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Pogostemon cablin (P. cablin) is rich in chemical compounds and is extensively utilized in the medicine,
food, and fragrance industries. However, factors such as variety, regional ecology, growth conditions,
harvest time, and processing methods result in differences in the traits and quality of P. cablin from
different origins. The traditional labor-intensive identification methods require a lot of manpower and
material resources, and the accuracy of identification is also affected by individual subjectivity. In this
study, a deep learning network based on a pixel-level hyperspectral image was constructed to identify P.
cablin from different origins, named DeepPHSI. DeepPHSI can be used to distinguish between the three
main origins of P. cablin and their stems and leaves from the background. The DeepPHSI model was
designed based on convolutional neural and long short-term memory networks. The hyperspectral

image data collected under two experimental conditions were used for training and fine-tuning,
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Accepted 20th September 2025 respectively. Results showed that DeepPHSI can accurately identify the origin of P. cablin under different

experimental conditions with transfer learning. The prediction based on DeepPHSI also enabled the fully
DOI: 10.1039/d5ra06579h automated identification of origins and parts, which makes the model suitable for the rapid analysis of

rsc.li/rsc-advances large-scale samples. These advantages make DeepPHSI a promising method in hyperspectral applications.
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1 Introduction

Pogostemoncablin (P. cablin), a member of the Lamiaceae family,
is a prominent medicinal and edible plant with its origin in
tropical regions. P. cablin serves as a traditional Chinese
medicine (TCM) for the treatment of diarrhea, vomiting, nausea
and fever." In addition, the whole plant of P. cablin contains
volatile oils, which are common ingredients in perfumes,
fragrances, and cosmetics. Research has revealed that P. cablin
contains many active components, including polysaccharides,?
terpenoids,® flavonoids,* phytosterols, organic acids,® phenols,®
alkaloids, and glycosides.” Notably, its volatile oils are recog-
nized as a safe natural food flavoring by the U.S. Food and Drug
Administration (FDA) and are widely incorporated into food
products, including beverages, gelatin-based meats, meat
products, and frozen dairy desserts. In China, P. cablin is mainly
cultivated in Guangzhou City, Zhaoqing City, Zhanjiang City in
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Guangdong Province, and some areas in Hainan Province.®
However, the composition of its volatile oils varies significantly
depending on the growing area and harvest time. Based on
these chemical differences, P. cablin is classified into two
distinct chemotypes: the pogostone type and the patchouliol
type.>'® This classification reflects the unique chemical profiles
of its volatile oils, which are influenced by environmental and
temporal factors. These variations can influence the pharma-
cological properties, fragrance quality, and commercial value of
P. cablin, making standardization and quality assessment
crucial. Therefore, quickly identifying P. cablin from different
origins has an important practical significance.

Due to their high resolution and rich spectral information,
hyperspectral images (HSIs)'' provide sufficient data features
within narrow bands. In addition, the advantages of non-
destructive and rapid detection make HSI a promising tool for
online detection and real-time monitoring.”>** These advan-
tages of HSI technology offer it an important role in various
fields such as environmental monitoring,'® resource explora-
tion,'® agricultural management,'” biomedical science'®'* and
chemical analysis.*** However, due to changes in the
measurement environment, instrument parameters, and
lighting conditions, there are often differences in the data
collected from different batches. Therefore, data analysis
methods based on a single batch of data often cannot be
directly applied to data from other batches. In addition, as
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hyperspectral data offer both spatial and spectral information,
data analysis is relatively complex.

In recent years, researchers have proposed many methods
for HSI data analysis and applications. A framework?* for the
classification of hyperspectral scenes has been proposed, which
pursues the combination of multiple features. The framework
can cope with the linear and nonlinear class boundaries present
in the data. Structured sparsity priors based on the task-driven
dictionary learning algorithm? can benefit from the advantages
of both the simultaneous sparse representation and supervised
dictionary learning. A super-pixel-based sparse representation
(SSR)** model was proposed for hyperspectral image super-
resolution. The high-resolution hyperspectral image can be
reconstructed with the obtained fractional abundance coeffi-
cient matrix. Spatial-spectral hypergraph discriminant analysis
(SSHGDA)* can effectively reveal the complex spatial-spectral
structures of HSI and enhance the discriminating power of
the features for land-cover classification. The active broad
learning system approach®® was applied to extract the spectral
and spatial features of the image using principal component
analysis and local binary patterns, respectively. Active learning
was used to select high-quality samples, which can reduce the
cost of sample labelling. An unfolding network with di-
sentangled spatial-spectral representation®” was proposed for
analysing the super-resolution HSI. A variant of depth-wise
separable convolution and a lightweight spectral attention
mechanism were used to adequately incorporate the structure
prior of the HSI. Deep learning and a constrained optimization-
based approach®® were proposed for hyperspectral image
denoising and spectral compressive imaging. A Gaussian
mixture model** was employed to cluster the HSI to achieve
segmentation. It meets the requirements of high-throughput
and real-time analysis.

