
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/4
/2

02
6 

12
:0

9:
33

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Integrative mach
aTranslational Biology Laboratory, Depart

Sciences, University of Hyderabad, Hyderab

roykarnati@uohyd.ac.in; Tel: +91-96529210
bMolecular Modelling and Protein Engineeri

Energy, Visakhapatnam – 530003, Andhra Pr

in; Tel: +91-8219241123
cDepartment of Chemical Engineering, Ind

Visakhapatnam – 530003, Andhra Pradesh,

Cite this: RSC Adv., 2025, 15, 50944

Received 24th August 2025
Accepted 8th December 2025

DOI: 10.1039/d5ra06290j

rsc.li/rsc-advances

50944 | RSC Adv., 2025, 15, 50944–
ine learning-guided in silico and in
vitro approach reveals selective small molecule
inhibitors targeting mutant IDH1

Mayank Bajaj, a Rohit Kumar, b Vishal Pandey,b Sahanawaz Parvez,b

Hemanth Kumar Tanneru,c Polamarasetty Aparoy*b and Roy Karnati *a

Mutations in Isocitrate Dehydrogenase 1 (IDH1) are found in over 80% of WHO grade II/III gliomas. These

mutations, specifically R132H, confer a neomorphic activity that converts a-ketoglutarate (a-KG) into the

oncometabolite 2-hydroxyglutarate (2HG), a key driver in glioma pathogenesis. While the therapeutic

potential of targeting mutant IDH1 (MT-IDH1) is established, the discovery of novel and selective

inhibitors remains a priority. Leveraging the growing availability of pharmacological data, we developed

regression-based ML models to predict pIC50 values and identify potent inhibitors of MT-IDH1. We

trained these models using a dataset of 1631 compounds from ChEMBL, utilising 208 molecular

descriptors derived from RDKit. Among the three algorithms evaluated, the Random Forest model

demonstrated superior performance, achieving high predictive accuracy on the training set and robust

generalisability on the test set. Feature importance analysis provided critical insights related to

lipophilicity, halogen, and electronic factors as the key molecular determinants of inhibitor activity. We

subsequently deployed this model to screen drug databases, identifying five promising hits. These

candidates were further validated through in silico molecular docking, molecular dynamics simulation,

and MM/PBSA free energy calculations. Experimental in vitro enzymatic assays confirmed that these

compounds selectively inhibit MT-IDH1 with IC50 values in the micromolar range, while exhibiting no

significant activity against the WT-IDH1. While the mechanism of action of these compounds as IDH

inhibitors is yet to be established, our results support these compounds as potent and selective hits.

They offer a promising foundation for structural optimisation and the development of next-generation

therapeutics against MT-IDH1 malignancies.
1 Introduction

In humans, the isocitrate dehydrogenase (IDH) enzyme is
encoded by ve different IDH genes (IDH1, IDH2, IDH3A,
IDH3B, and IDH3C). IDH1, situated on the 2q33.3 gene locus, is
involved in the decarboxylation of isocitrate (ICT) into 2-keto-
glutarate, also known as a-ketoglutarate (a-KG). This process
generates NADPH from NADP+. Reductive carboxylation
converts a-KG back to ICT, where NADPH is consumed. The
IDH2 gene on 15q26.1 performs the same reversible process as
IDH1 within the mitochondria.1 IDH1 and IDH2 work as
homodimers with similar amino acid sequences and structural
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properties.2–5 IDH1 and IDH2 both play an essential role in
forward oxidative decarboxylation, an important cellular
defence mechanism against oxidative damage and act as
a source of NADPH and aid in reductive synthesis.6,7 Further-
more, these isoforms inuence the function of dioxygenase
enzymes by generating a-KG, a critical substrate for these
enzymes.8 IDH1 and IDH2 reverse reductive carboxylation
reactions are also essential for many biological activities. It
regulates lipogenesis and glycolysis by promoting ICT produc-
tion. This complex interaction between IDH1, IDH2, and the
reverse reductive carboxylation pathway substantially contrib-
utes to cellular metabolic control and function.9–11 IDH3, the
third member of the IDH enzyme family, is an essential enzyme
in the tricarboxylic acid (TCA) cycle. IDH3, unlike the previously
described IDH1 and IDH2, catalyses the irreversible conversion
of ICT into a-KG, generating NADH. The NADH produced
contributes to the generation of ATP via the electron transport
chain.12 IDH3 regulation is determined mainly by substrate
availability and the presence of positive allosteric effectors, such
as calcium, citrate, and ADP, and negative effectors like NADH,
NADPH, and ATP.13
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Signicant studies have been made on the knowledge of
frequent mutations in the IDH1 and IDH2 genes at somatic
level, highlighting their relevance in oncogenesis. IDH1 and
IDH2 mutations are prevalent in low-grade gliomas (LGG),
accounting for more than 70% of cases. 5% to 14% of primary
glioblastomas, a subtype of glioblastoma, and secondary glio-
blastomas generated from diffuse astrocytoma (WHO CNS
grade 4) have also been shown to carry these mutations, with
rates ranging from 55% to 88%. In cartilaginous and bone
tumours, the prevalence of these mutations ranges from 20% to
80%, while 6% to 30% in intrahepatic cholangiocarcinoma,
a malignant liver tumour, and 15% to 30% in acute myeloid
leukaemia (AML). Although less common, these mutations have
also been reported in myelodysplastic syndrome, angioimmu-
noblastic T-cell lymphoma, and other solid tumours.14–16 The
existence of these mutations inside the enzymes' critical cata-
lytic domain is interesting since they result in unusual catalytic
properties that generate oncometabolites and activate carcino-
genic pathways. The precise impact of these mutations on the
enzyme function and downstream signalling pathways is
a primary focus of cancer research.17,18

