission.61 Copyright from Elsevier, 2023. (b) Schematics
of the human olfactory system and an olfactory-inspired transistor configured for short-term and long-term potentiation states. Reproduced
with permission.62 Copyright from American Chemical Society, 2024. (c)–(d) A stretchable all-gel organic electrochemical transistor gas sensor
with a PEDOT:PSS gel active layer. Reproduced with permission.63 Copyright from Springer Nature, 2025.
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advances the development of biomimetic articial neuronal
systems for chemosensory applications.65,66 Another study
presents a proof-of-concept for a bioengineered hybrid nasal
construct that combines mechanically robust 3D bioprinted
cartilage-like tissue with a biocompatible biosensing platform
to replicate olfactory functionality. Utilizing multi-material 3D
bioprinting with tunable chondrocyte-laden bioinks, the
construct demonstrates enhanced cell viability and chondrocyte
behavior. Integrated with an electrochemical biosensing
Table 3 Comparison of the predominant technological pathways for od

Technology Mass spectrometry (MS)75 Electr

Principle Measurement of mass-to-charge
ratio of ionized molecules

Patter
respo

Key advantages High sensitivity & accuracy;
unambiguous compound
identication

Rapid
opera

Major limitations Expensive, non-portable; requires
skilled operation; poor real-time
capability

Lower
susce
interf

Suitable applications Laboratory-based analysis;
avoromics; biomarker discovery

Food
moni
qualit

Cost & complexity High Low t

© 2025 The Author(s). Published by the Royal Society of Chemistry
system, the hybrid construct enables odor perception for
specic airway disease biomarkers, explosives, and toxins,
offering potential applications in functional bionic interfaces
and humanoid cyborgs.67 In another work, an organic electro-
chemical transistor was designed; the device simulates typical
synaptic behavior to improve olfactory selectivity and obtain
ppb-level responses. Meanwhile, the design of an organic
electrochemical transistor (OECT) that simulates typical
synaptic behavior is a signicant advancement in the realm of
or impression prediction

onic nose (E-nose)76 Structure–odor relationship (SOR)77

n recognition of global
nse from a sensor array

Computational modeling linking
molecular structure to perceptual
odor

, portable, real-time
tion; cost-effective

No physical sample needed;
predicts odor of novel molecules

sensitivity/selectivity vs. MS;
ptible to environmental
erence

Limited accuracy for complex
mixtures; primarily theoretical

safety; environmental
toring; medical diagnostics;
y control

Fragrance design; theoretical
research; drug discovery

o medium Low

RSC Adv., 2025, 15, 45359–45375 | 45367
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bioinspired electronics and articial intelligence, particularly
for applications in olfactory sensing systems. This innovation
not only pushes the boundaries of response in detecting trace
amounts of substances (down to ppb levels) but also integrates
the biological function of short-term and long-term memory,
thereby enhancing the selectivity and intelligence of odor
recognition.68 Electrochemical gas sensors exhibit inherent
memory functions, enabling their integration into bio-inspired
systems. A recent study demonstrated this capability by imple-
menting an articial respiratory perception system on a single
polymer substrate, combining a graphene oxide-based humidity
sensor with an organic electrochemical transistor (OECT)
functioning as an articial synaptic device. The system
demonstrates rapid response and high sensitivity, with the
OECT exhibiting synaptic functionalities such as short- and
long-term plasticity. It achieves parallel monitoring of over 100
respiratory states and distinguishes respiratory behaviors with
a 5% difference, showcasing its potential for dynamic respira-
tion monitoring and human health applications.69 To further
expand the capabilities of sensing technologies, researchers
have developed advanced material platforms for enhanced
sensitivity and stability. They present an olfactory biosensor for
sensitive and stable hexanal detection, utilizing a novel receptor
immobilization strategy based on ZIF-8@single-walled carbon
nanotube (SWCNT) and nanosome-AuNPs/Prussian blue (PB).
The ZIF-8@SWCNT dual support material provides abundant
active sites for nanosome loading, while the co-
electrodeposition of nanosome-AuNPs and PB enhances
electrochemical signals and preserves receptor activity. The
biosensor demonstrates exceptional performance, with a wide
detection range (10−16–10−9 M), an ultralow detection limit
(10−16 M), and long-term stability (15 days), highlighting its
potential for applications in food freshness monitoring.70
3.3 Molecular structure and olfaction