Deep learning®**' has made significant breakthroughs in
computer vision,*> natural language processing,** speech
recognition,* and other related fields.***® The main reason is
that flexible architectures and efficient algorithms can learn
multilevel representational features directly from large
amounts of raw data. Due to these advantages, deep learning
methods have gained increasing attention in agriculture for
several applications, such as gene expression prediction,*”
phenotypic prediction,*® and crop yield prediction.* Specific to
HSI, deep learning plays an important role, especially Con-
volutional Neural Networks (CNN).** A CNN model with 1 x 1
convolutional layers** has been adopted for boosting the
discrimination accuracy of hyperspectral image classification,
where the original data are used as the input and the final CNN
outputs are the predicted class-related results. Another frame-
work that takes advantage of both CNNs and multiple feature
learning** was proposed to better predict the class labels for HSI
pixels. Various features extracted from the raw imagery were
used as input to obtain joint feature maps. The diverse region-
based CNN method* encodes semantic context-aware repre-
sentation to obtain promising features. It exploits diverse
region-based inputs to learn contextual interactional features
and is, thus, expected to have more discriminative power. A
variant of depth-wise separable convolution”” was used to
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disentangle and extract the spatial and spectral features. The
results show that the difficulty and computational complexity of
feature learning can be reduced. A heterogeneous network** can
extract spectral-spatial and semantic features simultaneously.
The network was established based on the semantic trans-
former scheme and the spectral-spatial convolution network
branch. The reinforced pool-based deep active learning
approach*® was proposed to overcome the limitations of statis-
tical selection approaches. The reinforcement learning-based
agent can transfer and choose samples for annotation on
other HSI dataset after being trained. A 3D grouped convolu-
tion*® was designed as a vehicle to convey the semantic features,
and it conveys the properties of HSI data well in the time and
space domains. Image-level annotation is introduced to predict
pixel-level classification maps*” for HSI. The proposed method
explores weakly supervised HSI classification with image-level
tags, bridging the gap between image-level annotation and
dense prediction.

In this study, we present DeepPHSI, a transfer learning-
enabled framework for multi-origin identification of Pogoste-
mon cablin (P. cablin) in hyperspectral imaging (HSI) data. This
framework advances current hyperspectral analysis paradigms
through three key innovations: (1) a hybrid architecture
combining CNN's spatial feature extraction with LSTM's
sequential pattern modeling, overcoming the single-modality
limitations in existing methods; (2) a transfer learning
protocol that freezes CNN layers to preserve cross-batch
invariant features while adaptively tuning LSTM parameters,
resolving the batch effect issue prevalent in prior studies; (3)
pixel-level classification, enabling precise spatial mapping of
chemical heterogeneity within plant tissues. The implementa-
tion of this methodology establishes a robust platform for large-
scale, automated origin authentication, directly addressing the
industrial demands identified in recent quality control anal-
yses; the model is publicly accessible at https://github.com/
xiaoyulinoOO/DeepPHSI.

