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compression ratio in LHR engine
fueled with nano Al2O3-emulsified biodiesel using
RSM and machine learning

Radha Krishna Gopidesi,*a Kautkar Nitin Uttamrao,b Channa Keshava Naik N., *c

Premkartikkumar S R,d Ahmed Adnan Hadi,e K. Sunil Kumar,f T. M. Yunus Khan, g

Abdul Saddique Shaikg and Ahmed A. Alamiery h

This research explores the influence of different compression ratios (CRs) on the performance and emission

properties of a fly ash-coated low heat rejection (LHR) diesel engine operated with a nano-Al2O3-based

emulsified cotton seed biodiesel blend (B20W10Al200). An extensive experimental design was

implemented based on the history data-based response surface methodology (RSM), taking brake power

(BP) and CR as significant variables. Engine responses like brake thermal efficiency (BTE), brake specific

fuel consumption (BSFC), and significant exhaust emissions (NOx, HC, CO, and smoke opacity) were

examined over CR values of 16, 17, and 18. The findings identified CR18 as the best configuration, where

the maximum BTE (29.03%) and minimum BSFC (0.269 kg kW−1 h−1) were obtained. A notable decrease

in emissions was seen, most notably in CO (0.104%) and smoke opacity (19.3%), with NOx emissions

significantly lower for CR16. To improve the predictive performance and facilitate optimization, machine

learning methods were incorporated. Extreme gradient boosting (XGBoost) models performed efficiently,

with R2 values greater than 0.90 for all the parameters. SHapley additive exPlanations (SHAP) revealed

that brake power is the dominant control factor influencing the prediction of the response variable.

Multi-response desirability-based optimization, performed through the Design-Expert software, indicated

an optimum setup (maximize BTE/minimize BSFC and smoke while controlling NOx) at BP = 2.49 kW

and CR = 18, which had a composite desirability value of 0.751. This study confirms the combined

potential of thermal barrier-coated LHR engines and nano-emulsified biofuels under optimal conditions,

validating the shift toward cleaner and more efficient combustion in compression ignition engines.
1. Introduction

The automotive sector constantly seeks innovative approaches to
enhance the environmental sustainability and efficiency of
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engines. LHR engines have become popular as they have the
capability to enhance the overall performance and reduce the
heat-related losses.1 In LHR engines, their elements of cylinder
liner, pistons, and valves are coated with insulating substances
such as y ash to modify the heat dissipation. Another trend that
is emerging is the introduction of emulsied fuels, where
hydrocarbon fuel is mixed with water, to maximize combustion
and reduce pollutant emissions.2 The introduction of nano-
material additives, like Al2O3, in emulsied fuels has been found
to improve their combustion characteristics and engine effi-
ciency. Compression ratio (CR) is a parameter that has a signi-
cant impact on the engine design and performance. In an LHR
engine coated with y ash, the complex interrelationship among
compression ratio, fuel emulsion mixture, and nanomaterial
additives forms a difficult but potentially revolutionary direction
for maximizing the combustion.3 Biodiesel is a promising fatty
alkyl monoester obtained from natural resources such as plant-
and animal-based oils.4 Among the list of alternative fuels, bi-
odiesel is one of the most trusted and effective alternatives
according to previous research. There are many positive points
regarding biodiesel, such as its spotless and organic energy
© 2025 The Author(s). Published by the Royal Society of Chemistry
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sources, which works as the best option to replace petroleum-
based fuels.5 Additionally, biodiesel can be used in regular
diesel engines without any modications, and the performance
of these engines is not hampered when biodiesel is used as an
alternative fuel.6 Consumers continuously demand petroleum
products, resulting in an increase to 240millionmetric tons from
2021 to 2022. If this demand continues, this number can increase
to 465 million metric tons by 2031 or 2032.7 Most importantly, as
an alternative fuel, biodiesel is better owing to its fewer emissions
and negative effects than fuel combustion. Furthermore, it
possesses a low sulfur particle content and highash point and is
compostable.8
1.1. Nanoparticle requirement

Moreover, some aspects of biodiesel limit its use, such as its
high density, poor atomization quality, and sometimes
improper combustion due to continuous use of fuel injectors,
suffering carbon deposition on their surface.9 Notably, with
higher blend levels, the performance and emission aspects of
biodiesel become mediocre, similar to that of neat diesel fuel,
resulting in an increase in viscosity.10 As technology advances
daily, nanotechnology has become a rapidly growing sector. As
result of this continuous improvement in nanotechnology,
useful and effective nanoparticles have been introduced in
several elds.11 Researchers have found the potential of nano-
particles as additives to enhance the thermophysical properties
of fuel. A greater surface area to volume can be achieved by
introducing nanoparticles in fuel. In addition, this leads to high
thermal conductivity and mass diffusivity.12 Besides, nano-
particles as an additive in fuel can work as a catalyst, resulting
in effective and efficient fuel combustion.13 These nanoparticles
are quite valuable for biodiesel as they improve the combustion
rate and overcome the issue of high viscosity. By investigating
the different aspects of LHR engines and emulsied and
nonmaterial additives, a number of possibilities has been found
to address the current problems encountered with the use of
biodiesel in an effective way.14

Among the available options, nanoparticle additives are also
the most favorable fuel catalysts, which help to shorten the
evaporation and ignition delay time at the same time. The
foremost requirement of nanoparticles is listed below. Overall,
the interference of nanoparticles in fuel ultimately leads to
enhanced oxidation power to improve rapid fuel combustion.
They should maintain the conventional engine working opera-
tion throughout their involvement. Although nanoparticles are
mixed with fuel, they should remain chemically stable for better
and smoother fuel combustion operation. Optimization via
machine learning15 and Response Surface Methodology (RSM)
can be signicantly applied for the design of biodiesel
engines.16 These approaches provide advanced means for
enhancing the efficiency, implementation, and environmental
impact of biodiesel engines. A vital application is engine
performance prediction and optimization. With different input
parameters, ML models can be trained to forecast multiple
factors like fuel efficiency, emissions, and overall engine
health.17 Concurrently, RSM provides a disciplined approach for
© 2025 The Author(s). Published by the Royal Society of Chemistry
test design, modelling, and optimization, enabling researchers
to identify optimal input variable combinations for enhanced
performances.

In addition, these methods are crucial elements of emission-
cutting initiatives. ML models could evaluate intricate correla-
tions among biodiesel blends, engine operating conditions, and
emissions. The ndings may be employed to build successful
emission-reduction measures.18 Simultaneously, RSM optimi-
zation aids in determining the best biodiesel blend to reduce
emissions, while preserving or boosting the engine perfor-
mance. Due to the synergy between ML and RSM, a holistic
strategy for tackling both efficiency and environmental
concerns is provided.19

