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Pharmaceutical compounds have emerged as surface and groundwater contaminants over the last three
decades. It is paramount to efficiently remove these contaminants from wastewater, as these molecules
pose a severe threat to biodiversity and human health due to the inefficacy of wastewater treatment
plants in removing many of these compounds, bioaccumulation in animal tissues, and harmful health
effects caused at low concentrations. Although different removal techniques can be effective depending
on the target compounds and wastewater characteristics, adsorption has a slight edge due to its low
adsorbent and operational costs, high efficacy, and minimal byproducts. However, over the last decade,
only a few articles have comprehensively reviewed the removal of pharmaceutical compounds through
adsorption. This paper focuses on the environmental impact, detection accuracy, and effectiveness of
various adsorbents for different pharmaceutical compounds. It critically analyzes the adsorption
isotherms, adsorption kinetics, adsorption thermodynamics, and mechanisms of different adsorbents.

Pore filling, electrostatic attraction, hydrophobic interactions, surface complexation (or bond formation),
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during adsorption. The sustainability metrics of different adsorbents are explored for scale-up, as well as
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1 Introduction

Pharmaceuticals, a significant step forward in the advancement
of human scientific development, have contributed to the
extension of life spans, the treatment of millions of people
suffering from fatal diseases, and an overall improvement in the
quality of life. Their rise to prominence as fast-expanding
environmental pollutants is directly attributable to their
success." Almost all environmental matrices, including surface
water, groundwater, and effluents and influents from waste-
water treatment plants, as well as sludges and livestock indus-
tries, have been shown to contain pharmaceutical residues over
the past three decades.”” A few of these contaminants are so
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effective strategies for managing used adsorbents to support sustainability, covering the gap from the lab

harmful that they can interfere with human genetics,
hormones, and enzymes. Pharmaceuticals, in general, have
a relatively short half-life.*** The body's metabolism cannot
absorb the drugs entirely after humans ingest them. As a result,
surplus drugs are discharged into household wastewater and
subsequently enter sewage treatment facilities. Still, the reality
is that many of these facilities do not consistently filter out
pharmaceuticals. Both ecological systems and wastewater
treatment facilities experience varying degrees of degradation,
ranging from nearly complete to limited removal. Pharmaceu-
tical residues are categorized as “compounds of emerging
concern” due to their environmental persistence and potential
to affect human health and ecosystems significantly.>** The
efficient removal of pharmaceuticals and other priority pollut-
ants from wastewater before release is, therefore, becoming an
increasingly urgent issue in the field of environmental engi-
neering. Consequently, the prospect of removing drugs and
pharmaceuticals from water is appealing to researchers,
scholars, healthcare professionals, and regulatory bodies.

A wide variety of water sources have been found to contain
almost every category of drugs and pharmaceuticals. Antibi-
otics, P-blockers, steroids, analgesics, anti-diabetics, anti-
depressants, anti-epileptics, antihistamines, anti-psychotics,
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cytostatic, gastrointestinal, and lipid regulators are among the
various types of medications and pharmaceuticals found in
water.">* Antibiotics receive special attention within the phar-
maceutical industry due to their role in promoting the emer-
gence and dissemination of antibiotic resistance among
microorganisms, particularly pathogens, through environ-
mental contamination. The concentrations of antiviral drugs
and antibiotics (e.g., azithromycin) in wastewater sharply
increased (>70%) during the pandemic.'** Most of the phar-
maceutical components resist contemporary wastewater treat-
ment methods and have slow biodegradation."”" It is also
alarming that half of pharmaceutical wastewater is released
into the environment without treatment.* Thus, the pollutants
make their way to the domestic water body. A few of them can
withstand water for an extended period. In most cases, the
levels of residues from newly emerging contaminants are
measured in micrograms per liter.

Pollutants in wastewater can be removed by combining
physical, chemical, and biological treatment methods. Chem-
ical treatments include coagulation, chemical oxidation,
advanced oxidation, and electrochemical treatment.?> Advanced
oxidation processes (AOPs) are suitable for removing chloro-
quine,” ivermectin,** azithromycin,” penicillin,*® diclofenac,*®
ciprofloxacin, and paracetamol.”” However, these removal
processes are primarily laboratory-based and costly. Chemical
oxidation and electrochemical processes may form byproducts
that might be more harmful and toxic than the primary
compounds in wastewater. Biological treatments are ineffective
and slow processes, as antibiotics are difficult for microorgan-
isms to degrade. The physical treatment methods incorporate
sedimentation, sand filtration, adsorption, and membrane
treatments.”® Physical wastewater treatment facilities, such as
sedimentation and sand filtration, cannot fully degrade phar-
maceuticals due to their design, which typically handles
organics in the mg L™" range. Membrane treatments are highly
effective in removing pharmaceutical compounds; however,
cost, clogging, and the need for frequent cleaning are the major
issues associated with these treatments. Nano-filtration can
remove up to 85% of anti-inflammatory drugs from waste-
water.”® Several downsides are associated with most systems,
including time consumption, rigorous operating specifications,
cost, and periodic maintenance.>** Considering these draw-
backs, the adsorption technique is highly utilized due to its low
cost, ease of operation, efficacy, and stability in removing
pharmaceutical waste.>** Fig. 1 presents the number of articles
published recently with keywords related to adsorption and
pharmaceutical wastewater.

Many kinds and categories of adsorbents have emerged from
the macro-to the nanoscale in recent years. Fig. 2 presents
a schematic overview of the principal approaches for treating
pharmaceutical wastewater. The advantages of adsorbents are
their small size, great potential for tuning according to needs,
large surface area per unit mass, existence of multiple active
sites, and high effectiveness in removing pollutants.**

The high binding capacity of adsorbents for pharmaceuticals
has made adsorption a valuable method for purifying phar-
maceutical effluents. Adsorption has shown potential for
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Fig. 1 Recently published articles on adsorption and pharmaceutical
wastewater from 2020-2025 (language limited to English). Source:
Scopus.

pharmaceutical removal from water and effluents to prevent
pollution and waste handling because of its straightforward
design, easy operation, and absence of unwanted byproducts.*
Furthermore, the cost of treating wastewater using adsorption
can be comparable to other techniques, such as the advanced
oxidation process, depending on the pollutants and employed
technique.**** Recently, numerous studies have removed
pharmaceuticals from wastewater using various adsorbents,
including activated carbon, biochar, porous carbon, zeolite,
MOF, graphene, polymer, perovskite, etc.?**** Features of the
pollutants, such as charge, shape, size, and solubility, greatly
influence the binding of pollutant species to an adsorbent
surface. Adsorbent-based pharmaceutical treatment has a facile
design and requires less energy than the advanced oxidation
process to remove pharmaceuticals.*** Advanced oxidation
processes can produce toxic byproducts during operation,
making it difficult to scale up.**** On the other hand, adsorbent-
based treatment methods are easier to scale and modify for use
in real-world applications. Adsorption-based pharmaceutical
wastewater treatments are available in real-world applications.
The most common companies are DESOTEC, HYERA INC., and
NORIT, and they utilize activated carbon as an adsorbent, either
in powdered or granular form, to remove pharmaceuticals.**¢

Several publications on degrading and removing pharma-
ceutical substances have recently appeared in top peer-reviewed
journals. However, only a few published studies have detailed
the use of adsorbents to remove these compounds. In this
article, a comprehensive approach was taken to review the
current state-of-the-art methods using next-generation adsor-
bents to remove emerging pharmaceutical contaminants, as
well as future remedial methods available to achieve these
treatments in a more eco-friendly and sustainable manner. The
article also explores the adsorption isotherms, kinetics, and
mechanisms of pharmaceutical waste removal.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A graphical overview of pharmaceutical wastewater treatment methods.