2 Methods

2.1 Overview of DeepPHSI for origin and anatomical part
identification

DeepPHSI serves as a deep learning model designed to accu-
rately predict the origins and anatomical parts of P. cablin using
HSI data. To address the challenge of batch-to-batch variability
in HSI data, we implemented a transfer learning strategy,
enabling the model to adapt to different acquisition conditions
while maintaining a high performance. DeepPHSI integrates
three key components: CNNs for spatial-feature extraction,
LSTMs for sequential-spectral-pattern modeling, and attention
mechanisms for adaptive-feature weighting. In HSI data, spatial
information captures the local leaf structure (veins, texture, etc.)
and branch characteristics (thickness, color, etc.), and spectral
dimensions capture some of the intrinsic qualities of P. cablin.
Extensive validation experiments demonstrate that DeepPHSI
achieves superior identification accuracy and exhibits broad
applicability in HSI data analysis. The workflow of the model,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Flowchart of pre-training and fine-tuning of the DeepPHSI model. (A) Standard training dataset for the DeepPHSI model. (B) Architecture
of DeepPHSI. The convolutional (Conv) layer with batch normalization (BN) is frozen during fine-tuning. The LSTM layer, combined with the
attention mechanism and the fully connected (FC) layers, is fine-tuned. The “lock” represents the freezing operation.

including the pre-training and fine-tuning stages, is illustrated
in Fig. 1.

2.2 Architecture of DeepPHSI

2.2.1 CNN for spatial feature extraction. CNN*’ is a neural
network inspired by biological vision, consisting of convolu-
tional layers and convolutional kernels. The convolutional
kernels are moved in a certain way on the convolutional layers
to calculate the convolutional features. Compared with fully
connected neural networks, a CNN has the characteristics of
shared weights and sparse connections. Shared weights can
improve learning efficiency and achieve better generalization.
Sparse connections allow neural networks to produce the
strongest response to local input patterns. The Batch Normali-
zation (BN) layer is applied behind each convolution layer. The
output of these convolutional layers is a high-dimensional
feature map, which is normalized by the BN layer to ensure
that the subsequent Rectified Linear Unit (ReLU)*® activation
function and Max-Pooling layer can work effectively. The BN
layer is used to speed up the training process, improve the
stability of the model, and reduce overfitting by standardizing
the input of each layer.

2.2.2 LSTM for sequential pattern modeling. LSTM* is one
of the recurrent neural networks (RNN); it can capture long-
term dependencies in sequence data. For HSI spectral data,
LSTM captures dependencies between adjacent bands in
a spectral sequence. After feature extraction in the convolution
layer, a feature map is rearranged into a form suitable for LSTM
and fed into the LSTM layer. In DeepPHSI, the LSTM layer has
an input size of 64 (corresponding to the feature dimension

© 2025 The Author(s). Published by the Royal Society of Chemistry

after convolution). The hidden size is 128. It is a single layer
with a unidirectional structure (bidirectional = false). This
architecture enables the layer to further learn temporal depen-
dencies in spectral data, empowering the model to capture and
process long-range dependencies within spectral sequences.
2.2.3 Attention mechanism for capturing important infor-
mation. The attention mechanism can enhance the model's
attention to different parts of the inputs. The core idea is to
dynamically assign different weights to different parts of the
input, allowing the model to focus on the information that is
most important to the task. In this study, an attention mecha-
nism is added behind the LSTM layer, which is an important
improvement. The attention layer generates a weighted context
vector by calculating the attention weights for each time step,
and then, these weights are applied to the output of the LSTM.
The weighted context vector can highlight those features that
contribute more to the final decision. The attention mechanism
allows the model to capture important information in serialized
spectral data, thereby improving the classification effect. The
output of the LSTM layer combined with the attention mecha-
nism is a context vector, based on weighted summation, which
represents the overall “summary” of the LSTM output. The
structure of the LSTM layer, combined with the attention
mechanism, provides more targeted and effective information
for the subsequent fully connected layer. In HSI, the distinction
between key bands and redundant bands is achieved through
adaptive learning of attention weights. Specifically, the atten-
tion layer calculates weights for the output sequence of the
LSTM and normalizes them via the softmax function, ensuring
the sum of all band weights equals 1. Bands with higher weights
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are considered more critical, while those with lower weights are
automatically suppressed as redundant features. Since the
softmax mechanism ensures the relative discriminability of
weights, no explicit fixed threshold needs to be set. The model
dynamically learns the optimal weight distribution during
training, thereby ensuring ultimate focus on the spectral
features relevant to geographical origin.