LHR was applied in an engine using a ceramic coating with
oxide on parts such as the cranksha, chambers, and ttings at
a thickness of 300 mm, which did not affect the physical size of
the engine parts. Petroleum diesel was combined with 20%
mahua biofuel and 5% ethanol. For comparison, the combus-
tion capacity was investigated utilizing regular gasoline and
contrasted with the biofuels using a combination of LHR and
LTC methodologies. Lastly, the combination of LHR and LTC
improved the combustion efficiency by up to 3.48%.20 The
mixtures are run in a naturally inhaled, steady-state combustion
ignition (CI) cylinder. Yttria stabilized zirconium (YSZ) was
applied to the engine crowns of the instrumented cylinder to
transform it into a heat rejecting (LHR) engine. Operating the
motor on antioxidant-doped JME in LHR mode increased the
thermal rate of release and highest cylinder pressures by
approximately 4% and 7%, respectively, at the greatest load. The
percentages of CO and unaltered HC discharges declined to an
acceptable level of 10% and 13%, respectively, at the highest
load performance; additionally, NO pollutants were reduced by
13% at the highest load level. The mileage and energy efficiency
of the LHR engine increased by approximately 7% and 11%,
respectively, when fully loaded.21 This investigation used two
pistons around both the untreated and the additional polished
one. The additional engine was coated with 300 mm-thick ZrO2

and 6–8 wt% Y2O3 ceramic substance, which is known as YSZ. A
combination of Jatropha, also methyl alcohol (JME), and oil in
proportions of 20% and 80% was created (JME20) and utilized
as pilot fuel, while oxy-hydrogen (HHO) gases served as induc-
tion fuel for dual-fuel operations. HHO gas is free of greenhouse
gases and a hydrogen-based sustainable fuel. The ndings
demonstrated that the effectiveness exhibited by the YSZ-coated
pistons during the two dual-fuel activities (D100 + HHO and
JME20 + HHO) was approximately 5.5% and 5.9% greater than
that of D100 operating at the highest load, respectively. The
equivalent dual-fuel processes resulted in a decreased level of
HC, CO, and soot, regardless of the engine capacity.22 Experi-
ments were conducted at peak load at an identical FIP (600 bar)
with various FIT (19, 21, 23, 25, and 27 °BTDC) and fuel
mixtures (D100, JOBD20, P10JD90, P20JD80, and P30JD70). In
the beginning, the tests were conducted using solely diesel at
the conventional injection rate and time. Furthermore, tests
were performed by exchanging just diesel with extremely high
responsiveness fuel (JOBD) at various infusion schedules, while
less reactive fuels were delivered via the inlet pipe at
RSC Adv., 2025, 15, 51178–51197 | 51179
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equilibrium of 2 bar in various quantities. All quaternary fuel
procedures with injections inclinations greater than 24°BTDC
resulted in an increase in the piston pressure (89.82 bar),
indicating better combustion with JOBD as HRF. Lower BTE
levels (4.6%) were created because the electric production by the
engine was reduced at 27°bTDC injecting, causing its pressure
to be fairly elevated.23
1.2. Machine learning (ML) and response surface
methodology (RSM) for biodiesel application

ML and RSM are used in a large number of applications.
Another eld where ML and RSM are useful is fuel blend opti-
mization. ML models can assess the impact of various biodiesel
blends on engine performance, discovering the most effective
combinations under given conditions. At the same time, RSM
optimization guides the determination of the right mix
proportions, considering properties such as viscosity, ignition
properties, and energy value. This combined effort ensures that
the biodiesel blend fulls the performance requirements and
aligns with environmental and operational needs. The combi-
nation of ML and RSM provides a comprehensive method for
biodiesel engine research, offering forecasting techniques,
optimizing and maintaining the engine performance, and
addressing environmental issues. Recently, several researchers
have adopted this combined approach of nanoparticle-
enhanced biodiesel-diesel blends to enhance the efficiency
and minimize emissions successfully. Table 1 presents a clear
overview of studies that applied up-to-date machine learning
(ML) and Response Surface Methodology (RSM) methods to
optimize the engine performance. These studies underscore the
synergistic benet of pairing the high predictive accuracy of ML
with the high optimization capabilities of RSM to enhance the
engine efficiency and lower emissions.

Table 1 presents a comprehensive overview of the studies
that have employed advanced machine learning (ML) and
Response Surface Methodology (RSM) techniques to optimize
the engine performance. These investigations highlight the
synergistic advantages of combining the high predictive accu-
racy of ML with the robust optimization abilities of RSM to
improve the engine efficiency and reduce emissions.

This study advances internal combustion (IC) engine tech-
nology through the study of a new blend of emulsied fuels,
nano-Al2O3 additive, and compression ratio changes in a y ash-
coated LHR engine. It highlights the need for emission reduc-
tion via optimized combustion processes, a critical step towards
compliance with strict environmental legislation and ensuring
sustainable engine designs. The investigation of the synergy
between emulsied fuels and nano-Al2O3 additives improves
the current knowledge of innovative fuel technologies and
provides a basis for more efficient, environmentally friendly fuel
compositions. However, although the Response Surface Meth-
odology (RSM) provides systematic and organized optimization,
it seldom succeeds in identifying complex nonlinear relation-
ships. Most existing research depended either on RSM or
machine learning (ML) separately, thereby losing the chance to
leverage their complementary benets. Thus, this work lls this
51180 | RSC Adv., 2025, 15, 51178–51197
gap by integrating RSM with sophisticated ML models, like
XGBoost, to improve the prediction accuracy and optimize the
engine performance concurrently. The ensuing hybrid method
presents a strong, scalable solution for optimizing biodiesel
engines in accordance with worldwide sustainability objectives.

The combined application of RSM and XGBoost not only
reects methodological creativity but also yields practical
knowledge regarding engine design and operational rene-
ment. These results are a useful reference for engineers,
researchers, and practitioners in the industry who want to
enhance the performance and efficiency of IC engines. The
capacity to successfully explore the high-dimensional param-
eter space of emulsied fuel-supplemented LHR engines
reects the power of advanced optimization methods in prac-
tical applications.

Improving the performance of IC engines, which is integral
in a range of industries, is still key to realizing energy efficiency
and environmental sustainability. The use of nano-Al2O3 addi-
tives and emulsied fuel in a y ash-coated LHR engine repre-
sents a novel yet demanding research problem. Mechanistic
appreciation of the intricate interactions between emulsied
fuel formulations, nano-Al2O3 loading, and compression ratio
variations is important for maximizing the combustion effi-
ciency and reducing emissions. Therefore, this research is
aimed at determining the best congurations and parameters
that will ensure maximum efficiency in LHR engines through
the employment of nano-enhanced emulsied fuels, and hence
the development of the following research objectives.

(a) To investigate the impacts of varying CR on the
combustion efficiency, power generation, and emissions in an
LHR engine with a y ash coating using emulsied fuel with
a nano-Al2O3 additive.

(b) To study the impact of different nano-Al2O3 concentra-
tions in emulsied fuel on the combustion behaviour, ignition
characteristics, and engine performance as a whole.

(c) To utilize RSM to systematically optimize the compres-
sion ratio to achieve the maximum BTE considering the intri-
cate interactions amongst the compression ratio, emulsied
fuel composition, and nano-Al2O3 concentration.

(d) Using XGBoost modeling to forecast engine parameters
and performance results as a function of compression ratio,
emulsied fuel characteristics, and nano-Al2O3 concentration
provides an integrated system understanding.