In recent years, the development of articial intelligence tech-
nology has facilitated the creation of highly accurate data-
driven models. Algorithms form the core foundation of arti-
cial intelligence, governing the mechanisms of machine
learning and data processing, while high-quality and diverse
datasets are essential for model training and testing, ensuring
robust performance. Odor prediction can be performed on
molecular structure datasets using machine learning or deep
learning algorithms.71 As an odor dataset, molecular charac-
terization datasets are the basic building blocks of taste and
smell. In contrast to mass spectrometry data, electronic nose
data, and electrochemical sensors, molecular characterization
datasets respond explicitly to knowledge of molecular structure.
For example, applying articial intelligence technology can
calculate 40 billion odorous compounds. This technology can
quickly screen a large number of avorful chemicals.

Molecular structures can be transformed into high-
dimensional molecular characterization information by chem-
ical soware such as DRAGON, RDKit, and ADAPT. RDKit is an
open-source Python soware package for chemical information
processing. The soware package can transform the SMILES
45368 | RSC Adv., 2025, 15, 45359–45375
notation into molecular structure images (RGB), with carbon
represented as black, oxygen as red, nitrogen as blue, sulfur as
yellow, chlorine as green, and phosphorus as orange. It converts
the molecular structures of compounds into 2D and 3D
molecular data and subsequently employs machine learning
techniques to analyze these compounds. For instance, a linear
classication algorithm is used to predict the odor of mole-
cules.72 The method of olfactory weighted sum (OWSum) uses
the structural features of the molecules as the data set and can
directly analyze molecular odors. The SMILES strings of 1278
odorant molecules were set as the base dataset to train the
algorithmic model. The model exhibited high precision (>99%)
and high sensitivity (>99%) when predicting seven basic smells
using an independent test dataset. In another work, researchers
investigated the application of machine learning and data
analytics to predict perceptual attributes of odorants, speci-
cally the odorant characters (OC) of “sweet” and “musky,” thus
bridging a gap in olfactory research. A psychophysical dataset
containing perceptual ratings from 55 subjects was analyzed to
identify patterns in odor perception. Three machine learning
approaches—random forest, gradient boosting, and support
vector machines—were employed to model odor-characteristic
relationships, revealing critical molecular descriptors govern-
ing odor perception. The impact of data quality on model
performance was assessed by comparing semantic descriptors
of odorants with their perceived attributes. The study presents
a methodology for odor perception modeling, offering insights
into untrained human perception and the inuence of percep-
tual biases on model accuracy. The developed models and
framework hold potential for predicting odor characters of
novel odorants, advancing quantitative structure–property
relation (QSPR) applications in olfaction research.73 Similarly,
researchers developed a winning random forest model during
the DREAM Olfaction Prediction Challenge. This model accu-
rately predicts both individual and population-level olfactory
responses by integrating multi-scale perceptual data, denoising
input signals, and leveraging a minimal set of highly discrimi-
native molecular descriptors.
3.4 Comparative analysis of olfactory prediction
technologies

A comprehensive understanding of the strengths and limita-
tions of each technology is crucial for selecting the appropriate
tool for specic olfactory prediction tasks. To provide a clear
and systematic overview, Table 1 summarizes the core charac-
teristics of the three predominant technological pathways di-
scussed in this section. Furthermore, given the central role of
the sensor array in e-nose performance, a detailed comparison
of the most common sensor types is presented in Table 3.