2 Pharmaceutical wastewater
characteristics

Pharmaceutical wastewater (PW) is a complex array of organic
and inorganic molecules with varying physicochemical prop-
erties.””*® The success of any PW treatment process depends on
understanding the physicochemical properties of the target
compound and the wastewater and designing the process
accordingly.** Parameters, including pH, initial pollutant
concentration, pollutant hydrophobicity, treatment time, and
temperature, considerably influence the adsorption of waste-
water pollutants.*

A wide range of pH values, from 3.7 to 14, has been reported
in various studies for different PWs (Table 1). Understanding
the correlation between the pH and the pollutant can be crucial

© 2025 The Author(s). Published by the Royal Society of Chemistry

for efficient wastewater treatment. Like other pollutants, phar-
maceutical pollutants (PP) are present in their ionic form in
wastewater. The zeta potential (ZP) value indicates the electro-
static interaction between a charged surface and PP. The vari-
ation of ZP of PP is influenced by the pH of the solution, which
affects the PP removal kinetics and mechanism.** Chemical
oxygen demand (COD) and biochemical oxygen demand (BOD)
are the main water quality parameters. The typical COD and
BOD content in from pharmaceutical
manufacturing industries ranges between 800 and 60
000 mg L™" and 40 and 21 560 mg L™, respectively (Table 1).
The most frequently detected active pharmaceutical ingre-
dients (APIs) in wastewater are blood lipid regulators, non-
steroidal anti-inflammatory drugs (NSAIDs), antibiotics, selec-
tive serotonin reuptake inhibitors (SSRIs), analgesics, B-
blockers, hormones, and antihistamines.”® Kostich et al*

wastewater
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investigated the effluents of the 50 largest wastewater treatment
plants in the US and reported 56 APIs present in various
concentrations. Among these APIs, the most detected ones (30
detections) are atorvastatin, carbamazepine, ciprofloxacin, di-
Itiazem, furosemide, diltiazem-desmethyl, gemfibrozil, hydro-
chlorothiazide, metoprolol, ofloxacin, oxycodone, propranolol,
sertraline, sulfamethoxazole, triamterene, trimethoprim, val-
sartan, and verapamil. Valsartan was found to have the highest
maximum concentration of 5300 ng L™ ", followed by ibuprofen
(4200 ng L"), lisinopril (3300 ng L"), atenolol (3000 ng L"),
sulfamethoxazole (2900 ng L '), hydrochlorothiazide
(2800 ng L '), and gemfibrozil (2300 ng L™'). The USGS
surveyed 1091 sites spanning 46 states to assess the pharma-
ceutical and hormone content of groundwater from 2013 to
2015.>* 1,7-dimethylxanthine, carbamazepine, meprobamate,
sulfamethoxazole, and bisphenol A showed the highest number
of detections (more than 0.5%) with detection counts of 9, 18, 8,
12, and 7, respectively. This study revealed that principal aqui-
fers in the USA have already been contaminated with pharma-
ceutical and hormone compounds, although at levels below
safety benchmarks for humans. Another USGS survey was con-
ducted (2014-2017) on 308 wadable streams across four regions
of the USA to measure 108 pharmaceutical analytes.”
Compounds detected in the most significant number of sites
were nicotine (70% sites), metformin (68% sites), cotinine (47%
sites), lidocaine (42% sites), caffeine (42% sites), carbamaze-
pine (41% sites), and acetaminophen (26% sites).

3 Ecotoxicological impact of
pharmaceutical compounds

The effect of pharmaceutical compounds on organisms
depends on the organism type and class, exposure time, and
physicochemical properties of pollutants and the environment
(i.e., water).” Pharmaceutical pollutants (PPs) can be absorbed
and bioaccumulate in living organisms through ingestion (from
food and drinking water), respiration, and other uptake
methods (e.g., dermal absorption). This subsection focuses on
the ecotoxicological effects of different pharmaceutical
components on aquatic organisms.

The various active ingredients of pharmaceutical pollutants
have a significant impact on aquatic organisms, posing a severe
threat to their aquatic life. The ecotoxicological impact of
pharmaceutical compounds on different organisms is summa-
rized in Table 2. The literature review in this section highlights
the severe threat different pollutants pose to aquatic creatures.
Although most of the work reviewed here does not represent
environmentally relevant conditions, the bioaccumulation
capabilities of these pollutants can potentially create similar
complications under low pollutant concentrations. Therefore,
we need to understand various wastewater treatment tech-
niques and implement effective methods to minimize potential
environmental damage.

Pharmaceuticals, including antibiotics, hormones, and
analgesics, are increasingly being detected in water bodies, di-
srupting aquatic ecosystems and contributing to issues like

© 2025 The Author(s). Published by the Royal Society of Chemistry
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antimicrobial resistance (AMR).®” An adsorption system has
been successfully demonstrated for removing pharmaceuticals
from real wastewater using low-cost sorbents in a pilot-scale
plant.®® The cost-effective nature and exceptional performance
of the adsorption technique provide a distinct advantage over
traditional methods. Therefore, the primary objective of this
review is to investigate the role of adsorbents in removing
pharmaceuticals from aquatic systems.

4 Important adsorption parameters
for pharmaceutical wastewater
treatment

Adsorption has emerged as a promising approach for treating
pharmaceutical wastewater; however, its application remains
relatively limited, despite the availability of a diverse range of
adsorbents. Traditional materials such as zeolites, activated
carbon, and carbon nanomaterials have been extensively
investigated. In contrast, novel adsorbents, including metal-
organic frameworks (MOFs), graphene-based materials, carbo-
naceous compounds, polymeric materials, metal oxide nano-
particles, biochar, and sustainable materials, are being
increasingly explored for their potential. Fundamental param-
eters, such as adsorption isotherms and kinetics, govern the
adsorption of various pharmaceutical pollutants onto different
adsorbents. However, their performance can vary significantly
due to the differences in material properties, surface charac-
teristics, and experimental conditions. This section provides an
in-depth discussion of the key adsorption features, including
the adsorption isotherms, adsorption kinetic models, and
potential adsorption mechanisms of different adsorbents in
removing various pharmaceutical pollutants.

4.1 Adsorption kinetics model

Reaction kinetics describe the rate at which a reaction occurs
and identify the factors influencing this rate. In the case of
porous adsorbents, adsorption equilibrium is typically not
achieved instantly. The kinetic study examines the adsorption
rate, which can be influenced by varying mass-transfer condi-
tions depending on the pressure, the temperature, and the
properties of both the adsorbate and adsorbent. The solid
material encounters two primary resistances: (i) external diffu-
sion resistance, which refers to mass transfer from the bulk
fluid to the external surface of the adsorbent, and (ii) intra-
particle diffusion resistance, which involves mass transfer from
the external surface to the interior pore of the adsorbent.
Adsorption kinetics can be determined using mathematical
models, with the pseudo-first-order and pseudo-second-order
models being the most frequently used.”” Mechanistic adsorp-
tion typically proceeds via multi-step pathways, beginning with
film diffusion, surface binding, and intraparticle diffusion.
Such processes can be evaluated using the Weber-Morris and
Boyd models, which provide insight into whether adsorption is
surface- or diffusion-limited.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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4.2 Adsorption isotherm model

Adsorption isotherm models define the relationship between
the amount of adsorbate adsorbed per unit mass of adsorbent
at equilibrium and its concentration in the surrounding phase
(liquid or gas). The variations in adsorption isotherms provide
valuable insights into the interactions between the adsorbent
and adsorbate. Additionally, these isotherms help determine
the adsorbent’s pore structure and specific surface area.
Consequently, analyzing adsorption isotherms and developing
models are essential for understanding and optimizing the
adsorption process to achieve maximum efficiency. The most
used adsorption isotherm models for pharmaceutical waste-
water treatment are the Langmuir and Freundlich models.
Incorporating the Temkin and Dubinin-Radushkevich models
enables the evaluation of adsorption energetics, revealing
whether physical or chemical interactions dominate uptake.
Multi-layer models, such as Sips and Redlich-Peterson, better
describe adsorption on heterogeneous and high-surface-area
adsorbents, including MOFs and graphene composites.
Table 3 indicates commonly used kinetic and isotherm models
for the pharmaceutical adsorption process.