2. Material and methods

The selection of materials and methods plays a critical role in
ensuring reliable outcomes in any experimental investigation. In
this study, the use of cotton seed oil as a biodiesel feedstock was
strategically chosen due to its abundant availability as an agri-
cultural residue and its non-edible nature, making it an ideal
candidate for sustainable fuel production. Cotton seed biodiesel
possesses a high cetane number, ample oxygen content, and
a safe ash point, which collectively contribute to improved
combustion efficiency and reduced harmful emissions. More-
over, its inherent lubricating properties support engine durability
by minimizing wear, thereby extending the engine life.35
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of the studies using ML and RSM methods for forecasting and improving engine responses

Ref. Techniques Parameters Biodiesel Remarks

24 Articial neural network Performance and emission
parameters

Waste cooking oil The ANN model
demonstrated exceptional
predictive accuracy across all
engine output parameters,
with correlation coefficients
(r) exceeding 0.99 and R2

values surpassing 0.98 for
every variable

25 ANN-ANFIS, RSM Methanol molar ratio,
catalyst amount, reaction
time

Neem and castor The ANFIS model
outperformed the ANN in
predicting yield, exhibiting
higher R2 values, and thus
superior forecasting
accuracy

26 ANN, RSM Split injection parameter Ammonia-biodiesel The ANN model achieved R2

values greater than 0.99 for
all responses,
demonstrating exceptional
real-time predictive accuracy
and outperforming RSM in
reproducibility

27 ANFIS-NSGA-II and RSM Engine load, biodiesel
blend, and nanoparticle
concentration

Leachate blends with nano-
additives

The ANFIS-NSGA-II model
produced responses with
higher accuracy and
efficiency than those
generated by other models

28 ANFIS and RSM EGT and all types of
emissions

Nano diesel blended fuels The test results closely align
with the ANFIS predictions,
demonstrating a high level
of predictive accuracy

29 DTR, ABR, ETR, GBR, LGBM,
and XGBR

Engine load, compression
ratio, blend ratio

Aloe vera biodiesel with
MWCNT nanoparticles

The XGBR model achieves
the highest prediction
accuracy compared to all
other models

30 Decision tree and RSM CR, injection time, injection
pressure

Biogas-biodiesel blends The decision tree-based
models exhibited strong
robustness, characterized by
low mean squared errors

31 RSM Load and compression ratios Cassia stula and Ricinus
communis

RSM achieved correlation
coefficients (R2) between
0.92 and 0.99 for all output
parameters, demonstrating
high predictive accuracy

32 RSM, gradient boosting
(GBoost), extreme learning
machine (ELM)

BP, LCV, blends Moringa oleifera biodiesel
with 1-hexanol and Zr2O3

nanoparticles

The ELMmodel achieved the
highest accuracy (R2 =
0.9604), surpassing all other
models

33 AMT ML and multi-objective
optimization RSM

Varying engine torque,
speed

Sunower oil The AWOA exhibits superior
precision and a faster
convergence rate compared
to PSO

34 RSM with desirability Engine load, biodiesel
blend, and nanoparticle
concentration

Mahua with CuO
nanoparticles

RSM identied M20 with
60 ppm nanoparticle
concentration at 80% load as
the optimal condition
(desirability score: 0.9), with
the model attaining a mean
absolute percentage error
(MAPE) of just 3%

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/3
/2

02
6 

3:
46

:1
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The choice of materials and techniques is an important
factor for ensuring consistent results in any experimental study.
For this research, the employment of cotton seed oil as
© 2025 The Author(s). Published by the Royal Society of Chemistry
a biodiesel feedstock was selected as a deliberate choice
because of its prevalent availability as an agricultural waste and
its inedibility, making it a suitable material for the production
RSC Adv., 2025, 15, 51178–51197 | 51181
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Fig. 1 Micrograph of a sample of fly ash obtained using scanning
electron microscopy (SEM).

Fig. 2 Fly ash powder-coated piston crown.
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of sustainable fuel. Cotton seed biodiesel has a high cetane
number, high oxygen content, and a safe ash point, which
together lead to more efficient combustion and less harmful
emissions. Additionally, its native lubricating attributes
enhance engine longevity through the reduction of wear, thus
longer engine life.

From a larger viewpoint, the use of cotton seed oil not only
supports waste valorization and rural economic development
but also fuels sustainable energy culture by minimizing reliance
on fossil fuels. The compatibility of the biodiesel with nano-
additives like aluminium oxide (Al2O3) adds to its usefulness,
as the nanoscale particles facilitate purication of combustion
quality, reduced emissions, and optimized engine performance.
Therefore, the blend of cotton seed biodiesel and nano-
additives is an attractive, environmentally friendly option for
improving the efficiency and sustainability of compression
ignition engines. Fig. 1 illustrates Micrograph of sample of y
ash Scanning Electron Microscope (SEM).

The application of thermal barrier coatings, such as y ash,
to LHR engines helps to improve their thermal efficiency by
minimizing the heat loss. LHR engines have higher in-cylinder
temperatures, which promote efficient combustion, because
they retain more heat in their combustion chamber.36 This is
especially benecial for biodiesel blends, which have lower
caloric values and higher viscosities. LHR engines also reduce
the ignition delay, specic fuel consumption, and hydrocarbon
and carbon monoxide emissions. Moreover, the application of
y ash coatings improves the engine durability under thermal
stress, making LHR engines suitable for nano-enhanced bi-
odiesel applications for cleaner and more efficient operation.37

LHR engines are a progressive type of engine with numerous
possibilities to explore with the help of fruitful experimentation
work. Following this, the piston crown and cylinder liner were
coated with a thickness of 200 mm y ash as an insulating
material, as illustrated in Fig. 2 and 3. To maintain a standard
compression ratio (CR) before coating, this section will deal
with an important step that follows a systematic strategy.
51182 | RSC Adv., 2025, 15, 51178–51197
2.1. Preparation of nano-emulsied fuel

In this research, cottonseed biodiesel was considered and
employed. NaOH was used as a catalyst in the trans-
esterication process for biodiesel production. Fig. 4 depicts
the experimental setup for synthesizing nano-emulsied bi-
odiesel with a mechanical stirrer.38 In addition, an ultrasonic
stirrer was employed in the process for the preparation of the
nano emulsion. As part of the nano-emulsied fuel testing
groundwork, 10% water and 20% cottonseed biodiesel were
mainly blended in 88% by volume, and this proportion was
transferred to a vessel.
Fig. 3 Fly ash powder-coated cylinder liner.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Layout of the mechanical stirrer arrangement for the prepa-
ration of the nano-emulsified fuel.35

Fig. 5 Experimental setup (a) and line diagram (b) of the diesel engine
testing arrangement.20 (1) Engine base, (2) analyzer for exhaust gas, (3)
house of the exhaust gas analyzer, (4) single-cylinder arrangement
engine, (5) load cell, (6) dynamometer, (7) tachometer, (8) control
system, (9) fuel burette and (10) fuel tank.
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The mixture was mixed well by agitating at 500 rpm.
Throughout the agitation process, a surfactant such as Span 80
and Tween 80 (2% by volume) was mixed dropwise into the bi-
odiesel water emulsion. The HLB value for the surfactant was
considered 6.34 for this preparation. The mixture of biodiesel,
water, and surfactant was kept under stirring for 40 min. Accord-
ing to earlier studies, if the water content in diesel fuel is greater
than 10%, it prolongs the ignition delay. This results in uneven
engine operation, and thus 10% water was used with biodiesel for
emulsion. The detailed properties of the diesel and biodiesel along
with the blends and nanoparticles are presented in Table 2. By
adjusting the amounts of nanomaterial addition likemass fraction
of Al2O3 in B20W10, several testing fuel samples were created.
Here, the Al2O3 nanoparticle concentration reached 200 ppm.