As evidenced in Table 3, no single technology represents
a universal solution. The choice is based on a trade-off between
analytical precision (favoring MS), practical deployability
(favoring E-nose), and theoretical prediction (favoring SOR
modeling). MS serves as an offline reference technique, while E-
noses are tailored for online, in-eld applications. SOR models,
while not directly used for device-based sensing, can guide the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra06959a


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

1/
23

/2
02

5 
6:

40
:5

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
design of new ligands and materials for sensors.74 As for the
electronic nose, the sensor selection for an e-nose denes its
operational method. MOS sensors offer a low-cost entry, but
with higher power needs and dri issues. Optical sensors
provide superb performance but at a premium cost and size.
Electrochemical sensors strike a balance for monitoring specic
target analytes with low power consumption, making them
ideal for portable/wearable devices.
4. Machine learning for olfactory
prediction model
4.1 The paradigm shi to machine learning

The previous sections have laid the base for applying ML in
olfaction. Section 2 provides the essential data foundation; the
relationships within these datasets (e.g., between molecular
features and perceptual qualities) are oen highly complex and
nonlinear. Section 3 then reviewed the traditional technologies
Fig. 7 (a) Preprocessing steps for olfactory data, along with a brief overv
data preprocess. Reproduced with permission.78 Copyright from Elsevier,
machine learning for mass spectrometry data. Reproduced with permissi
gas sensing data and SVM. Reproduced with permission.82 Copyright fro

© 2025 The Author(s). Published by the Royal Society of Chemistry
for capturing odor information and early prediction attempts.
However, these data oen face challenges with high-
dimensional data, non-linear relationships, and feature selec-
tion. Machine learning technology, as a powerful paradigm, can
overcome the inherent limitations of datasets. Meanwhile, ML
algorithms, with their superior capacity for handling high-
dimensional data and identifying complex patterns, are criti-
cally needed to construct accurate and robust olfactory predic-
tion models. This is precisely where machine learning emerges
as a transformative tool. This section will discuss how ML
algorithms effectively integrate the databases with the sensing
technologies to build powerful predictive models of olfactory
perception.
4.2 Data acquisition from sensing devices and preprocessing

The efficacy of machine learning models in olfactory prediction
is fundamentally dependent on the quality of the input data,
which originates from the multi-channel sensor arrays of
iew of the data processing workflow for ML algorithms. (b) The e-nose
2025. (c) Mass to charge ratio and feed-forward neural network and (d)
on.81 Copyright from the American Chemical Society, 2024. (e) Optical
m the American Chemical Society, 2024.
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electronic noses (E-noses) as detailed in section 3. For
instrument-collected data, the raw data is typically a multivar-
iate time-series signal, capturing the dynamic response (e.g.,
resistance change) of each sensor during baseline, odorant
exposure, and recovery states. As shown in Fig. 7(a) and (b), the
data features collected from e-nose systems include maximum/
peak value, response slope, recovery time, ratio of different
sensors, area under a curve, and steady-state response. Beyond
electronic MOS, electrochemical gas sensors, optical gas
sensors, and gas chromatography are also widely employed in
odor analysis due to their distinct advantages in selectivity,
sensitivity, and molecular specicity (as shown in Fig. 7(c)–(e)).
Although the raw signal formats may differ—for instance,
optical sensors typically measure absorption or uorescence
intensity over time, while GC produces chromatograms based
on retention times—the subsequent feature extraction process
shares common principles. Critically, all these technologies
require the raw temporal signals to be converted into discrim-
inative feature sets, including descriptors such as peak value,
integral area, temporal derivatives, or normalized response
ratios. These feature engineering steps form a common struc-
tured dataset that enables effective model training and cross-
modal comparison, regardless of the original sensing tech-
nology.78 Meanwhile, to transform complex and noisy temporal
data into a suitable format for machine learning, the critical
preprocessing method is employed. The relevant method
involves reducing sensor dri, followed by feature extraction to
distill key parameters from each sensor's response curve.79