4.3 Thermodynamics of adsorption

Since motion is an intrinsic property of matter and energy is
inherently associated with this motion, it is natural that phys-
ical and chemical transformations involve energy changes.
Thermodynamics, a branch of physical science, examines these
energy variations. Key thermodynamic parameters—Gibbs free
energy (AG), enthalpy (AH), and entropy (AS)—offer valuable
insights into a material's adsorption capacity. These parameters
are crucial for understanding adsorption mechanisms, as they
help determine the feasibility, spontaneity, and heat exchange
associated with the process.

4.4 Fixed-bed adsorption and dynamic modeling for
industrial applications

While batch adsorption studies are widely used to evaluate the
capacity and mechanisms of adsorbents, they provide limited
insight for industrial-scale applications, where continuous
operation and predictive modeling are essential. Fixed-bed
column adsorption represents the most practical and scalable
configuration for wastewater treatment because it can operate
continuously, achieve high throughput, and facilitate straight-
forward adsorbent regeneration. Unlike batch systems, fixed-
bed columns capture breakthrough behavior, service time,
and mass-transfer limitations, which are critical for process
design and scale-up.

The adsorption performance in fixed-bed systems is typically
evaluated using dynamic modeling, which predicts break-
through curves and service life under realistic flow conditions.
Among the widely used models, the Thomas, Bohart-Adams,
and Yoon-Nelson equations are the most common due to their
simplicity, robust applicability, and ability to guide industrial-
scale column design.
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Thomas model: The Thomas model assumes plug-flow
behavior with second-order reversible kinetics and negligible
axial dispersion. It is widely applied to predict adsorption
capacity, breakthrough curves, and bed exhaustion times. The
model is given by:

In (g—: — 1) = kTthn_Q1 — kThC()l
where C, and C; are the inlet and outlet concentrations (mg
L™, go is the maximum adsorption capacity (mg g™ ), kry, is the
Thomas rate constant (L mg~ ' min~"), m is the adsorbent mass
(g), and Q is the volumetric flow rate (L min™").

Bohart-Adams model: The Bohart-Adams model correlates
column performance with bed depth and service time,
assuming that adsorption is primarily controlled by surface
reaction kinetics. It is beneficial for estimating bed depth
requirements, service time, and early breakthrough perfor-
mance. The linearized form is:

ln% = kBANO% — kpa Cot

where kg, is the kinetic constant (L mg™' min™"), N, is the

saturation concentration (mg L"), Z is the bed depth (cm), and
U is the superficial velocity (cm min™).

Yoon-Nelson model: The Yoon-Nelson model simplifies
column design by assuming that the adsorbate breakthrough
probability is directly proportional to the adsorption rate. This
model predicts the time for 50% breakthrough (t) without
requiring extensive parameter fitting:

c o\
ln<m> = kYN(l ‘L')

where kyy is the Yoon-Nelson rate constant (min "), and t is the
time required for 50% breakthrough (min).

4.5 Adsorption mechanism

Adsorption refers to the selective attachment of a specific ion or
compound at the interface between two distinct phases. When
occurring on a solid surface, adsorption can be categorized as
physical adsorption (physisorption) or chemical adsorption
(chemisorption). Physisorption arises from intermolecular
forces, including induced dipoles, permanent dipoles,
secondary valence forces, and van der Waals interactions. It is
generally reversible, less specific, and associated with low
thermal effects. Physical adsorption (physisorption) is
predominantly regulated by weak, non-covalent interactions,
including van der Waals forces, electrostatic attractions,
hydrogen bonding, m-m stacking, and hydrophobic effects.
These interactions are often non-specific and reversible, facili-
tating swift initial absorption without modifying the chemical
structure of either the pharmaceutical adsorbate or the adsor-
bent. Physisorption is generally characterized by low adsorption
energies, ranging from 4 to 40 kJ mol ', which promotes
adsorption—-desorption cycles and the renewal of adsor-
bents.*”*® Hydrophobic interactions significantly influence
aqueous environments, where nonpolar drugs tend to associate

© 2025 The Author(s). Published by the Royal Society of Chemistry
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with hydrophobic surfaces to reduce contact with water
molecules.

Chemisorption, in contrast, occurs when the adsorbate and
adsorbent share electrons, forming strong valence bonds. This
adsorption type is typically irreversible, highly selective, and
characterized by significant thermal effects. Chemisorption is
characterized by elevated adsorption energies, typically ranging
from 80 to 400 k] mol ™", and often results in structural changes
in the adsorbate or the formation of stable surface complexes.
Principal chemisorption mechanisms encompass ion-pair and
electron-transfer interactions between charged pharmaceutical
entities and active surface sites, surface complexation and
coordinate bonding at metal centers, ion exchange, and, in
certain instances, redox reactions that augment binding or
initiate partial transformation of the pollutant.®”*® Robust and
selective interactions are essential for the elimination of
persistent and low-concentration medicines from intricate
aqueous matrices. Analyzing the adsorption mechanism
provides substantial insight into the efficacy of various adsor-
bents for different pharmaceutical adsorbates. This review
thoroughly explores the interactions between pharmaceutical
pollutants and adsorbents during the adsorption process. The
adsorption of pharmaceutical micro-contaminants onto an
adsorbent surface primarily occurs due to surface energy, as the
atoms or functional groups on the adsorbent attract the
adsorbate to minimize surface energy. The adsorption mecha-
nism is significantly influenced by ambient and material vari-
ables, including pH, ionic strength, surface charge, and the type
and density of surface functional groups. Functional groups like
-OH, -NH,, -COOH, and -C=0 promote hydrogen bonding,
ion exchange, and coordination with medicinal compounds,
while the hydrophilicity or hydrophobicity of the adsorbent
surface determines its affinity for polar or nonpolar pollutants.
The pH of the solution regulates the ionization of both adsor-
bates and adsorbent surfaces; therefore, it directly influences
electrostatic and ion-pair interactions. The existence of
concurrent ions or natural organic materials can also influence
adsorption mechanisms by competing for active sites or
obstructing electrostatic interactions. The driving force behind
adsorption results from the combined effect of multiple inter-
actions that contribute to the total free energy of the process.
These interactions include hydrogen bonding, electrostatic
attraction, m-7 interactions, and dipole-dipole interactions
between the adsorbent and adsorbate.?® In certain instances,
van der Waals forces and hydrophobic interactions contribute
to the adsorption of organic molecules onto adsorbent mate-
rials. Van der Waals forces refer to intermolecular attractions,
categorized as weak London dispersion forces and stronger
dipole-dipole interactions. Another possible binding mecha-
nism for pharmaceutical contaminants is the hydrophobic
interaction between nonpolar groups. In contrast to intermo-
lecular forces, hydrophobic interactions are driven by entropy,
resulting from the exclusion of chemicals from the aqueous
phase rather than a direct attraction to the adsorbent. The
potential adsorption mechanisms of aqueous pharmaceuticals
onto various adsorbents are summarized in Fig. 3.
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Fig. 3 Potential mechanisms behind the adsorption of pharmaceuticals onto nanoparticles (adapted from ref. 90 with permission from Springer

Nature, copyright 2023).

5 Performance of adsorbents in
removing pharmaceutical pollutants

Adsorption is a highly viable technique for removing micro-
pollutants due to its ease of setup and cost-effectiveness. This
method has been commonly applied to eliminate natural and
synthetic organic compounds from wastewater. Here, we
present a detailed discussion of the performance and efficacy of
various adsorbents in removing pharmaceutical pollutants.