The B20W10Al200 test fuel sample was created using an R-
4C ultrasonicator. The ultrasonicator was run at 50 to 60 kHz
frequency for 40 min to achieve the ideal emulsication. The
color of the equipped nano-emulsied fuel sample is milky
white due to the chemical reaction between the fuel and
surfactant employed in this preparation process. However, this
color did not negatively impact the performance aspects during
testing in the engine operation.
3. Experimental set-up and
procedure

The experiments were carried out on a single-cylinder, four-
stroke, and water cooled, direct injection diesel engine
(Fig. 5). The technical specications are shown in Table 3. The
engine was subjected to modications into an LHR congura-
tion when it was tested with a nano-emulsied cotton seed
Table 2 Properties of the fuels and their blends

Property Diesel CSME B20

Viscosity (Cs) 3.35 4.68 4.0
Caloric value (kJ kg−1) 42 858 39 528 39 4
Density (kg m−3) 840 868 828
Flash point (°C) 84 180 174
Fire point (°C) 94 123 96

© 2025 The Author(s). Published by the Royal Society of Chemistry
biodiesel blend (B20W10Al200). The adjustment involved
applying a 200 mm y ash coating on the cylinder liner, piston
crown, and valves, covering them with ash. Following this, tests
were done while maintaining the engine speed at 1500 rpm. The
engine was then subjected to ve incremental load conditions
of 0%, 25%, 50%, 75%, and 100%. Emissions were measured
using an AVL 444 gas analyzer and AVL 437 smoke meter. A
settling chamber was located at the air intake, ensuring that
there was no uctuation in airow, and thus creating a steady
environment. Also, k-type thermocouples were utilized to record
the temperature of the exhaust gases. These parameters were
monitored by employing a Kistler piezoelectric pressure sensor
along with a crank angle encoder placed on the output sha of
the motor, perfectly synchronized with the motion of the
engine. The Heaviside step function was combined with an
B50 B20 + 100 ppm ASTM

42 4.56 4.726 ASTM D445
96 39 484 42 058 ASTM 240

850 843 ASTM D1298
177 175 ASTM 93
86 84 ASTM 93
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Table 3 Technical specifications of the testing engine

Factor Specications

Testing Engine specications
Type of engine Direct injection (DI) diesel engine
Category Single cylinder, four stroke
Power 3.5 kW (@1500 � 50 rpm)
Type of cooling Water cooled
CR range 12 : 1–18 : 1
Injection variation 0–25°BTDC
Combustion compartment Semicircular bowl in piston type
Dynamometer Water cooled with loading unit
Airbox MS fabricated with orice meter and manometer (100-0-100)
Fuel reservoir Volume15 lit with measuring tube (0–450 mL)
Calorimeter Pipe-in-pipe type
Data attainment soware ‘So-engine’ engine performance analysis soware

Transmitters, sensors, and indicators
Fuel ow reader DP transmitter, range 0–500 mm WC
Airow transmitter Pressure transmitter (−) 250 mm WC
Pressure sensors Piezo type, range 5000 psi, with low noise cable
Temperature sensors and transmitters PT100 (RTD) type, range 0–100 °C, output 4–20 mA (4 nos)

K (ungrounded) type, range 0–1200 °C, output 4–20 mA (2 nos)
Load sensor and indicator Strain measure-type load cell with digital pointer, range 0–50 kg
Speediness sensor and gauge Resolution 1°, range (5500 rpm) with TDC pulse
Data acquisition device NIUSB-6210, 16-bit, 250 kS s−1

Constants in the testing engine
Pulse per revolution 360°
No. of cycles 10
Fuel measuring interval 60 s
Speed scanning intervals 2000 ms
Bore × stroke 87.6 mm × 110 mm
Capacity 662 cc
Cavity diameter 2 mm
Dynamometer arm length 18 mm
Linking rod length 235 mm
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appropriate signal conditioning system to enable data
capturing. Throughout testing, a mechanical stirrer was
required to ensure that the Al2O3 nanoparticles remained
uniformly dispersed within the fuel blend emulsion. This setup
enabled an extensive in-depth examination of the changes in
emission under real-time operating conditions in the LHR
engine. Meanwhile, for a cranksha position, the encoder was
arranged at the output sha of the engine. The signal condi-
tioning setup communicates between the piezoelectric pressure
sensor and the data acquisition system.37

A special program algorithm was adopted in the data pro-
cessing unit, where it takes an average of more than 50 unin-
terrupted cycles to get an effective assessment of the heat release
rate, time for the combustion process, etc. Under the initial
conditions, the testing process started with neat diesel as the test
fuel. This step worked as a warm-up step for the engine, and then
it was substituted for the nanoparticle-emulsied cotton seed
biodiesel fuel. To clean the fuel line and fuel injection system, the
engine ran on neat diesel fuel at the end.
3.1. Response surface methodology (RSM)

RSM is a robust quantitative and mathematical method applied
in experimental design and optimization. Its main goal is to
51184 | RSC Adv., 2025, 15, 51178–51197
represent the relationship between a number of independent
variables and response variables, providing researchers with
valuable information on the optimal conditions for a given
process.39 RSM is particularly handy in trials with complex
relationships between variables, where it is difficult to
comprehend their combined effect on the system output. The
methodology follows a systematic and organized framework,
guiding researchers through test design, and then data anal-
ysis.40 In RSM, the construction of a response surface plays
a central role, which is a mathematical model illustrating how
the input and output variables are related.

This surface enables investigators to understand the behavior
of the system within the experimental area, and thus ascertain
the optimal conditions that lead to the desired outcome. RSM
facilitates the build-up of proper models, reecting the intrica-
cies of the system being studied using statistical methods such as
regression analysis. RSM is applied in different elds, ranging
from engineering and physics to biological sciences, to maximize
processes as well as performances. It is possible for researchers to
comprehend the performance of a system and successfully
identify the most appropriate operating conditions by making
systematic changes to the input variables while observing the
resulting changes in the response variable. Additionally, RSM is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Flowchart for biodiesel engine optimization using RSM and ML.
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an economical approach as it minimizes the number of experi-
mental runs necessary for solid outcomes.41

3.2. Machine learning: XGBoost

XGBoost is a powerful and exible method that has gained
popularity in a wide range of disciplines. This method belongs
to the ensemble learning family, specically boosting, which
aggregates weak learners to build a strong and accurate
prediction model. One unique feature of XGBoost is that it can
tackle classication and regression tasks effectively.42

The focus on breaking the challenges facing gradient
boosting methods, such as over tting and computational
inefficiency, sets XGBoost apart. XGBoost nds a balance
between model complexity and accuracy using regularization
methods and a new objective function, which consists of both
a loss function and a regularized function.43 This makes it less
prone to over tting, irrespective of big data. The ‘gradient
boosting’ process of this algorithm involves the stepwise
construction of decision trees to correct aws in earlier models,
constantly improving the overall predicting capacity. XGBoost
further introduces complexity by employing a stronger optimi-
zation method, making it particularly well-suited to handle
enormous databases containing disparate feature types. Its
ability to identify complex data patterns and produce feature
importance scores increase the interpretability, while making it
applicable in real-world scenarios.44

Also, its speed, exibility, and ability to handle various types
of data are all reasons for its use in applications ranging from
banking to healthcare. In addition, the integration of XGBoost
with Python and other programming languages enables
straightforward installation and easy integration with existing
ML pipelines. Fundamentally, XGBoost is the algorithm of
choice for practitioners seeking a reliable, fast algorithm that
performs superbly in predicting accuracy and generalization
across a broad variety of datasets.45

The overall process ow chart is provided in Fig. 6 for
a better understanding.