2.2.4 Summary of the DeepPHSI architecture. The network
architecture of the DeepPHSI model is shown in Fig. 2. The
spectra extracted from each pixel in the HSI data were used as
the model input. First, three one-dimensional convolution
layers were used to extract local band features from the input. In
the first convolutional layer, the kernel size is 11, and the
number of channels is 16. The kernel size of the second
convolution layer is 7, and the number of channels is 32. The
kernel size of the third convolution layer is 3, and the number of
channels is 64. The BN and max-pooling were added after each
convolutional layer. Then, the feature maps from the CNN
layers were rearranged and fed into the LSTM layer. This was
achieved by treating the number of output channels from the
CNN layer as the input feature dimension of LSTM while
considering the spectral band dimension as the sequence
dimension. Thus, we ensured that the spatial features extracted
by the CNN can be fed into the LSTM sequentially according to
the spectral order. In this process, the fusion of spatial and
spectral features is jointly accomplished by the LSTM and
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attention mechanism: the spatial features extracted by the CNN
layers are used as input to the LSTM, while the LSTM dynami-
cally learns dependencies along the temporal dimension (ie.,
the spectral band direction). Finally, the attention mechanism
assigns different weights to the spectral band features
outputted by the LSTM, enabling the model to adaptively
emphasize the key spectral features relevant to the classification
task. The introduction of the attention mechanism also reduces
the influence of redundant bands, thereby achieving a weighted
fusion of spatial and spectral features. The attention mecha-
nism is applied to the output of the LSTM, which ensures that
the features extracted from the LSTM are fed into the fully
connected layer more efficiently. Finally, the fully connected
layers were used for classification, and the dropout was added
after the first two fully connected layers, respectively. These
double dropouts help to reduce the risk of overfitting. Dropout
prevents the network from over-relying on specific weights by
randomly discarding a subset of neurons, thereby improving
the model's ability to generalize. The Rectified Linear Unit
(ReLU) is used to activate the features after linear trans-
formation, which enhances the nonlinear representation ability
of the model. The last fully connected layer maps the output of
the model to the final classification, generating the prediction
results.

The neural network architecture of DeepPHSI was optimized
for improved performance. Here, the number of convolutional

LSTM combined with attention
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Hidden size=128

r[" ﬁ%%ﬁ B — N |
— I — .
e ¥ v
h, h, h, ]
1x256x1 1x128x16 1x64x32 1x32x64
. v v v
4 [ Softmax ]
Attention
weights
! el P ——
0 0 Oy
b Context y
Vect
i Ya,xh, <
A
Output I drienr Linear Linear Attenti'on
Dropout Dropout mechanism

Fig. 2 Architecture of the DeepPHSI model.
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layers for feature extraction, the hidden size of the LSTM layer,
the number of dropout operations in the fully connected layers,
and batch normalization are the key hyperparameters to be
considered. These considered architectures are shown in
Fig. S1. The corresponding learning curves of these considered
architectures are shown in Fig. S2.

2.3 Description of the P. cablin datasets

Fresh leaf and stem tissues of P. cablin plants were collected
from each cultivar, with individual leaves and stems sampled in
sextuplicate. In this study, two batches of P. cablin hyperspectral
data were acquired, covering leaves and branches from three
different origins: Zhaoqing, Shipai, and Hainan. These datasets
were obtained under different experimental conditions.

Both datasets were measured using the GaiaSorter-Dual Gaia
full-band hyperspectral sorter, covering a spectral range of 900-
1700 nm. In the first dataset, the wavelength range was 853-
1701 nm, with spectral intensity values ranging from 362 to 16
383. The spatial resolutions of the hyperspectral images (HSI)
were 600 x 320 and 535 x 320. In the second dataset, the
wavelength range remained 853-1701 nm, but the spectral
intensity values ranged from 0 to 33, with spatial resolutions of
300 x 320 and 374 x 320. Two sets of bromine tungsten light
sources were used to illuminate the sample table, providing
uniform irradiation through thermal radiation. The non-
uniformity of the light source within a volume of 300 x 20 x
100 mm (length x width x height) was less than 5%.

2.4 Data preprocessing and augmentation

A total of 1 131 200 spectra were extracted from the first batch of
the hyperspectral imaging (HSI) dataset. For the second dataset,
a total of 311680 spectra were extracted. To enhance the
model's robustness and generalization ability, as well as to
improve the classification performance, data augmentation was
applied. The number of spectra per class after the augmentation
is shown in Fig. S3. Both batches of data were divided into
training set, validation set, and test set with a ratio of 8:1:1,
respectively. Please see more detailed information about the
data augmentation in Text S1.