Subsequently, these data features undergo normalization (e.g.,
Z-score standardization) to ensure all sensor channels
contribute equally to the model, and are oen subjected to
dimensionality reduction techniques such as principal
component analysis (PCA) to mitigate multicollinearity, visu-
alize data structure, and improve model efficiency and
Fig. 8 (a) Evolution of machine learning in odor research (1977–2024
Diagram of machine learning. Reproduced with permission.84 Copyright

45370 | RSC Adv., 2025, 15, 45359–45375
performance.80 This preprocessing method transforms raw
sensor signals into rened, information-rich datasets, laying
a crucial foundation for building robust olfactory prediction
models.
4.3 Machine learning for olfaction analysis

In recent years, machine olfaction technologies have been
undergoing a profound transformation that is driven by
advances in sensor design, articial intelligence algorithms,
and diverse application scenarios (as shown in Fig. 8). To
effectively process and interpret the complex data from
advanced sensors, a variety of machine learning-based olfactory
prediction methods have been developed. These include arti-
cial neural networks, random forests, K nearest neighbors,
support vector machines, extreme learning machines, gradient
boosting decision trees, and decision trees.85 Thesemethods are
suitable for analyzing datasets generated by various sensing
devices (Table 4). Specically, the choice of machine learning
algorithm depends on the type of input data (class/binary or
approximate numerical form), the kinds of available data
(continuous or discrete), the data precision (complexity and
dimensionality), the number of datasets, and the number of
features in each dataset.78 For example, classifying the complex
aroma of coffee beans will address high-dimensional and
continuous sensor data. To address this, researchers employed
an array of TGS gas sensors coupled with a double-hidden-layer
backpropagation neural network to classify Arabica coffee
aromas according to roasting temperature. The results
demonstrated excellent classication performance, achieving
accuracies of 98.2% for light roasts, 98.4% for light-to-medium
roasts, 97.8% for medium-to-dark roasts, and 95.9% for dark
roasts. The ndings demonstrate that the E-nose system, which
combines TGS sensors and articial neural networks, effectively
detects and classies coffee aromas according to roasting
). Reproduced with permission.83 Copyright from Elsevier, 2024. (b)
from Elsevier, 2023.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Algorithm for sensing recognition

Algorithm Sensor Application Focus Ref.