3.3. Interpretable machine learning

SHapley Additive exPlanations (SHAP) is a powerful interpret-
ability method grounded in cooperative game theory, which
explains individual predictions of machine learning models. It
gives each characteristic a SHAP value, which is a measure of
how important it is to the prediction, to ensure that the process
is fair and consistent. The main notion comes from Shapley
values, which examine each feature as a “player” in a prediction
game and gure out its marginal contribution by looking at all
possible subsets of features. SHAP makes an additive explana-
tion model by taking the model output and subtracting a base-
line (usually the average forecast) to get the total of the feature
contributions. SHAP creates a global and local interpretability
framework. Globally, it shows which characteristics have the
most impact on the model over the whole dataset, and locally, it
explains each prediction. TreeSHAP lets you quickly and accu-
rately deal with tree-based models like XGBoost and Random
Forest. Force plots, dependency plots, and summary plots are
© 2025 The Author(s). Published by the Royal Society of Chemistry
examples of SHAP visualizations that assist stakeholders in
understanding how a model works, nding relationships
between features, and ensuring that everything is clear. SHAP
helps satisfy regulatory requirements in sensitive areas like
banking, healthcare, and policy by breaking down black-box
models into understandable insights. It also helps with
debugging and creating condence.
4. Results and discussion

Various performance and emission characteristics for varying
fuel samples at various CR were the subject of the experimental
study. The main aim was to determine the way parameters such
as BTE, BSFC, HC emissions, CO, NOx, and smoke opacity are
affected by the compression ratio, BP, and load.
4.1. Net heat release rate (NHR)

The rate at which heat is produced during the combustion
process in an engine is measured by the heat release rate
RSC Adv., 2025, 15, 51178–51197 | 51185
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Fig. 7 NHR as a function of crank angle for different CR.
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(HRR).46 Fig. 7 shows the NHR rate for various CR at various
crank angles. Compared to pure diesel, all experiments show
the same NHR trend. Interestingly, the NHR is determined to be
the lowest for CR16 and highest for CR18, which is 65 J per °.
This is due to the lower ignition temperature brought on by
a lower CR.47 The air-fuel mixture may not achieve the required
temperature for effective combustion with a reduced compres-
sion ratio, resulting in delayed and less intense heat release
during combustion.

By clearly explaining the concept and utilizing the appro-
priate terminology, the revised content enhances the under-
standing of the relationship among the compression ratio,
NHR, and combustion process in the engine.

4.2. In-cylinder pressure

Fig. 8 illustrates a consistent pattern observed across all
compression ratio (CR) values, including 16, 17, and 18.
Notably, the peak in-cylinder pressure is recorded as 64.8 bar,
occurring at a crank angle of 364° for a compression ratio of 18.

This nding suggests that irrespective of the specic CR
value, the highest in-cylinder pressure is consistently achieved
at a similar crank angle. In this case, the compression ratio of
18 yields the maximum peak pressure. The precise crank angle
Fig. 8 In-cylinder pressure versus crank angle for various CR.

Fig. 9 Impact of BP on BTE for different CR: (a) test values, (b) contour
plot, (c) surface plot and (d) predicted vs. actual values.

51186 | RSC Adv., 2025, 15, 51178–51197
and corresponding in-cylinder pressure provide valuable
insights into the combustion process and engine
performance.48
© 2025 The Author(s). Published by the Royal Society of Chemistry
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4.3. Brake thermal efficiency

An important metric for determining how well fuel is used in an
engine is the brake thermal efficiency (BTE).49 Fig. 9 shows how
BP affects BTE, showing how BTE increases gradually as BP
increase. Additionally, an increased CR shows an improvement
in the BTE of the fuel samples. Among the various CR values
tested, B20W10Al200 at CR18 demonstrates the highest BTE
compared to CR16 and CR17. This indicates that combining
B20W10Al200 fuel and CR18 results in a superior BTE perfor-
mance. Additionally, implementing a sophisticated heat release
rate (HRR) technique at CR18 outperforms the other CR
values.50 Notably, the BTE achieved at CR18 surpasses the CR16
efficiency by approximately 6.92%. The higher the heat release
rates attained when subjected to a CR of 18 leads to a superior
BTE than CR of 16 and CR of 17.51

The data gathered through lab-based experiments was used to
for analysis of variance (ANOVA) to nd the link between different
data columns. The outcomes of ANOVA are listed in Table 4. The
model has an F-value of 150.33, indicating that it is statistically
signicant. A “model F-value” of this magnitude arising entirely
from noise is only 0.01% likely. Model terms are considered
relevant when the value of “Prob > F” is less than 0.0500. The
signicantmodel terms in this case are A, B, and A2. Values greater
than 0.1000 indicate that the model terms are unimportant.
Model reduction approaches can improve the model if it contains
many insignicant terms. The developed model for BTE is given
as eqn (1). The model was used to predict values at different
engine settings. A comparison of the actual and model-predicted
table values is shown in Fig. 9a. It can be observed that the model
performed well given that most of the point lies on the best-t
line. The contour plot (Fig. 9b) and surface plot (Fig. 9c) depict
that the peak BTE efficiency is achieved at a higher engine load
and compression ratio.29 Fig. 9d represents the predicted vs.
actual values of BTE, where it can be observed in the graph that
both values are very close and approximately linear (Fig. 9d).

BTE = 18.395 + 9.15 × BP − 2.04 × CR + 0.198

× BP × CR − 1.96 × BP2 + 0.073 × CR2 (1)
4.4. Brake specic fuel consumption (BSFC)

Fig. 10a–d represent BP vs. BSFC, BP vs. CR (optimum BSFC), 3D
representation of BP, BSFC and CR, and predicted vs. actual
BSFC values, respectively. Interestingly, a similar pattern
Table 4 ANOVA of BTE data

Source Sum of squares dF Mean of squa

Model 839.81 5 167.96
A-BP 764.06 1 764.06
B-CR 9.01 1 9.01
AB 0.52 1 0.52
A2 55.40 1 55.40
B2 0.025 1 0.025
Residual 16.76 15 1.12
Cor total 856.57 20

© 2025 The Author(s). Published by the Royal Society of Chemistry
emerges here as well. The BSFC values for different fuel
samples, namely diesel and nano-emulsied fuel at
CR16, CR17, and CR18, are recorded as 0.275, 0.305, 0.288, and
0.269 kg kW−1 h−1, respectively. Notably, the emulsied
fuel sample at CR16 exhibits the highest BSFC among the tested
samples. However, as the compression ratio (CR) increases,
there is a reduction in BSFC. This nding aligns with the
underlying principle of improved combustion rate, which
ultimately leads to better fuel efficiency. Particularly, the
emulsied fuel sample at the higher compression ratio of
CR18 demonstrates the lowest BSFC compared with the other
fuel samples. The observation of lower BSFC values for higher
CR values substantiates the notion of enhanced combustion
efficiency and improved fuel utilization. This information
underscores the importance of increasing the CR to achieve
lower BSFC values, thus optimizing the fuel efficiency.

The model F-value, a substantial 208.48, emphasizes the
robustness of the model, showing an insignicant 0.01% chance
of having such a huge value arising due to unpredictability. The
results of ANOVA are listed in Table 5. Regarding the model
relevance, terms A, B, and A2 stand out (Prob > F of 0.0500), while
values over 0.1000 indicate insignicance. If there are many
inconsequential model terms (except those required for hier-
archy), a model reduction could improve its effectiveness. Std.
Dev., R2 (0.9858), and Adeq. Precision (41.031) constitute key
metrics that add to the reliability of themodel, and the signicant
“Pred R-Squared” (0.9735) ts nicely with the “Adj R-Squared”
(0.9811), emphasizing the predictive accuracy. The Adeq. Preci-
sion ratio, which ismore than 4, emphasizes a favorable signal-to-
noise ratio, enabling effective design space exploration and
enhancing the practical usability of the model. Themathematical
model developed using ANOVA is given in eqn (2). Themodel was
used to forecast values at various engine settings. It can be seen
that the model performed well because the majority of the points
are on the best-t line. The lowest BSFC was at a higher engine
load and compression ratio, as shown by the contour plot
(Fig. 10b) and the surface plot (Fig. 10c). Fig. 10d represents the
predicted vs. actual values of BSFC and it can be observed that
both values are very close and approximately linear, as shown in
the graph. Hence, the model is more suitable for future studies.