Data preprocessing methods may have a significant impact
on the performance of the model. In order to ensure that the
pre-trained model delivers optimal performance, different data
preprocessing methods were used for comparison. The
comparison results show that the model trained directly using
the original HSI data achieved the highest accuracy of 98.48%
on the test set. Please see more detailed information about the
data augmentation in Table S1.

2.5 Model training

During training, some standardized data extracted from the
first batch of hyperspectral images were used for model training
(see Fig. 1A). The cross-entropy loss was used as the loss func-
tion. The cross-entropy loss is a loss function for handling
multiple classification tasks to calculate the gap between the
probability distribution predicted by the model and the actual

© 2025 The Author(s). Published by the Royal Society of Chemistry
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label. It is suitable for the current seven classification tasks in
this study.

Adam with weight decay (AdamW)*® was used as the opti-
mizer. AdamW uses an adaptive learning rate for each param-
eter to help accelerate convergence and dynamically adjust the
learning rate during training. Unlike the standard Adam opti-
mizer, AdamW applies weight decay to each parameter, allow-
ing for better control of the model's complexity and preventing
overfitting.

The learning rate decay strategy was adopted to accelerate
convergence and improve the model's performance. In this
study, ReduceLROnPlateau adjusts the learning rate according
to changes in the loss of the validation set. When the loss of the
validation set does not improve significantly within a certain
round, the learning rate is reduced. ReduceLROnPlateau helps
the model adjust the parameters more carefully as it approaches
the optimal solution.

2.6 Transfer learning

Affected by experimental conditions, there are large differences
between different batches of HSI data. The method established
based on one batch of HSI data is usually not applicable to other
batches of data. Therefore, transfer learning is adopted to solve
the problem of applying the model to different batches of data.
During the model fine-tuning, freezing different layers has
a significant impact on model performance. In this study,
several different fine-tuning methods were compared, including
fine-tuning the fully connected layer; fine-tuning the fully con-
nected layer and the attention layer; and fine-tuning the fully
connected layer, the attention layer, and the LSTM layer. The
detailed comparison results are shown in Table S2. After
comparison, transfer learning was performed by fine-tuning the
fully connected layer, the attention layer, and the LSTM layer. As
can be seen in Fig. 1B, a “lock” is used to represent the freezing
operation.

Fine-tuning the LSTM, attention and fully connected layers
can help the model better adapt to new tasks or datasets. Fine-
tuning can enhance the model's ability to distinguish different
classes, especially in a new batch of data. The flowchart of the
fine-tuning of the DeepPHSI model is shown in Fig. 1B and C.

2.7 Implementation

DeepPHSI is implemented in the Python programming
language and based on NumPy and PyTorch. The operating
system is Windows 11, with NVIDIA GeForce RTX 3090. Deep-
PHSI is available at https:/github.com/xiaoyulinoOO/
DeepPHSI.

3 Results and discussion

3.1 Overall performance of DeepPHSI

Three deep learning models, CNN (Fig. S4A), LSTM (Fig. S4B)
and multi-head attention (Fig. S4C), were established and
compared to demonstrate the necessity of the DeepPHSI
architecture.
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Fig. 3 Confusion matrix of different models on the test set of the first batch of data: (A) multi-head attention, (B) CNN, (C) LSTM, and (D)

DeepPHSI.

The confusion matrices of these considered network archi-
tectures on the test set of the first batch of data are shown in
Fig. 3. As can be seen from Fig. 3A, the multi-head attention
model makes the most errors in the prediction of P. cablin from
Zhaoqing (class 6) and Hainan (class 1 and 2). There were 1568
leaves and 1384 branches of P. cablin from Zhaoqing, which
were not correctly identified. There were 733 leaves and 1583
branches of P. cablin from Hainan, which were not correctly
identified. The LSTM model predicted classes 5 and 6 (the
leaves and branches of P. cablin from Zhaoqing, respectively),
slightly outperforming the multi-head attention model, but it
predicts more class 1 (the leaves of P. cablin from Hainan) as
class 5 (the leaves of P. cablin from Zhaoqing) (see Fig. 3C). The
CNN model has a better prediction performance than the multi-
head attention and LSTM model in the Hainan and Zhaoqing
spectra, see Fig. 3B. There were 296 leaves and 803 branches of
P. cablin from Zhaoqing that were not correctly identified. There
were 459 leaves and 515 branches of P. cablin from Hainan that
were not correctly identified. The DeepPHSI model shows the
best prediction performance. The confusion matrix predicted
by the DeepPHSI model is shown in Fig. 3D. Its confusion
matrix is symmetrical along the diagonal, and the colors on
both sides of the diagonal are the “cleanest”. The above
comparison shows that the DeepPHSI model can overcome the
impact of data imbalance on model performance. In contrast,
DeepPHSI can more effectively distinguish the spectra of P.
cablin from Hainan and Zhaoqing, whether leaves or branches.