5.1 Zeolite

In recent years, research has been focusing on incorporating
zeolites to remove specific compounds and organic micro-
pollutants in pharmaceutical wastewater. Zeolites are micro-
porous minerals that mainly contain aluminum and silica
compounds, used as commercial adsorbents and catalysts.**
More than 40 naturally occurring zeolites and more than 253
unique zeolite frameworks have been discovered. The frame-
work of zeolites is composed of tetrahedral units of silica and
alumina, which possess high porosity, a large surface area, and
good physical and chemical properties, enabling them to
remove emerging pollutants from pharmaceutical wastewater.

1zzo et al. successfully modified natural zeolites using long-
chain cationic surfactants to develop a composite material

50606 | RSC Adv, 2025, 15, 50597-50632

with a high adsorption capacity for ibuprofen.®> Martucci et al.
investigated the adsorption capacity for the removal of eryth-
romycin, carbamazepine, and levofloxacin drugs from phar-
maceutical wastewater using three organophilic zeolites (Y,
mordenite (MOR), ZSM-5).” Zeolite Y (dealuminated faujasite)
was studied by Braschi et al. and confirmed to effectively remove
sulfonamide antibiotics from water, which significantly
contribute to bacterial resistance.” The adsorptive removal of
norfloxacin (NOR) and ofloxacin (OFL) was explored by Zhao
et al. using a polyethylene glycol (PEG-4000) surfactant-
modified and zeolite-supported nanoscale zero-valent iron
composite.”® Fig. 4 shows the various steps involved in the
synthesis, characterization, and removal mechanism of two
antibiotics with PZ-NZVI composite. Within one hour, more
than 95% of NOR or OFL could be removed from the solution
using PZ-NZVI, and the adsorption process could be best
described using the pseudo-second-order kinetic model and the
Temkin isotherm model. The characterization results before
and after adsorption, as well as batch studies, demonstrated
that various processes, including hydrophobic interaction, bi-
dentate complex formation between Fe and fluoroquinolones,
pore filling, and electrostatic interaction, can control the sorp-
tion process.

Arabkhani et al. reported an ultra-high adsorption capacity
value of 2594 mg g ' at 30 °C for the removal of diclofenac

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 A graphical representation of removing two fluoroquinolone antibiotics (NOR: naproxen and OFL: ofloxacin) using PEG-4000-stabilized
nanoscale zero-valent iron supported on zeolite (PZ-NZVI) (adapted from ref. 95 with permission from Elsevier, copyright 2020).

sodium from pharmaceutical wastewater by synthesizing gra-
phene oxide (GO) nanosheets with zeolitic imidazolate
framework-8 (ZIF-8), pseudo-boehmite (y-AIOOH), and iron
oxide (Fe;0,) nanoparticles.®® Liu et al. confirmed that modified
zeolite-supported nano-MoS, (MoS,@zeolite) with multiple
adsorption sites is an efficient and promising adsorbent for
treating pharmaceutical wastewater tetracycline.®” Attia et al.
synthesized magnetic nanoparticles coated with zeolite (MNCZ)
to adsorb medicinal substances from pharmaceutical
compounds.”®  Hexadecyltrimethylammonium  (HDTMA)-
modified zeolites showed hydrophobic interaction mecha-
nisms when estrogenic contaminants were removed from
wastewater.”® Thus, adsorbents based on zeolites and nano-
composites might be promising next-generation adsorbent
materials for treating pharmaceutical wastewater; however,
continuous operation will not eliminate the need for regular
adsorbent material replacement and regeneration.

5.2 Metal-organic frameworks (MOFs)

Metal-organic  frameworks (MOF) are unique three-
dimensional (3D) functional hybrid materials with extremely
porous nanostructures that can be synthesized by linking metal-
containing ions/groups and organic linkers through strong
bonds (reticular synthesis). A MOF is essentially a crystalline
structure with persistent porosity (usually more than 50% of the
crystal volume), and the typical surface area of MOFs varies
from 1000-10,000 m* g~ !, much higher than those of zeolites
and carbons. MOFs have been intensively studied for decades,
and appropriately designed examples have emerged as some of
the magnetic materials of choice for scientists and inventors
due to the presence of promising components with tunable pore

© 2025 The Author(s). Published by the Royal Society of Chemistry

networks, their flexibility and varying sizes, and an abundance
of adsorption sites, among other features.

MIL-101 (chromium-benzene dicarboxylate), in which MIL
stands for Material of Institute Lavoisier, is one of several MOFs
created so far that have been extensively studied for prospective
use for the removal of naproxen and clofibric acid from waste-
water due to its very high porosity (1.9 cm® g™'). Hasan et al.
further functionalized MIL-101 with an acidic group (AMSA-
MIL-101) and a primary group (ED-MIL-101). They conducted
batch experiments to explore the adsorption effectiveness of
eliminating naproxen and clofibric acid.'” UiO-66 with
controlled defects contained more open frameworks and
showed a higher affinity for diclofenac than other pharmaceu-
ticals.’®* Methanol-activated Cu-based MOF(HKUST-1) showed
excellent adsorption capacity to remove sulfonamide antibiotics
and sulfachloropyridazine (SCP).'*> The high surface area, large
pore volume, and unsaturated metal sites resulted in faster,
spontaneous, and endothermic adsorption Kkinetics for
removing sulfonamide antibiotics. Fig. 5 shows that electro-
static interactions, H-bonding interaction with the H of the NH,
from the SCP and the oxygen of the HKUST-1 clusters, and -
stacking between the benzene ring of the MOF and the SCP are
primarily responsible for the high adsorption capacity.

Lu et al. fabricated a novel amino-functionalized aluminum-
based metal-organic framework (AI-MOF@NH,), demon-
strating high hydrocortisone (HC) adsorption capacity,
a common steroid hormone drug. Large-scale manufacturing,
water stability, and reusability are three critical obstacles to
using MOFs as adsorbents. Most MOFs are not water stable,
which may lead to poor recovery and even second-hand pollu-
tion from metal leaching.

RSC Adv, 2025, 15, 50597-50632 | 50607
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Recent studies have reported that many MOFs, especially
those with weak metal-ligand bonds, suffer from poor aqueous
and thermal stability, which restricts their long-term use in water
treatment."™ Additionally, metal ion leaching from MOFs—
particularly those based on transition metals such as Cu, Zn, and
Fe—poses risks to environmental safety and downstream
processes.'” The potential toxicity of uncoordinated or degraded
organic linkers, such as imidazolates and terephthalates, is also
an emerging concern, especially under variable pH and oxidizing

50608 | RSC Adv, 2025, 15, 50597-50632

conditions.'™ We have incorporated these findings into the
discussion to present a more nuanced and realistic evaluation of
MOFs' applicability in pharmaceutical wastewater treatment.

5.3 Graphene and graphene-based materials for
pharmaceutical wastewater treatment

Numerous sorbent materials have undergone thorough inves-
tigation for the elimination of heavy metal ions, which are

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) The sp2 hybridization arrangement of carbon atoms, which are closely packed together in a honeycomb lattice formation. (b) The
atomic structure of graphene, emphasizing the individual carbon atoms and their connections within the lattice (adapted from ref. 109 with

permission from Elsevier, copyright 2020).

known to have either low sorption capacities or efficiencies.
Graphene and its derivatives have recently gained popularity in
wastewater treatment due to their exceptional thermal, optical,
chemical, and mechanical properties, including a high surface
area, excellent thermal conductivity, and high optical trans-
mittance, among others. Graphene-based materials, including
graphene oxide (GO) and reduced graphene oxide (rGO), have
the potential to be modified with diverse functional groups,
thereby augmenting their adsorption characteristics. It is re-
ported that the adsorption mechanism of organic pollutants on
graphene depends upon the 7-electron system of the organic
molecules and the w-electrons associated with the aromatic ring
of graphene.

Graphene is a two-dimensional arrangement of carbon
atoms organized in a hexagonal lattice structure, constituting
a singular layer."” Fig. 6 shows the two-dimensional (2D)
structure resulting from sp” hybridization of its carbon atoms
arranged in a honeycomb framework.'”® The excellent disper-
sion properties of graphene are due to the weak van der Waals
forces that bind the layers (bond length 0.142 nm) together.