BSFC = 1.0211 − 0.474 × BP + 0.0128 × CR + 0.0022

× BP × CR + 0.074 × BP2 − 0.00107 × CR2 (2)
res F-value p-Value prob > F

150.33 <0.0001 Signicant
683.86 <0.0001

8.06 0.0124
0.46 0.5060

49.58 <0.0001
0.022 0.8836

RSC Adv., 2025, 15, 51178–51197 | 51187
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Fig. 10 Impact of BP on BSFC for different CR: (a) test values, (b)
contour plot, (c) surface plot and (d) predicted vs. actual values.

51188 | RSC Adv., 2025, 15, 51178–51197
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4.5. Unburned hydrocarbons (HC)

Hydrocarbon emissions are critical parameters of incomplete
combustion and are sensitive to the engine load, fuel type,
and compression ratio (CR). In this case, the HC emissions
appeared to decline with an increase in brake power across
all fuel samples, indicating an improved combustion
efficiency at higher loads because of the higher in-cylinder
temperatures. Fig. 11 illustrates the impact of BP on the HC
emissions.

Fig. 11 illustrates the impact of brake power (BP) on HC
emissions. Among the tested fuels, diesel had the lowest HC
emissions of 51 ppm due to its good combustion property. The
emulsied cotton seed biodiesel blends showed slightly higher
HC emissions of 64 ppm at CR16, 59 ppm at CR17 and 55 ppm
at CR18. Especially, CR16 demonstrated 25.5% more HC
emissions than diesel, explaining the reason for the poor
atomization and lower in-cylinder temperatures at CR16, which
prolonged the ignition delay and led to unburned fuel. As the
CR increased, the thermodynamic conditions became more
favorable with regard to fuel atomization and enhancement of
ame front propagation. The nanoparticles of aluminum oxide
enhanced micro-explosions and burned more uncombusted
hydrocarbons. This was most effective at a CR of 18. The results
show that exhaust HC emissions can be reduced by optimizing
the CR and using nano-emulsied biodiesel to promote more
complete combustion. These observations highlight the
importance of optimizing the CR to achieve a higher burning
rate and minimize HC emissions. Hydrocarbon outputs from
the biodiesel blend arise from the aerobic biofuel section,
facilitating a more thorough burning of chemical forms. The
breathable air promotes enhanced oxidative damage of HCs,
specically at the higher levels accomplished in the LHR engine
arrangement.
4.6. Carbon monoxide (CO)

Fig. 12 reinforces the importance of considering the impact of
load and BP on CO formation during the combustion process.
CO formation reaches its lowest point at 35.75% of the
maximum brake pressure for the tested fuel. Interestingly, CO
formation decreases as the load increases due to the improved
combustion efficiency. Among the different CR tested, CR18
consistently exhibits the lowest CO emissions. For instance, the
CO emissions for the diesel and nano-emulsied fuel at CR16,
CR17, and CR18 were recorded to be 0.10%, 0.11%, 0.10%, and
0.09%, respectively. These ndings highlight the signicance of
optimizing the compression ratio to minimize the CO emis-
sions and improve the combustion efficiency. A reduced quan-
tity of CO was observed. Effective consumption is achieved
through enhanced the swirling and squished movement of air
with an increase in oxygen in the blends within a low heat
rejection cylinder.
4.7. Nitrogen oxide (NOx)

Fig. 13 shows the correlation between braking power (BP) and
NOx emissions at various CR. Due to the high ignition
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 ANOVA of BSFC data

Source Sum of squares dF Mean of squares F-value p-Value prob > F

Model 0.64 5 0.13 208.48 <0.0001 Signicant
A-BP 0.52 1 0.52 842.73 <0.0001
B-CR 5.315E-003 1 5.315E-003 8.59 0.0103
AB 6.191E-005 1 6.191E-005 0.10 0.7561
A2 0.11 1 0.11 170.51 <0.0001
B2 5.357E-006 1 5.357E-006 8.661E-003 0.9271

Fig. 11 Influence of brake power on HC emission formation.

Fig. 12 Influence of brake power on carbon monoxide formation.

Fig. 13 Influence of brake power on NOx formation.
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temperatures experienced during combustion, NOx emissions
are primarily produced. An emulsion fuel was used in the
experiment, which reduced the ignition temperature.

In contrast to the other tested samples, the results showed
that diesel fuel had the highest NOx emissions. Notably, the
NOx emissions at CR16 were 13.5% lower than diesel emissions.
This can be explained by the lower ignition temperature
brought on by the lower CR of 16. NOx emissions diminish
under every load scenario as the perfect level increases. When
the combustion chamber engines are coated with the LHR
material, oxides of nitrogen are diminished due to the smaller
amount of oxygen and decreased ame temperature.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4.8. Smoke opacity

Smoke opacity in a diesel engine is the measure of how much
the exhaust blocks light, indicating the amount of soot and
particulate emissions. Due to the reduced oxygen availability,
the smoke opacity tends to increase in dual-fuel mode. Fig. 14
illustrates the impact of brake power (BP) on the smoke opacity.
Among the different CR, CR18 exhibited the lowest smoke
opacity due to the sophisticated temperature achieved with
a higher CR. Specically, at CR18, the smoke opacity was
Fig. 14 Influence of brake power on smoke formation.
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Table 6 Design matrix

Run BP, kW CR BTE, % BsFC, kg kW−1 h−1 NOx, ppm HC, ppm CO, % Smoke OP. %

1 0.32 16.00 7.82 0.834 95 146 0.168 4.9
2 0.86 16.00 14.89 0.595 198 121 0.141 8.5
3 1.35 16.00 16.58 0.512 245 105 0.138 9.3
4 1.71 16.00 21.85 0.39 429 99 0.135 11.6
5 2.20 16.00 22.25 0.36 508 88 0.127 12.3
6 2.56 16.00 24.74 0.33 610 82 0.121 15.8
7 3.42 16.00 27.15 0.295 842 64 0.114 22.3
8 0.32 17.00 8.12 0.814 101 128 0.164 3.6
9 0.86 17.00 15.48 0.579 220 114 0.138 7.1
10 1.35 17.00 17.25 0.501 265 101 0.133 8.2
11 1.71 17.00 22.63 0.36 465 91 0.13 8.8
12 2.20 17.00 23.25 0.33 535 83 0.124 11.4
13 2.56 17.00 25.54 0.312 625 75 0.116 12.8
14 3.42 17.00 28.01 0.289 858 59 0.108 19.8
15 0.32 18.00 8.35 0.785 105 115 0.16 3.3
16 0.86 18.00 15.98 0.567 224 105 0.128 6.5
17 1.35 18.00 18.98 0.465 321 82 0.125 7.5
18 1.71 18.00 23.12 0.345 498 85 0.118 8.1
19 2.20 18.00 23.99 0.315 565 74 0.12 10.4
20 2.56 18.00 26.85 0.293 644 69 0.096 12.2
21 3.42 18.00 29.03 0.269 866 55 0.104 19.3

Table 7 Optimized control factors and response variables
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recorded as 24.31% less than diesel fuel. This signicant
reduction can be attributed to the optimized temperature
conditions resulting from the higher compression ratio. The
higher CR facilitates an improved combustion efficiency,
leading to a decrease in smoke opacity.45