The evaluation metrics of the CNN, LSTM, multi-head
attention and DeepPHSI models on the test set are shown in
Fig. 4. It can be seen that DeepPHSI achieves the best
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performance on the test set of the first batch of data. The accu-
racy of DeepPHSI is 0.9848, CNN is 0.9457, LSTM is 0.8921, and
multi-head attention is 0.8577. Considering the class imbalance,
the accuracy may be affected to a certain extent. The Precision,
Recall and F1 score are used to further evaluate the predictive
performance of these models. Precision represents the proba-
bility that all samples predicted as positive are actually positive
samples. Recall represents the probability that samples that are
actually positive are predicted as positive samples. Precision and
Recall are adopted to measure the performance of the model in
identifying the origins and parts of P. cablin. The F1 score takes
into account both Precision and Recall, and it comprehensively
balances both to achieve the highest value. DeepPHSI achieved
the highest F1 score of 0.9834, while CNN was slightly worse at
0.9376. The LSTM and multi-head attention models achieved F1
scores of 0.8751 and 0.8344, respectively.

The Receiver Operating Characteristic (ROC) curves of
different methods are provided in Fig. 5. As can be seen from the
ROC curves, the curve of DeepPHSI completely encloses the
curves of the other methods. The ROC curve of CNN is closer to
that of DeepPHS]I, indicating that their performances are signif-
icantly better than those of the other methods. The area included
in the multi-head attention model is the smallest, indicating that
its prediction effect is the worst among these models, followed by
LSTM. The ROC curves intuitively reveal the relationships
between the True Positive Rate (TPR) and False Positive Rate
(FPR). It comprehensively evaluates the identification accuracy of
the models. The results show that among these models, the
DeepPHSI model has the best performance, followed by the CNN,
and LSTM, and multi-head attention models in order.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Evaluation metrics of the CNN, LSTM, multi-head attention and DeepPHSI models on the test set of the first batch of data.
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Fig. 5 Receiver operating characteristic curves of different models.

3.2 Evaluation on the first batch of HSI data

After the model was established, six sets of HSI data were used
for prediction to visually demonstrate the model performance.
The spectrum in each pixel of the HSI was extracted as the input
of the DeepPHSI model. After pixel-by-pixel prediction, the
model gives the origin, part or background of P. cablin repre-
sented by each spectrum. By relocating the identified category
information to the original HSI, the distribution of P. cablin
from different parts and origins on the image can be obtained.
The original images of six HSI data and the corresponding
prediction results of the DeepPHSI model are shown in Fig. 6. In
each sub-figure of Fig. 6, the left figure represents the original
image and the right figure represents the predicted result. In the
prediction result figure, the white part represents the back-
ground (class 0). The red represents the leaves of P. cablin from
Hainan (class 1), and green represents the branches of P. cablin
from Hainan (class 2). The blue represents the leaves of P. cablin

© 2025 The Author(s). Published by the Royal Society of Chemistry

from Shipai (class 3), and yellow represents the branches of P.
cablin from Shipai (class 4). Purple represents the leaves of P.
cablin from Zhaoqing (class 5), and black represents the
branches of P. cablin from Zhaoqing (class 6).

As can be seen in Fig. 6, DeepPHSI can accurately predict P.
cablin from different parts and origins and can significantly
distinguish it from the background. Through in situ recon-
struction, in situ analysis of P. cablin can be achieved. DeepPHSI
can achieve accurate identification, as shown in the predicted
distribution image in Fig. 6A. The scattered small debris is also
accurately captured and predicted to be leaves from Zhaoqing
(purple).