The increasing interest in graphene originates from its
remarkable physicochemical attributes, including its elevated
specific surface area (a theoretical surface area of 2630 m” g~ *),*°
exceptional electrical and thermal conductivity,"* chemical
structure, and mechanical strength. Graphene acts as a rapid
adsorbent for diverse contaminants thanks to its extensive,
delocalized m-electron system, enabling robust interactions with
other pollutants. Saravanan et al. provided an in-depth analysis of
the applications of materials derived from graphene in waste-
water treatment as adsorbents, electrodes, and photocatalysts to
efficiently remove harmful pharmaceutical pollutants, heavy
metals, dyes, and other contaminants, as shown in Fig. 7.'**

© 2025 The Author(s). Published by the Royal Society of Chemistry

The application of graphene-based materials as photo-
catalysts for removing decomposing organic contaminants
from pharmaceutical effluent has been reported.'** Graphene
can enable the production of reactive oxygen species when
paired with appropriate photocatalytic substances, such as
metal oxides or semiconductors, and subjected to light irradi-
ation."* These reactive species can facilitate the degradation of
organic molecules into less detrimental chemicals via oxidation
mechanisms. Jauris et al. investigated the adsorption behavior
of sodium diclofenac (s-DCF) on several carbon-based mate-
rials, including pristine graphene, graphene with a vacancy,
reduced graphene oxide (rGO), and functionalized graphene
nanoribbons."*® The primary objective of this research was to
gain insights into the underlying process of s-DCF adsorption
on the carbon lattice. The computer simulations demonstrated
that the interactions between pristine graphene and s-DCF can
be attributed to a physical adsorption mechanism. However, in
the case of pristine graphene and graphene with a single
vacancy, the outcomes indicated the presence of m-m
interactions.

5.4 Metal oxide nanoparticles as adsorbents

The remarkable characteristics of nanoparticles, including their
large surface-to-volume ratio, novel optical properties, and the
ability to achieve any desired shape, have garnered considerable
interest. Activated carbon-based sorbents have been extensively
researched for their effectiveness in wastewater treatment.
However, the challenge lies in separating and regenerating
these sorbents due to their small size. To address this issue,
magnetically active sorbents have been proposed, e.g., Fe,O3,
Zn0, ZnO-MgO, Al,03, TiO,, CuO, MnO,, and related conjugate
sorbents.”® The sorbents involve embedding oxides onto
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a carrier that prevents oxide aggregation. Nanoparticle tech-
niques have proven vastly superior to conventional sorbents in
pharmaceutical effluent treatment. There is an urgent need for
research into the complexities of nanomaterials for pharma-
ceutical wastewater treatment, as several mechanisms are
involved in pharmaceutical drug removal from wastewater.
Iron-based nanoparticles have been extensively studied in
various forms, including doped, composite, and spinel oxides.
Various chemical methods have been reported for synthesizing
pristine/doped/composite iron oxide nanoparticles, including
co-precipitation, sol-gel, thermal decomposition, hydro-
thermal, and polyol methods. Other physical methods include
solid-state ball milling, gas phase deposition, and pulsed-laser
ablation. Hematite («-Fe,O3), among various iron oxide poly-
morphs, has garnered significant attention due to its excep-
tional resistance to corrosion, non-toxic nature, high stability in
atmospheric conditions, and environmentally friendly proper-
ties. The particle size, shape, and composition of chemically
synthesized iron nanoparticles (NPs) are influenced by various
factors, including the precursor salt type, Fe(u) to Fe(m) ratio,
pH, and ionic strength. In a study by Ali et al, five types of

50610 | RSC Adv, 2025, 15, 50597-50632

adsorptive removal mechanisms were outlined for iron-based
nanoparticles.'”” These mechanisms include the electrostatic
interaction between pollutants and magnetic nanomaterials,
facilitated by diverse biomolecules present on the surfaces of
magnetic nanoparticles. Chemical diffusion occurs between the
adsorbent and adsorbate, while surface precipitation, redox
reactions, and ion exchange are also significant mechanisms.
Hydroxyl (OH) functional groups play a crucial role in the ion
exchange process. The tendency of different groups of antibi-
otics to dissociate into cations, zwitterions, and anions at
varying pH levels cannot make their mechanism of adsorption
a stereotype. Hence, in addition to experimental techniques,
density functional theory calculations can provide crucial
insights into the mechanism of removing contaminants.

5.5 Sustainable materials as adsorbents

Solid materials used as adsorbents can take a broad range of
chemical forms and different geometrical surface structures.
There are also basic types of adsorbents, including carbon
adsorbents, mineral adsorbents, and others. The adsorbent can
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be classified into conventional commercial adsorbents and
non-conventional waste-generated adsorbents. Despite being
favored by traditional adsorbents for contaminant removal, the
extensive industrial application of these commercial materials
is constrained by their high cost. Natural materials (Fuller's
earth or bauxite, wood, sawdust), natural materials treated to
develop their structures and properties (activated alumina,
activated carbon, silica gel), manufactured materials (zeolites,
polymeric resins, aluminosilicates, etc.), agricultural solid
wastes and industrial byproducts (red mud, fly ash or date pits),
and biosorbents (bacterial biomass, fungi or chitosan) are the
five classes of adsorbents.”® In recent decades, adsorbents for
water treatment that are affordable, environmentally respon-
sible, and easy to design have become increasingly popular.
Table 4 presents the adsorption capacities, specific surface
areas, adsorption conditions, adsorption kinetics, and
isotherms, as well as potential mechanisms for the removal of
pharmaceutical wastewater using some sustainable adsorbents.

5.5.1 Biochar as an adsorbent. Biochar is a unique
substance for treating wastewater due to its ecologically benign
and adaptable properties. Biochar has proven to be a successful
approach for absorbing colorants that may be hazardous and
detrimental to the environment due to its adsorption abilities.
Biochar and composites made of it have recently come to light
as adsorbents that are both very efficient and cost-effective,
especially when it comes to treating pharmaceutical waste-
water because of their notable characteristics, including a large
surface area, a variety of capabilities, sustainability, and
adjustable attributes. Fig. 8 illustrates the entire process of
biomass production and modification methods from various
sources, as well as the mechanism of adsorption of pharma-
ceutical pollutants.

The highest concentrations of pharmaceutical pollutants
recovered with biochar include tetracycline (found at 1163 mg
g™ 1), sulfamethoxazole (found at 400 mg g~ '), naproxen (596 mg
g 1), and norfloxacin (698.6 mg g ') when using biochar
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derived from corncobs.™® Unlike other adsorbents, biochar can
be recycled up to eight times with minimal efficiency loss."*®
Additionally, hazelnut shell was utilized as a precursor in
producing magnetic biochar (MBC), which was subsequently
applied as a biosorbent to eliminate pharmaceutical impurities
from contaminated water. This hazelnut shell biochar achieved
the highest Pen-G adsorption capacity of 479 mg g~ at 40 °C,
PH 2, 1000 ppm penicillin-G (Pen-G) concentration, and 0.175 g
of adsorbent per 100 g of solution.**® Iron-loaded sludge biochar
showed excellent performance, with a surface area of 82.78 m>
g !, removing tetracycline (TC) to a maximum adsorption
capacity of 104.86 mg g~ under pH levels of 2-10.'>' Further-
more, biosolid (mostly biowaste)-derived biochar has an excel-
lent surface area of approximately 182 m> g~ ' and removed
triclosan from wastewater with a capacity of about 1330 pg g~
at pH 7."**> Sewage sludge-derived biochar also showed excellent
potential for wastewater treatment as it removed diclofenac
(DCF), naproxen (NAP), and triclosan (TCS) with maximum
adsorption capacities of 92.7 mg g™, 127 mg ¢~ ', and 113 mg
g~ !, respectively, from polluted water at pH 2-11."** Biochar
generated from maple leaves at three temperatures (350 °C,
550 °C, and 750 °C) produced the highest sorption rate for
tetracycline, with an adsorption capacity of 407.3 mg g ' at
a pyrolytic temperature of 750 °C."** Algal-based (Spirulina
species) biochar generated at a temperature of 750 °C was
shown to be more effective in treating tetracycline waste than
biochar generated at 350 °C and 550 °C, with an adsorption
potential of 132.8 mg g~ '."** Sulfadiazine, sulfamethazine, and
sulfachloropyridazine can all be removed by walnut shell bi-
ochar with removal efficiencies of 32 mg g™, 46 mg g~ ', and
40 mg g, respectively.’®® Sulfamethoxazole was significantly
removed from biochar made from sugarcane bagasse by
hydrothermal carbonization at 200 °C and alkali activation with
NaOH in an inert environment. A maximal sorption capacity of
400 mg g~ was reported by Prasannamedha et al.'*’ Novel bi-
ochar derived from corn stalk, reed stalk, and willow branches