These ndings highlight the importance of selecting an
appropriate compression ratio to minimize the smoke opacity
in dual-fuel mode by considering the inuence of BP and
optimizing the CR.45
Control
factors Response variables

BP CR BTE BSFC NOx HC CO Smoke Op Desirability

2.49 18 26.43 0.2778 636 68.23 0.106 12.43 0.751
5. Optimization with RSM

The present study employed the RSM technique to optimize the
compression ratio and brake power to establish the best
combination to provide the maximum efficiency, and the lowest
possible fuel consumption and emission. The design matrix
used in the present study was prepared using a historical data
approach, as shown in Table 6.
5.1. Optimization on a desirability basis

The established method of desirability was used in the present
study for parametric optimization. The BTE was desired to be as
high as possible, while the remaining parameters were desired
to be as low as possible. A trade-off analysis was conducted
using Design-Expert soware. The results are shown in Table 7.
The desirability plot is shown in Fig. 15.
Fig. 15 Desirability plot.
5.2. Model prediction with XGBoost

Advanced ML techniques are increasingly important in opti-
mizing the engine performance, while minimizing environ-
mental effects. This study investigates the implementation of
XGBoost, an ensemble learning algorithm, for predicting and
51190 | RSC Adv., 2025, 15, 51178–51197
modeling engine performance metrics. This study is focused on
using the compression ratio and braking power as predictors to
establish connections with key engine response characteristics
such as brake thermal efficiency, braking specic fuel
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Correlation heat map.
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consumption (BSFC), NOx emissions, CO, HC emissions, and
smoke.

The methodology starts with the data acquisition and pre-
processing of a dataset comprising different CR and braking
power values. These are crucial inputs as they represent the
inherent characteristics of the engine under different operating
conditions. The response variables like BTE, BSFC, NOx emis-
sions, CO, HC emissions, and smoke levels are closely moni-
tored andmeasured to capture the diverse engine performances
and emissions characteristics. The data was randomly divided
in a 70 : 30 ratio for training and testing. The grid search-based
hyperparameter optimization was employed in this study. The
hyperparameter range and optimized values are listed in
Table 9.

XG Boost, which has proven ability to cope with high-order
interactions and various data sources, is then used to develop
prediction models. The approach builds an ensemble of deci-
sion trees iteratively and learns from the patterns of the training
data for predicting the response variables accurately. Regulari-
zation methods in XGBoost reduce the risk of overtting,
ensuring strong generalization to new, unseen data. Validation
and optimization of XGBoost models are necessary steps within
the research method. The data is split into training and test
sets, allowing the model performance to be measured against
independent information. Increasing the predictive power of
the model, hyper parameter tuning and cross-validation strat-
egies enhance its reliability and accuracy in modeling the
complex interactions among CR, braking power, and engine
reaction variables.

The correlations between data columns are shown in Fig. 16
as a correlation heat map. Aer the model was created, it was
used for prediction. The statistical measures in Table 8 provide
a detailed evaluation of how well a predictive model performs
during the training and testing phases, highlighting important
engine response features. R2, mean squared error (MSE), and
mean absolute percentage error (MAPE) are some of the
measures used to gain more detailed insight into the accuracy
of the model and its prediction ability.

Table 8 and Fig. 17 depict the performance of the XGB
models applied to predict BTE, BSFC, NOx, HC, CO, and SO
using key input features. The model does a great job at training
for BTE (Fig. 17a), with R2 = 1 and MSE = 0.0004, which means
it ts perfectly. The excellent generalization and ability of the
model to capture the changes in thermal efficiency across
a range of CR and BP circumstances are conrmed by the test R2

of 0.9288, MSE of 0.7299, andMAPE of 3.41%. The model has R2
Table 8 Statistical evaluations of the model prediction results

Train R2 Train MSE Train

BTE 1 0.0004 0.082
BSFC 0.9999 0.0000009 0.2145
NOx 0.9999 0.3919 0.2259
HC 0.9989 0.352331 0.5066
CO 0.9517 0.00001 2.0451
Smoke Op 0.996 0.06999 2.314

© 2025 The Author(s). Published by the Royal Society of Chemistry
values of 0.9999 (train) and 0.9931 (test), which are almost
excellent for BSFC (Fig. 17b). The MSE values are quite low, and
the test MAPE of 2.20% shows that the predictions are very
accurate. This shows that XGB does a good job of modelling
BSFC, which is load sensitive, particularly when the fuel-air
conditions are different. The R2 values for the train and test
sets for NOx are 0.9999 and 0.9848, respectively, as shown in
Fig. 17c and Table 8. The test MSE is also quite high at 500.34,
which suggests that the results may not always be accurate given
that NOx generation is nonlinear. However, a test MAPE of
9.37% is acceptable given the complicated thermal NOx
dynamics. The train R2 = 0.9989 and test R2 = 0.9026 in the HC
model show that themodel learned well (Fig. 17d). However, the
test MAPE of 9.32% shows that there was slightly more error,
perhaps because of combustion instability at lower BP and
emissions during cold starts. The train and test R2 scores for the
CO model are 0.9517 and 0.9137, respectively (Fig. 17e). The
MSE values are quite low, while the test MAPE is 3.75%.
Although CO depends on the intensity of the mixture and the
amount of oxygen available, these ndings imply that the CO
predictions are consistent. Lastly, the SO model gives R2 values
of 0.996 for the training set and 0.942 for the test set, as well as
a test MSE of 2.38 and a test MAPE of 7.67% (Fig. 17f). These
numbers show that XGB does a good job of capturing how soot
moves when there is a load and when the CR changes. Overall,
all the models train well and make good predictions, with test
MAPE Test R2 Test MSE Test MAPE

0.9288 0.7299 3.4051
8 0.9931 0.0003 2.1951

0.9848 500.34 9.365
0.9026 103.46 9.317
0.9137 0.00002 3.745
0.942 2.38 7.674

RSC Adv., 2025, 15, 51178–51197 | 51191
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Fig. 17 Model prediction vs. actual data. (a) BTE, (b) BSFC, (c) NOx, (d) H

Table 9 Range of hyperparameters and optimized values

Hyperparameter Search range BTE BSFC NOx HC CO Smoke OP.

Learning_rate [0.01, 0.05, 0.1] 0.1 0.5 0.1 0.1 0.5 0.05
Max_depth [3, 4, 5] 3 5 5 3 4 3
n_estimators [50, 100, 150] 150 150 150 100 50 150
Subsample [0.7, 0.9, 1.0] 0.9 0.7 0.7 0.7 1 0.7

51192 | RSC Adv., 2025, 15, 51178–51197
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R2 values more than 0.90 in all situations. This shows that XGB
and the modied hyperparameters are good at modelling
complicated engine behaviour with high accuracy.
5.3. Interpretation of models

Fig. 18 illustrates the SHAP summary plots for the six XGBoost-
based machine learning models developed to predict various
engine performance and emission parameters, namely BTE,
BSFC, NOx, HC, CO, and smoke opacity. Each subplot (Fig. 18a–
C, (e) CO and (f) smoke opacity.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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f) shows how the ‘output’ of the model is affected by the input
characteristics of brake power (BP, kW) and compression ratio
(CR), respectively. The colour gradients show feature values
from low (blue) to high (red). Fig. 18a (BTE) shows that both CR
and BP have a big effect on the output, albeit in different ways.
Larger BP values (pink/red) push the BTE forecasts in a good
way, which means that larger loads will be more efficient.
Conversely, lower CR values tend to decrease the BTE, which
means that a greater compression ratio makes the engine more
thermodynamically efficient. Fig. 18b (BSFC) shows a tight
cluster around zero, with small positive SHAP effects from
higher CR and negative effects from lower BP. This means that
BSFC becomes better (decreases) as the BP increases and worse
(increases) when the CR increases. This is a balance that is very
important for getting the best fuel economy. Fig. 18c (NOx)
demonstrates that CR has a substantial negative effect on NOx
emissions, and higher CR values drive the forecast down. BP
also contributes but marginally. This behaviour is consistent
with thermodynamic trends, which indicates that increased CR
lowers NOx generation given that combustion lasts for a shorter
time.