However, there are some deviations in the identification of P.
cablin leaves in Hainan (red) and Zhaoqing (purple), especially
at the edges of the leaves. In the predicted distribution images,
this is reflected as “noise” at the edge of the leaf contour.

3.3 Evaluation on the second batch of data

In the second batch of samples, P. cablin from different origins
and parts were randomly mixed for hyperspectral data collec-
tion. When DeepPHSI is applied to these batches of data, the
model needs to be fine-tuned and then used for prediction.
The prediction results of the transferred DeepPHSI model
are shown in Fig. 7. The original images are shown on the left-
hand side in each sub-figure. The prediction results are shown
on the right-hand side in each sub-figure. In each prediction
image, the white part represents the background (class 0). The
red represents the leaves of P. cablin from Hainan (class 1), and
green represents the branches of P. cablin from Hainan (class 2).
The blue represents the leaves of P. cablin from Shipai (class 3),
and yellow represents the branches of P. cablin from Shipai
(class 4). Purple represents the leaves of P. cablin from Zhaoqing
(class 5), and black represents the branches of P. cablin from
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Fig. 6 Prediction results of the DeepPHSI model on the first batch of
data. In each sub-figure, the left side represents the optical image of
the original HSI data, and the right side represents the predicted
result of the DeepPHSI model. In the prediction result figure, white
represents the background (class 0). Red represents the leaves
of P. cablin from Hainan (class 1), and green represents the branches
of P. cablin from Hainan (class 2). Blue represents the leaves
of P. cablin from Shipai (class 3), and yellow represents the branches
of P. cablin from Shipai (class 4). Purple represents the leaves
of P. cablin from Zhaoging (class 5), and black represents the branches
of P. cablin from Zhaoqing (class 6). (A) P. cablin sample from Hainan.
(B) P. cablin sample from Hainan. (C) P. cablin sample from Zhaoqing.
(D) P. cablin sample from Zhaoqing. (E) P. cablin sample from Shipai.
(F) P. cablin sample from Shipai.

Zhaoqing (class 6). As can be seen in Fig. 7, the fine-tuned
DeepPHSI model can accurately identify P. cablin from
different origins and parts. After reconstruction, the distribu-
tion of origins and parts on the hyperspectral image can be
clearly displayed.

However, by observing Fig. 7A and B, it can be found that
there are some “scatter points” in the prediction image of leaves
from Hainan (red) and Zhaoqing (purple). There is still room for
improvement in the identification performance of the model for
these two classes, which is consistent with the prediction results
of the untuned model.

3.4 Cross-batch consistency verification

To validate the rationale of the “freezing CNN layers while fine-
tuning LSTM and attention layers” strategy in transfer learning,
a cross-batch consistency verification was performed. Specifi-
cally, 1000 samples were randomly selected from each batch,
and feature vectors output by the frozen CNN layers were

37046 | RSC Adv, 2025, 15, 37039-37049
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Fig. 7 Prediction results of the transferred DeepPHSI model. The
original images are shown on the left side of each sub-figure. The
prediction results are shown on the right side of each sub-figure. In
each prediction image, white represents the background (class 0). Red
represents the leaves of P. cablin from Hainan (class 1), and green
represents the branches of P. cablin from Hainan (class 2). Blue
represents the leaves of P. cablin from Shipai (class 3), and yellow
represents the branches of P. cablin from Shipai (class 4). Purple
represents the leaves of P. cablin from Zhaoging (class 5), and black
represents the branches of P. cablin from Zhaoging (class 6). (A)
Prediction results of mixed sample 1. (B) Prediction results of mixed
sample 2. (C) Prediction results of mixed sample 3.

extracted. The cosine similarity between the mean feature
vectors of the two batches was calculated, along with the intra-
batch and inter-batch average Euclidean distances (Fig. 8). The

2.4444
2.4082

2.3258

Batchl Batch2 Between-Batch

Fig. 8 Intra-batch and inter-batch average Euclidean distances of the
CNN features.
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cosine similarity is 0.9988 between the mean feature vectors of
the two batches. The intra-batch average distances are 2.4444
(Batch 1) and 2.3258 (Batch 2). The inter-batch average distance
is 2.4082. The cosine similarity of the feature vectors across
batches is high. The Euclidean distances between the feature
vectors between batches are similar to those within batches,
and the value lies between those within two batches. These
results demonstrate that the freezing strategy is reasonable and
that the features are consistent across batches.