Fig. 8 Biochar production and modification using various sources for the adsorption and elimination of pharmaceutical contaminants from
wastewater (adapted from ref. 119 with permission from Elsevier, copyright 2024).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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was studied by Wang et al.,"*® and used for norfloxacin removal
in water, achieving maximum adsorption capacities of 7.2469,
3.5139, and 6.2587 mg g~ ', respectively. Moreover, peanut shell-
derived biochar, which was prepared by pyrolysis at 800 °C for
approximately 4 hours, removed naproxen with an excellent
adsorption capacity of 324 mg g~ *,.1*°

5.5.2 Agricultural waste-based carbon materials as adsor-
bents. Waste management is a problem that must be addressed
more. Due to its relatively high fixed carbon content and porous
structure, this inexpensive and plentiful agricultural waste might
be investigated as a low-cost alternative adsorbent.’ Several
researchers have recently concentrated their efforts on investi-
gating alternative agricultural waste-based carbon sources to
synthesize activated carbon.” Naproxen, diclofenac, ibuprofen,
and ketoprofen were adsorbed using activated carbon from olive
waste.””” Portinho et al. investigated the use of adsorbent made
from grape stalk, a byproduct from industrialization process, for
caffeine removal by adsorption.**® An additional agricultural waste,
banana pseudo-stem, is used to remove amoxicillin.*** Addition-
ally, norfloxacin pharmaceutical pollutant was removed by shad-
dock peel, which is produced via hydrothermal carbonization
(HTC) pre-treatment, with a maximum adsorption capacity of
746.29 mg g% The authors demonstrated that the adsorbent's
increased porosity and surface area were related to its excellent
adsorption performance.

5.5.3 Naturally occurring materials as adsorbents. Many
natural materials have the potential to be used as adsorbents. They
are available in large quantities in our environment, often at low
cost, and can remove various pollutants from wastewater. Natural
adsorbent chitosan-grafted SiO,-Fe;O, removed ciprofloxacin
from wastewater with a sorption capacity of 100.74 mg g '.1%
Again, another adsorbent, NiFe,0,~COF-chitosan terephthal-
aldehyde nanocomposites (NCCT), has great potential for
removing pharmaceutical pollutant tetracycline from wastewater.
Li et al. demonstrated that the adsorption mechanism for these
pollutants was likely due to electrostatic and - interactions, ion
exchange, complexation, and hydrogen bonding."*” Peat is another
naturally occurring material containing lignin and cellulose as
significant constituents that can be used as a sustainable source of
biomass for producing activated carbon/biochar. According to
Shukla et al,”® caffeine and sulfamethoxazole (SMX) were
adsorbable on magnetically engineered sulfurized peat-based
activated carbon (MEPBAC) from aqueous medium. Another
study introduced magnetite-pine bark and iron-modified peat as
effective, affordable, and environmentally friendly biosorbents for
removing pharmaceutical contaminants like levofloxacin and
trimethoprim from wastewater.”® Another study described an
optimization process for obtaining the best adsorbent from four
tannin feedstocks: Acacia mearnsii de Wild, Schinopsis balansae,
Cupressus sempervivens, and Pinus pinaster bark extract, all of which
are highly effective at removing specific contaminants, such as the
pharmaceutical species trimethoprim.'* Peat has been studied as
an adsorbent by various researchers.'**

5.5.4 Industrial waste-based materials as adsorbents. A
massive amount of solid and semisolid waste is produced by
many industries daily all over the world. This industrial waste
can be utilized as an adsorbent for wastewater treatment, which
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can be obtained at almost no cost. Numerous industrial wastes
have been researched as adsorbents for removing contaminants
from wastewater, either with or without treatment. Fly ash—
a byproduct from coal combustion—is an excellent alternative
to activated carbon or zeolites for wastewater treatment with
significant promise in environmental applications. Fly ash has
significant physicochemical properties like particle size,
density, porosity, surface area, and water holding capacity, with
the chemical properties of silica (60-65%), alumina (25-30%),
magnetite, and Fe,0; (6-15%), which make it an appropriate
choice for use as an adsorbent. Cost and efficiency are signifi-
cant obstacles to introducing a sorbent into the commercial
sector. Efforts have been made to create adsorption-capable
zeolites from coal fly ash (CFA), the waste product of coal
power plants. To achieve the highest removal effectiveness, the
influences of pH, concentration, and external salt were also
investigated.'*> A nanosized Fe,/FeS, composite (Fe,/FeS,@BFS)
supported by blast furnace slag was created and employed for
the in situ treatment of groundwater contaminated with
oxytetracycline (OTC).*** Senar Aydin et al. looked at the simple
and efficient removal of psychiatric medications from waste-
water treatment plant effluents using magnetite red mud
nanoparticles.”* In their work, manufactured magnetite red
mud nanoparticles (RM-NPs) were used for the first time to
remove psychiatric medications (fluoxetine, paroxetine, carba-
mazepine, diazepam, and lorazepam) from WWTP effluent. The
removal efficiencies of anti-inflammatory drugs (AAIDs) from
magnetite nanoparticles made from red mud (mNPs-RM)
ranged from 90% (diclofenac) to 100% (naproxen, codeine,
and indomethacin).**®

5.5.5 Biosorbents. A relatively new development is using
biological materials to remove contaminants from effluents.
Researchers' interest in biomaterials made from proteins has
grown in recent years due to their extensive use in various
goods. To increase their ability to remove pharmaceutically
active compounds (PACs) from the water system, several bi-
osorbents have been altered. Due to their natural origin,
biodegradability, simplicity of modification, and reliance on
renewable resources, biosorbents have attracted attention for
application in water treatment. Waste products have also been
used as feedstocks to create biosorbents.'*® Scenedesmus obli-
quus (alga) was studied by Ali et al. as a potential adsorbent for
the removal of pharmaceutical compounds (cefadroxil, para-
cetamol, ibuprofen, tramadol, and ciprofloxacin) from water.**’
Another biosorbent, sisal waste, was chemically activated to
create activated carbon, which has tremendous potential for
removing ibuprofen and paracetamol.™*® Khazri et al. investi-
gated the adsorption of two commonly found drugs in surface
waters, atenolol, and clarithromycin, onto cuttlefish bone
powder that was successfully treated with HCL.***

6 Sustainable management of used
adsorbents

The adsorbent materials reviewed in this work can be broadly
categorized into five main types: metal-organic frameworks

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(MOFs), graphene/graphene-based materials, zeolites, metal
oxide nanoparticles, and biochar. Table 5 presents the
sustainability of using these materials, based on their carbon
footprint, E-factor, and life cycle assessment (LCA) outcomes for
material synthesis. It is worth noting that there is significant
variability in the reviewed metrics within each class of mate-
rials, due to variations in chemical compositions and synthesis
techniques. For instance, Dutta et al. reported that MOF-88 (Zr)
has a carbon footprint of 2482 kg CO, eq., whereas CAU-10 has
only 23.7 kg CO, eq. global warming potential.*® Meanwhile,
the carbon footprint of zeolite is dependent on the gel compo-
sition and crystallization of the material."® As presented in
Table 5, the mass ratio between the waste and desired product,
i.e., the E-factor, is low for graphene oxide materials, but the
carbon footprint is relatively high, resulting in a high LCA
outcome. Although conventional synthesis of MOF generally
produces a significant amount of waste, green sources such as
waste-derived materials can drastically reduce the E-factor. The
overall sustainability of the reviewed adsorbent materials
follows the order MOFs < graphene-based materials < zeolites <
metal oxide nanoparticles < biochar. As such, our review takes
a top-down approach with the least sustainable material (i.e.,
MOFs) discussed first and biochar last.