ANN MOS Coffee Classication of coffee types 86
ANN MOS VOCs VOCs recognition 97
ANN MOS Maize Maize quality monitoring 98
ANN MOS Beer Assessment of aromas in beer 99
ANN MOS Coffee Estimating the intensity of coffee 100
ANN MOS Sesame oil Sesame oil quality assessment 101
ANN MOS Rice Rice quality monitoring 102
ANN FET VOCs VOCs recognition 103
ANN MOS Fruit juices Quality monitoring of fruit juices 104
ANN MOS Oil-based plant Quality monitoring 105
ANN MOS Fruit Monitoring fruit ripeness 106
ANN MOS Beef Beef quality monitoring 107
ANN MOS Rice Monitoring pure and adulterated rice 108
ANN MOS Vinegar Identify vinegar avor 109
XGBoost-RF MOS VOCs Predicting and classication of VOCs 87
KNN + LDA MOS Maize Classication of moldy maize 88
SVM Sensor array Tea Tea quality monitoring 90
SVM NIR Salmonid Identication of off-avor salmonids 110
SVM MOS Kiwifruit Kiwifruit ripening monitoring 111
SVM Near-infrared Tea Classication of tea 112
SVM Colorimetric sensor array Beef Beef quality monitoring 113
SVM MOS Tea Tea aroma monitoring 114
SVM Visualization sensor Tea Evaluation of black tea fermentation 115
SVM Visualization sensor Oil Classication of procymidone residues 116
ELM MOS Tea Tea quality monitoring 91
GBDT GC-MS Fish meal Monitoring freshness state 92
GBDT MOS Tea polyphenols Tea quality monitoring 117
GBDT MOS Chinese baijiu Recognition baijiu 118
GBDT MOS VOCs VOCs recognition 119
DT MOS VOCs Classication of explosives 94
RF VOCs Predicting VOCs 120
RF MOS Pecans Classication of pecans 121
RF MOS Dried gingers Classication of dried gingers 122
RF MOS Strawberry juices Strawberry juice quality monitoring 123
RF MOS Peach Peach maturation monitoring 124
RF MOS Peach Peach growth cycle monitoring 125
RF MOS Orange Orange quality monitoring 126
RF MOS Tea Tea quality monitoring 127
RF MOS Kiwifruit Ripeness of postharvest kiwifruit 128
RF MOS Milk Milk quality monitoring 129
RF MOS Satsuma mandarins Satsuma Mandarin quality monitoring 130
RF Colorimetric sensor array Tencha aroma Assess tencha aroma 131
RF VOCs Predicting and classication of VOCs 132
MCNA MOS VOCs VOCs recognition 96
BP + ELM MOS VOCs Predicting and classication of VOCs 93
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conditions.86 The electronic nose (E-nose) is widely utilized for
monitoring toxic gases, but conventional gas sensing relies on
single estimators and limited training datasets, resulting in low
classication and regression accuracy. To address these limi-
tations, one study developed an E-nose system utilizing a gas
sensor array and machine learning algorithms (XGBoost and
random forest) for accurate gas type classication and
concentration prediction. The XGBoost classier achieves
96.0% accuracy, while the RF regressor attains an average R2

score of 0.923 for six volatile organic compounds (VOCs). The
system demonstrates high efficiency, with prediction times of
0.011 s for classication and 0.015 s for regression.87 For the
analysis of electronic nose array data, orthogonal partial least
square-discriminant analysis (OPLS-DA) offers an advantage
© 2025 The Author(s). Published by the Royal Society of Chemistry
over random forest. OPLS-DA is a multivariate statistical
method that integrates supervised pattern recognition and
dimensionality reduction, widely applied in metabolomics,
food science, and biomedicine. For instance, OPLS-DA
successfully extracted characteristic biomarkers of moldy
maize from complex VOCs, providing precise targets for
subsequent sensor design and highlighting its practical value in
food quality monitoring.88 Optimization algorithms such as
genetic algorithms (GA) offer advantages by efficiently per-
forming high-dimensional feature selection to select the most
informative sensor combinations, while simultaneously opti-
mizing the hyperparameters of subsequent classication
models. It enhances the overall system performance, inter-
pretability, and robustness, while also reducing the risk of
RSC Adv., 2025, 15, 45359–45375 | 45371
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overtting.89 Leveraging this advantage, the researchers
analyzed time-dependent absorption spectroscopy data and
employed a GA for optimal feature selection, ultimately devel-
oping a 15-unit sensor array. When integrated with a support
vector machine (SVM) classier, the array demonstrated
exceptional performance, achieving 100% discrimination
accuracy for varying concentrations of tea polyphenols (TPs)
with a detection limit of 5 mM. Notably, the system reliably
distinguished not only individual TPs at different concentra-
tions but also complex mixtures. Beyond quantitative analysis,
the method exhibited practical applicability, accurately differ-
entiating eight green tea varieties (96.88% accuracy) and
detecting adulteration in Biluochun tea samples with perfect
(100%) classication performance.90 In order to identify the
quality of tea, Wang et al. used the extreme learning machine
(ELM) method to improve the classication performance of the
electronic nose: 98.20% for classication accuracy, 0.9871 for
F1-score, and 0.9775 for kappa coefficient. In conclusion, this
work indicated that ELM can effectively classify and detect tea
based on E-nose measurements.91 Gradient boosting decision
tree is a powerful ensemble learning algorithm that achieves
state-of-the-art performance on a wide range of tabular data
problems. It operates by sequentially constructing decision
trees, where each subsequent tree learns to correct the errors of
the previous ensemble. This technique has also been success-
fully applied in food freshness assessments. For instance, in
one study, GBDT was used to classify the freshness of 198
samples, and the model was constructed from the sensor array
data and the freshness state. The GBDT model effectively
discriminated sh meal samples into ve freshness categories
(super fresh, superior fresh, general fresh, corrupt, and
completely corrupt) based on their VOCs. Furthermore, it
demonstrated high predictive accuracy, achieving correlations
of 0.90 with measured acid values and 0.97 with volatile base
nitrogen (VBN) values from the E-nose data.92 In addition to
GBDT, other classical machine learning models, including
support vector machines (SVM) and neural networks, have also
exhibited remarkable performance. In another work, a model
based on SVM and linear ridge classication (LRC) classied six
types of gases with an accuracy value of 0.99. Meanwhile, the
backpropagation (BP) neural network combined with the
extreme learning machine (ELM) method performed well in
predicting ethanol concentrations (R2 > 0.98).93 The integration
of nanostructured sensor arrays with decision tree algorithms
has shown signicant potential for high-accuracy detection of
hazardous chemicals. For instance, a nanowire sensor array
combined with a decision tree algorithm successfully classied
explosive types and estimated their concentrations, resulting in
93.75% accuracy and an average error rate below 4%.94