Fig. 18d (HC) shows that decreasing the BP greatly lowers HC
emissions, whereas CR has a more random effect. The trend
shows that there is incomplete combustion at lower loads,
which increases the amount of unburned hydrocarbons.
Fig. 18e (CO) indicates that both characteristics have a SHAP
effect that is close to zero. This means that the model thinks
these features are not very good at predicting CO. This might be
because CO is sensitive to other parameters that affect
combustion, including the temperature and the air-fuel ratio,
which are not included in this narrow collection of features.
Lastly, Fig. 18f (smoke opacity) shows that greater BP levels
make the smoke levels increases, whereas higher CR levels
make them decrease slightly. This is consistent with what
happens in real life, where a higher load produces soot, while
a high CR makes combustion more complete. These SHAP
charts make the XGBoost models easier to understand, conrm
the engine performance patterns, and build condence in the
models.
Fig. 18 SHAP values for feature analysis for (a) BTE, (b) BSFC, (c) NOx,
(d) HC, (e) CO and (f) smoke opacity.
5.4. Implications of this study

This study has extensive implications outside of the laboratory,
especially in the eld of internal combustion engine technology
and alternative energy sources. This research presents infor-
mative data with extensive implications through the observa-
tion of complex relationships among variations in compression
ratio, emulsied fuel mixtures, and nano-Al2O3 additive in a y
ash-coated LHR engine. The RSM recognized ideal conditions
along with the ability of XGBoost to perform predictive
modeling, thus presenting researchers and engineers with
a road map for developing and operating more environmentally
friendly internal combustion engines that are more efficient.
One signicant implication is that there might be the possibility
to reduce emissions, something that is of signicant concern in
the current age of environmentalism. The ndings of this study,
which indicate the complementary action of nano-Al2O3
© 2025 The Author(s). Published by the Royal Society of Chemistry
additives and emulsied fuels, suggest an effective way to
minimize harmful emissions such as CO and NOx. This has
a direct implication in compliance with stringent environ-
mental regulations and creating cleaner, greener modes of
transport.

Furthermore, this research propels fuel technology by
proving the suitability of emulsied fuels with nano-Al2O3

additive to enhance combustion characteristics to a high
degree. This development could pave the way to devising fuel
blends that are both environmentally friendly and cost-effective.
RSC Adv., 2025, 15, 51178–51197 | 51193
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These ndings can totally revolutionize the operation of
machines and vehicles by allowing industries and governments
to make informed choices that will determine the future of
energy systems and transportation. The improvements in
methodology brought by the research in applying advanced
optimization methods, such as RSM and XGBoost modeling,
have broader implications for experimental design and data
analysis. The capability of these techniques to effectively search
the complex parameter space of fuel-supplied engines with
emulsied fuels sets a benchmark for subsequent research
studies seeking to optimize complex systems.

The approaches used in this work may be crucial in tackling
issues in various scientic and technical elds as the need for
sustainable energy solutions grows. The results of this study can
essentially be applied to realize methodological breakthroughs,
technological innovation, and environmental stewardship.
According to this research, emulsied fuels and nano-Al2O3

additives are potential components in the continuing effort to
help society move to cleaner and more efficient energy sources
in the quest for sustainable internal combustion engine
technology.
6. Conclusions, limitations and future
scope
6.1. Conclusions

This research investigates the maximization of CR of a y ash-
coated LHR diesel engine operated on a nano-Al2O3 emulsi-
ed cotton seed biodiesel blend (B20W10Al200). The experi-
ment was carried out on three compression ratios of CR16,
CR17, and CR18. Among them, CR18 exhibited the best
performance with the highest BTE of 29.03% and the lowest
BSFC of 0.269 kg kW−1 h−1. This enhancement is due to the
improved combustion efficiency from the higher in-cylinder
temperature and efficient atomization from the nano-Al2O3

additive. The emission analysis showed a signicant decrease
in CO (0.104%) and smoke opacity (19.3%) at CR18, but NOx
emissions were drastically lower at CR16 because of the
lower combustion temperatures. The HC emissions decreased
progressively with an increase in CR, which shows improved
combustion completeness. To conrm and simulate the
engine performance, XGBoost machine learning was utilized,
which resulted in high prediction accuracy with R2 values over
0.90 for all parameters. The XGBoost model reliably captured
nonlinear trends and showed low prediction errors (MAPE <
10%). RSM was also utilized to carry out multi-objective opti-
mization, where it sought to maximize the BTE and minimize
emissions and BSFC. The best conditions were found to be
a brake power of 2.49 kW and CR18 with a composite desir-
ability of 0.751.

Overall, the incorporation of nano-biodiesel blends in
thermal barrier coatings and intelligent modeling presents
a promising route toward increasing the efficiency and mini-
mizing environmental effects in compression ignition engines,
moving toward sustainable engine technology.
51194 | RSC Adv., 2025, 15, 51178–51197
6.2. Limitations

A few limitations should be noted although this work provides
useful data on the interaction of emulsied fuels, nano-Al2O3

additives, and changes in compression ratio in a y ash-coated
LHR engine. It is possible that the controlled laboratory envi-
ronment in which the testing and analysis were conducted is
not fully representative of the varying dynamic conditions
engines face in practical use. Additionally, this research focuses
on a few specic factors, and the nature of the coating with y
ash, the nano-Al2O3 concentration, and the specic emulsied
fuel composition can all inuence the results. Many variables
make the combustion processes in internal combustion
engines complex, and while efforts have been made to uncover
and understand the key factors, there could be others.

6.3. Future scope

Future studies can build upon and improve our understanding
of emulsied fuel-supplemented engines using nano-Al2O3

additives by addressing the limitations that have been
discovered.

� A more complete picture of the possible trade-offs and
synergies in engine performance may be obtained by inte-
grating other factors such as various coating materials, emul-
sication processes, and types of nanoparticle.

� Broadening the scope of this study to encompass diverse
engine categories and operational circumstances, engines using
nano-Al2O3 additives and emulsied fuels may also be con-
ducted to solve engine wear and maintenance issues.

� Advanced computer models and simulations might be
used to supplement the experimental results, enabling a more
thorough examination of optimization techniques and
combustion processes.
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Al2O3
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Aluminum oxide

BTE
 Brake thermal efficiency

BSFC
 Brake specic fuel consumption

BP
 Brake power

CO
 Carbon monoxide

CO2
 Carbon dioxide

CR
 Crank angle

HC
 Hydrocarbon

CR16
 Compression ratio of 16

LHR
 Low heat rejection

RSM
 Response surface methodology

SEM
 Scanning electron microscopy

MAPE
 Mean absolute percentage error

MSE
 Mean squared error

ML
 Machine learning

NOx
 Nitrogen emissions

HRR
 Heat release rate
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NHR
© 2025 The Author(s
Net heat release rate

Ppm
 Parts per minute

XG
 Extreme gradient boosting
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