After removing pollutants, adsorbents with high aquatic
stability may readily separate from wastewater streams. The
reusability of used adsorbents is determined by their capacity
for recovery, decontamination, and regeneration. The adsor-
bent needs to be reused and regenerated to reduce costs for
industrial applications. The regeneration method must be
chosen carefully to effectively desorb the pollutant. The viability
of industrial-scale use depends on several factors, including the
kind of adsorbent, the contaminants, the adsorbent's stability,
the toxicity of the used adsorbents, and the cost and energy
requirements of the regeneration process. Filtration, magnetic
separation, thermal desorption, microwave irradiation,
advanced oxidation process, solvent regeneration, and
microbial-assisted adsorbent regeneration are several tech-
niques for regenerating spent adsorbent. A bar magnet can
readily separate magnetic biochar from biomass that has been
pre-treated with iron salts like K,Fe,0, and FeCl,/FeCl; to create
magnetic biochar.” An adsorbent created by coating paly-
gorskite with magnetite nanoparticles displayed a magnetic
susceptibility of 20.2 emu g~ and absorbed 26.6 mg g~ * of Pb>*
from water. The spent adsorbent was easily separated using
a basic bar magnet.”* An et al. showed the potential for excel-
lent sorbent reusability.”* Up to the fifth run, the number of
MOF-derived carbons (MDCs) required to remove pharmaceu-
tical products from water did not significantly grow as the
number of cycles increased. Moreover, the performance was
still around an order of magnitude higher than the brand-new
activated carbon (AC) after the fifth run. Furthermore, metal
recovery by thermal desorption from used adsorbent is an
emerging method. MWCNT (multi-walled carbon nanotubes)
were successfully recycled by Tonski et al. by thermal desorp-
tion, and effectively used to remove cyclophosphamide, ifosfa-
mide, and 5-fluorouracil.*® Using 0.5 M NaOH, arsenic could be
desorbed from magnetic sorbents, and additional magnetic

© 2025 The Author(s). Published by the Royal Society of Chemistry

Table 5 Sustainability of the different categories of adsorbent materials studied in this work

Techno-economic analysis based
on capital expenditure (CAPEX)

Lifecycle

E-factor (kg of waste/

kg

Carbon footprint

(kg CO, eq. kg ™"
adsorbent)

assessment
outcome

Regeneration
potential

and operating expenditure (OPEX)

of desired product)

Cost of material

Adsorbent category

Scaling is limited due to very high

CAPEX and OPEX'%7:198

Very high, as the

1.3-19.9 (ref. 200)

23.7-2482 (ref. 188)

Typically limited (<5
cycles); stability

issues'®®

$20-50 kg™ (ref.
197 and 198)

Metal-organic
frameworks

carbon footprint is

substantial
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adsorbents could be regenerated, as demonstrated by Baig
et al.*** When used as regeneration solvents, HCl, HNO;, and
H,SO, showed considerable desorption efficiency.**® Advanced
oxidation processes (AOPs) for regenerating used adsorbents
have gained popularity in recent years. Yang et al. studied the
bio-regeneration of clays or functionalized clays and reported
that microbial regeneration of montmorillonite functionalized
with hexadecyltrimethylammonium (HDTMA) was superior to
chemical regeneration.**®

Environmental and societal problems might result from the
open disposal of used adsorbents that contain harmful organic
pollutants, especially in developing countries with limited
access to designed landfills and incinerators. That is why the
management of spent sorbents is significant. Although disposal
is a cost-effective method, it is crucial to consider its environ-
mental viability and long-term sustainability. Four methods
(reuse, regeneration, repurposing/recycling, and final disposal)
have been utilized for the sorbent's management, disposal, and
repurposing. While landfilling and incineration are standard
safe disposal methods, reused waste adsorbents are employed
in applications including soil amendment, capacitors, and
catalyst/catalyst support.

7 Process intensification in adsorptive
wastewater treatment

Process intensification (PI) strategies are crucial for enhancing
efficiency, reducing costs, and minimizing the environmental
footprint of adsorption processes in pharmaceutical wastewater
treatment. These approaches involve innovative reactor
designs, integration with other treatment methods, and
advanced operational techniques to overcome the limitations of
conventional batch systems. This section discusses key PI
strategies, including fluidized-bed adsorbers, hybrid adsorp-
tion-biological systems, modular reactor designs, and their
challenges and prospects for industrial implementation.

7.1 Fluidized-bed adsorbers

Fluidized-bed reactors (FBRs) significantly outperform fixed-
bed systems by enhancing mass transfer and enabling contin-
uous operation. In FBRs, adsorbent particles (e.g., granular
activated carbon, zeolite composites, or biochar) are suspended
in an upward-flowing wastewater stream, which maximizes
contact efficiency and minimizes clogging.*** The fluidized state
also facilitates in situ regeneration by allowing periodic intro-
duction of regenerants without halting the process. However,
challenges include controlling fluidization velocity to prevent
particle attrition and ensuring uniform adsorbent distribution,
which requires careful design and computational fluid
dynamics modeling.

7.2 Hybrid adsorption-biological systems

Integrating adsorption with biological treatment creates syner-
gistic effects that enhance removal efficiency and sustainability.
Adsorbents, such as powdered activated carbon (PAC) or bi-
ochar, protect microbial communities from toxic
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pharmaceuticals by sequestering inhibitory compounds, while
biological activity degrades the adsorbed pollutants, thereby
extending the life of the adsorbent. A pilot-scale study by Kim
et al. showed that a hybrid system combining activated biochar
with an ultrafiltration membrane (ABC-UF) increased the
removal of ibuprofen, carbamazepine, and 17a-ethinyl estradiol
by 17-38% compared to UF alone, without significant flux
reduction.”® Similarly, microbial-assisted regeneration of
adsorbents, such as hexadecyltrimethylammonium (HDTMA)-
functionalized clays, has proven more effective than chemical
regeneration.”’® Key challenges include managing biofilm
formation on adsorbent surfaces and adapting to variable
wastewater compositions, necessitating real-time monitoring
and adaptive control strategies.

7.3 Modular and advanced reactor designs

Modular reactor designs offer flexibility and scalability for
decentralized or point-of-use pharmaceutical wastewater treat-
ment. Rotating adsorbent contactors (RACs) and electro-
adsorption modules exemplify such innovations. RACs employ
discs coated with adsorbent materials (e.g., graphene-MOF
composites) that rotate through wastewater, providing high
surface area contact and easy regeneration.”” Electro-
adsorption utilizes electric fields to enhance the uptake of
ionizable pharmaceuticals on conductive adsorbents (e.g.,
graphene-based electrodes), followed by electrochemical
regeneration. Despite their promise, these systems face chal-
lenges related to scaling up, including material durability under
hydraulic stress and optimizing energy consumption.