3.5 Advantages

3.5.1 Ideal performance. In this study, the DeepPHSI
model realizes innovative applications in HSI data classification
tasks. It integrates multi-level feature extraction and draws on
the advantages of CNN, LSTM and Attention, and it can capture
important features from raw data. After systematic comparison,
the DeepPHSI model achieved ideal analysis results.

3.5.2 Friendly in situ analysis tool. The use of hyperspectral
imaging to collect P. cablin samples can afford rich spatial-spectral
information, and this process is non-destructive and fast. After
pixel-by-pixel prediction by DeepPHSI, the prediction results are
reconstructed to achieve in situ analysis of HSI. In addition,
a simple graphical user interface tool is developed for ease of use
and visualization. It supports visualization, prediction and result
presentation of HSI data. The interface is shown in Fig. S5.

3.5.3 Transferability. In this study, transfer learning is used
to address the differences between different batches of HSI
data. First, the model is trained using standard data sets. Then,
the pre-trained model can be fine-tuned and applied using
a small amount of data from different batches of data. In
practical applications, the model retraining requires a large
amount of data, which usually requires tedious data collection
and data labeling. In addition, model retraining takes a lot of
time for optimization, and computing equipment and
computing resources also play decisive roles. The strategy of
transfer learning simplifies the process of data labeling and
model retraining, which can save a lot of manpower and
material resources.

3.5.4 Universality. In HSI data processing, complex pre-
processing steps are usually considered to be necessary to
improve the model's performance. However, this study shows
that even without data preprocessing, the DeepPHSI model still
exhibits excellent classification performance. This result shows
that the DeepPHSI model can extract some key features that are
helpful for classification, which may be partially lost during the
preprocessing stage. In addition, modelling the analysis based
on raw data (without preprocessing) avoids the impact of the
selection of the preprocessing methods. In practical applica-
tions, the dependence of the model's performance on data
preprocessing can be greatly reduced. To a certain extent, the
universality of the model is ensured, which is in line with the
trend of big data analysis.

3.6 Limitations and future work

As can be seen from the prediction results in Fig. 5 and 6, some
predicted “noise” pixels tend to appear at the edge of the leaves.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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One possible reason is that the leaves were not completely flat
and stretched during data collection. The refraction and scat-
tering effects of light lead to differences in the spectra collected
at the edge and in the center of the leaves. In addition, the
standard training data used by the pre-trained model cannot
strictly fit the distribution of leaves when the data are manually
labeled (human eye). Spatial neighboring spectral information
will be considered to solve the problem of inaccurate predic-
tions at the edges in future work. Alternative and more accurate
data labeling processes also deserve further study.

4 Conclusions

In this study, the DeepPHSI model was developed based on
CNN, LSTM, and attention mechanisms. DeepPHSI predicts the
pixel-by-pixel along the spatial resolution direction of the HSI,
and it identifies the origin and anatomical part information of
P. cablin. Two batches of HSI data of P. cablin were collected for
model training, validation and testing. These P. cablin origi-
nated from Hainan, Zhaoqing and Shipai, including leaves and
branches. Compared with the traditional CNN, LSTM and
Attention models, DeepPHSI exhibited better identification
performance. Different preprocessing methods were performed
on the same test dataset, and the results showed that the pre-
trained model exhibited high accuracy without data pre-
processing. As for transfer learning, the performances of the
transferred models with fine-tuning applied at different layers
are also compared to select the optimal transfer strategy. Cross-
batch consistency verification results demonstrated that the
freezing strategy is reasonable and the features are consistent
across batches. With pre-training and fine-tuning strategies, the
prediction results of the DeepPHSI model on different datasets
were obtained. The results showed that the model could accu-
rately identify the origins and parts of P. cablin in the HSI
Although there is minor prediction “noise” at the edge of the
leaves, the visualization results are still of great reference
significance. Combined with transfer learning, the DeepPHSI
method is expected to be applied to quality control and the
online detection of P. cablin, and it is a transferable, universal
and highly promising method.
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