Despite the signicant progress enabled by machine
learning, several critical limitations persist in olfactory bi-
osensing that dene the forefront of current research. A primary
constraint is the scarcity of large-scale, high-quality labeled
datasets, as human sensory evaluation is inherently subjective,
costly, and time-consuming, which inevitably restricts the
complexity and generalizability of data-hungry deep-learning
models. Moreover, the “black box” nature of many advanced
45372 | RSC Adv., 2025, 15, 45359–45375
algorithms poses signicant challenges to interpretability,95

hindering a clear understanding of odor–sensor interactions.
For the data collection device, the E-nose systems typically
suffer sensor dri, resulting in inaccurate measurement read-
ings.96 This limitation restricts their application in olfactory
perception.
5. Conclusions and outlook

In this review, we summarize the recent advances in human
olfaction perception and the corresponding olfactory prediction
models. We have reviewed various olfactory simulation tech-
nologies, which demonstrated high accuracy and efficacy in
detecting odor biomarkers. Several common methods can
simulate human olfaction, including optical sensors, electro-
chemical sensors, metal-oxide semiconductors, gas
chromatography-mass spectrometry (GC-MS), and computa-
tional odor prediction. These technologies can detect food
ripeness, freshness, and storage time. The odor detection
behavior, paired with a data-driven model, enables rapid and
accurate detection of odor molecules. However, low selectivity
and sensitivity are the main weaknesses of the sensor. There-
fore, sensor arrays coupled with machine algorithms can
simulate human olfaction by extracting most features. Machine
learning algorithms performed well in high-dimensional data
mining and data analysis.

Looking ahead, the limited number of sensors does not
provide a complete picture of the odor avor; thus, large
sensing arrays that can collect more abundant olfactory signals
are required. Collaborative interdisciplinary research involving
machine learning and gas detection will also be instrumental in
fostering next-generation odor-sensing techniques for olfactory
perception. Simultaneously, there is a pressing need to advance
explainable AI (XAI) techniques tailored for olfaction,133 which
can elucidate model decisions and potentially reveal novel
sensor-odorant relationships. Furthermore, future efforts
should focus on developing embedded articial intelligence
systems.134 The systems should incorporate lightweight on-chip
machine learning models for real-time edge analysis and
explore multimodal fusion architectures that integrate
complementary data from electronic noses, mass spectrome-
ters, and even human sensory data. This approach will enable
more comprehensive and powerful digital olfactory platforms.
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