7.4 Scale-up challenges and sustainability assessment

Scaling adsorption processes requires addressing hydrody-
namic complexities, adsorbent stability, and cost-effectiveness.
Multiscale modeling (e.g.,, computational fluid dynamics
coupled with adsorption kinetics) is crucial for optimizing
reactor geometry and flow patterns to minimize dead zones and
maximize contact efficiency.”™® Adsorbent durability can be
improved through pelletization (e.g., MOF-alginate beads) or
embedding in polymer matrices, which prevent fragmentation.
Economically, waste-derived adsorbents (e.g., fly ash-zeolite
composites) reduce material costs significantly when regene-
rated in situ. Sustainability must be quantified via life cycle
assessment (LCA) and techno-economic analysis (TEA). There-
fore, future efforts should standardize these metrics to facilitate
benchmarking of PI technologies.

8 Future outlook

Over the last two decades, numerous research and review arti-
cles have been published on ecotoxicology and the removal of
pharmaceutical pollutants. These works have been pivotal in
our understanding of PW. However, a few research gaps still
need to be addressed.

A synergistic effect on reproduction in natural surface water
containing a quaternary mixture of FLU, metformin, ASA, and
CIP was reported by Tominaga et al”*® In a mixture, the

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra06445g

Open Access Article. Published on 16 December 2025. Downloaded on 2/3/2026 5:14:24 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

pollutants can exhibit independent mechanisms (independent
action model) or a common mechanism (all pollutants show the
same effect with a precise mechanism, concentration action
model). Hence, more studies should focus on the ecotoxico-
logical effects of pharmaceutical pollutants in mixtures. It
emphasizes the importance of conducting ecotoxicological
studies under more realistic conditions and considering the
interactions between PWs. Furthermore, in most studies, the
treatment process and performance have been highlighted,
while the toxicity assessment of the treated wastewater has been
overlooked. The treated water may still be ecologically toxic.
Furthermore, the possibility of secondary pollution by the
adsorbent (e.g., metal ion leaching from perovskites) and
transformed products generated during the treatment process
should not be overlooked. Research related to PW treatment
should include toxicity tests to validate the performance of the
proposed treatment method.

Over the last two and a half decades, numerous articles have
been published on the removal of pharmaceutical pollutants
through adsorption. However, less than 5% of these works have
investigated competitive adsorption.*® In the practical envi-
ronment, various pharmaceutical pollutants are expected to be
present in wastewater at varying concentrations. Investigators
should consider this reality in future projects. This mixture of
different pollutants also presents a challenge in designing
adsorbents. Since different active ingredients contain distinct
functional groups in their structures, the adsorption efficacy
regarding a single target compound may vary depending on the
adsorbent. The synthesis of green materials containing various
functional groups that can adsorb multiple pollutants can be an
interesting topic to explore in the future. At the same time,
researchers should focus on performing regeneration studies of
these materials for waste minimization and cost optimization.

Since pharmaceutical pollutants (PPs) are emerging
contaminants, existing wastewater treatment plants may have
lower pollutant removal efficiencies. However, utilizing the
existing treatment infrastructure and modifying these already
established facilities will be more economical and time-
consuming. Integrating multiple processes with the existing
ones can improve performance.”***> Adsorption of IBU, CAR,
and 17 a-ethinyl estradiol (EE2) using activated biochar (ABC)
followed by an ultrafiltration (UF) membrane increased the
retention rate to 41.8%, 40.9%, and 53.0% from 24.4%, 7.0%,
and 14.8%, respectively, in a UF alone system without
decreasing the flux rate considerably (normalized flux rate in
ABC = 0.85).>"® Approximately 10% more COD removal from
a pharmaceutical industrial effluent containing anti-psychotic
and anti-cancer ingredients was achieved using advanced
oxidation (ozone + peroxide)-activated char treatment (85.4%)
than oxidation alone (75%) at pH 5.>** A combined activated
sludge-activated carbon system removed 100% (2 mg L™ " each)
of acetaminophen, IBU, and caffeine, showing better results
than the biological treatment alone. More studies should focus
on hybrid treatment methods for efficiently removing pharma-
ceutical components from wastewater.”*

Although adsorption has been reported as an efficient
method for PP removal from wastewater, laboratory results do

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

not represent the practical pilot-scale/actual performance of the
treatment process. Since wastewater has a highly complex
character, accurately simulating wastewater in the lab is rarely
attainable. It hinders the evaluation of the actual performance
of the adsorbent. Additionally, further adsorption studies of
various materials, such as perovskites, should be conducted in
practical settings. The performance and cost of treatments
performed in a laboratory setting can differ significantly in real-
life applications. Further pilot-scale studies are needed to
develop more robust, efficient, and cost-effective treatment
methods.

Techno-economic analysis (TEA) is a crucial tool for evalu-
ating the feasibility of industrial processes. TEA of the adsorp-
tive treatment of pharmaceutical wastewater
Echevarria et al.*® performed TEA on an advanced water recla-
mation pilot plant operating at a capacity of 1.5-2 m® h™". Two
ultrafiltration-reverse osmosis (UF-RO) blends, including only
RO and a powdered activated carbon (PAC)-tight UF, were
evaluated for treating wastewater containing CAR, DIC, ERY,
SUL, and diuron. PAC-tight UF showed 81 + 13% removal effi-
ciency, while 55 + 11% pollutants were removed by UF-RO (50%
blend). UF-RO (50%) required the lowest operating cost at €0.18
m 3, followed by PAC-tight UF (€0.22 m*; 20 mg L™ PAC),
25% UF-RO (€0.24 m>), and OR (€0.31 m ). The lowest
capital expenditure of €548 m * was estimated for PAC-tight
UF, while 50% UF-RO, 25% UF-RO, and RO would cost €594
m 3, €628 m 3, and €662 m >, respectively. As the ecological
threat of PPs is mounting, the necessity of more techno-
economic studies in this regard has become paramount. The
techno-economic feasibility of resource recovery (e.g., phar-
maceutical precursors) from PW can be a predominant research
direction to ensure the robustness of future treatment plants.

is scarce.

9 Conclusions

Pharmaceuticals are complex chemical compounds that can
persist in the environment and are not easily eliminated by
traditional wastewater and drinking water treatment methods.
Although present at low concentrations, their impact on aquatic
life and human health raises concerns about the long-term
effects. Several ongoing investigations are underway to detect
these compounds in wastewater and develop viable technolo-
gies for their removal. Adsorption is a less-expensive alternative
that has been studied for the removal of several pharmaceuti-
cals and has demonstrated excellent efficiency in removing
a wide range of organic and inorganic pharmaceutical
substances. Some of the interacting mechanisms that can lead
to the adsorption of a specific pharmaceutical include electro-
static interactions, protonation, ion exchange, dipole-dipole
interactions, H-bonding, and complex formation. Various
operating parameters, including ionic strength, pH, adsorbent
dosage, initial concentration of the pharmaceutical, tempera-
ture, and the presence of secondary solute components, greatly
influence the adsorption of pharmaceuticals from wastewater.
Nevertheless, adsorption requires substantial quantities of
adsorbent, which must be either recycled or discarded after use.
It is also imperative that the retrieved drugs and their

RSC Adv, 2025, 15, 50597-50632 | 50627


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra06445g

Open Access Article. Published on 16 December 2025. Downloaded on 2/3/2026 5:14:24 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

derivatives are disposed of properly. Cost-effective and efficient
adsorbents for treating pharmaceutical wastewater on a large
scale are still highly desired, after considering all the influ-
encing factors and numerous advantages and disadvantages of
different adsorbents. Therefore, there is a pressing need to
develop next-generation adsorbents that are sustainable, inno-
vative, benign, and capable of removing emerging contami-
nants at trace levels with enhanced affinity, capacity, and
selectivity. Therefore, future efforts should be directed towards
investigating the ecotoxicological impact, removal efficacy, and
competitive adsorption in multi-adsorbate pharmaceutical
wastewater, scaling up laboratory research work to the pilot-
scale and subsequently industrial applications, the hybridiza-
tion of multiple wastewater treatment techniques, and con-
ducting techno-economic analysis to ensure the feasibility of
the discussed adsorbent materials for practical applications.
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