The mutations observed in IDH1 and IDH2 are heterozygous
somatic missense substitutions known to play a central role in
gaining new functions over the wild-type enzyme. These recur-
rent mutations exclusively affect specic arginine residues
within the active sites, substituting different amino acids. These
arginine residues are located at precise hotspots, including
R100Q, R132H, R132L, R132S, R132G, and R132C in IDH1, as
well as R140Q and R172K in IDH2. Unlike IDH1 and IDH2, no
tumour-related mutations were detected in IDH3 genes.19 The
R132H mutation is the most common in IDH1, accounting for
roughly 89% of documented mutations. The other IDH1
mutations occur at lower rates, emphasising their limited
contribution to the overall mutational landscape.20

The arginine amino acid sequence at R132 within IDH1 is
vital for the active site's catalytic function. It is situated within
the ICT binding pocket, where it orchestrates the trans-
formation of NADP+ into NADPH, resulting in a-KG production.
The alteration of R132H imparts distinct characteristics to the
IDH1 enzymatic activity. This dysregulated enzymatic function
disrupts the normal cellular metabolic balance, contributing to
oncogenesis and cancer progression.20,21 These mutations result
in acquiring a catalytic neomorphic activity, converting a-KG to
a unique endogenous oncometabolite called 2-hydroxyglutarate
(2HG), predominantly yielding the optically active D-form of
2HG. These mutations are responsible for the abnormal
production of 2DHG, which further contributes to epigenetic
dysregulation, inuencing oncogenesis and cancer
development.22–24

IDH inhibitors are being investigated as a potential treat-
ment for these cancers. Ivosidenib (AG-120), an important IDH1
inhibitor, has emerged as a promising candidate capable of
targeting various IDH1 mutants. It has successfully progressed
to phase III clinical trials in several indications, including
cholangiocarcinoma, acute myeloid leukaemia (AML), and
other solid tumours.25 Other examples of MT-IDH1 inhibitors
include olutasidenib (FT-2102), IDH305, vorasidenib (AG-881),
© 2025 The Author(s). Published by the Royal Society of Chemistry
GSK2857916, and BAY1436032. These inhibitors are still in
the early stages of development and clinical trials. Most highly
effective R132H IDH1 inhibitors, whose crystal structures have
been studied, exhibit inhibition through an allosteric mecha-
nism rather than the conventional active-site binding mode.
Considering the structural variety observed, these allosteric
inhibitors bind at the dimer interface, revealing an intriguing
aspect of their inhibitory action. The diversity in their structural
features suggests a rich landscape of potential binding sites and
modes, which can be further explored and harnessed in devel-
oping novel and targeted IDH1 inhibitors.26–28

Computer-aided drug discovery (CADD) methodologies are
gaining growing interest due to their potential to address the
challenges associated to scale, time, and cost as in traditional
experimental methods.29,30 This computational approach to
biological sciences has been successful in bringing new drug
compounds for various diseases such as COVID-19, HIV and
cancer.31–33 Numerous CADD methodologies have emerged,
incorporating machine learning techniques to enhance the
precision and effectiveness of these methods.34 Articial intel-
ligence (AI) and machine learning (ML) have recently been
advanced in anticancer drug discovery, enabling precise target
identication and compounds through advanced algorithms,
offering a paradigm shi in drug discovery process. These
systems analyse complex biological data to classify, cluster, and
predict network patterns, improving the accuracy and efficiency
of biological data analysis.35 In drug discovery, ML can be used
effectively in drug design, chemical synthesis, drug screening,
pharmacology and drug repurposing. Virtual screening, for
example, relies on diverse algorithms, including nearest-
neighbour classiers, support vector machine, and deep
neural networks to assess the synthetic feasibility and predict in
vitro activity and toxicity, enhancing the efficiency of the
screening process.36 Only a few studies have reported method-
ologies for drug inhibitory activity prediction, suggesting an
extensive gap to be lled with an effective computational
prediction model for MT-IDH1 specic inhibitor response.
Here, our study aims to provide a robust ML model for
screening and predicting the IC50 value of potential IDH1
inhibitors from chemical structures. The ML model, together
with known drug discovery methods can be used for virtual
screening of potential candidates against MT-IDH1. Building on
this, we screened and identied ve compounds using the RF
model and studied their potential effect on MT-IDH1 inhibi-
tion. We used olutasidenib28 and a-mangostin37 as positive
control drugs which are established MT-IDH1 inhibitors.
Temozolomide, an important chemotherapy drug and an alky-
lating agent known to work in gliomas by generating reactive
methylating species that alkylate DNA (mostly O6-guanine),
leading to tumour inhibition was used as an inactive or non-
inhibitor negative control for in silico studies.38,39 Its mecha-
nism of action is very different from that of MT-IDH1 inhibitors.
In silico drug discovery methods like molecular docking,
molecular dynamics simulations, and free energy calculations
were employed for all the molecules. Further, in vitro enzyme
activity assays on IDH1 wildtype and mutant were used to
validate the inhibitory potential of screened compounds.
RSC Adv., 2025, 15, 50944–50962 | 50945
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Further studies are required to decipher their mode of inhibi-
tion in gliomas, and their strong potential for further structural
optimisation and development as effective therapeutic candi-
dates for MT-IDH1 cancers.
2 Materials and methods
2.1 Data collection and preparation

The initial dataset comprising SMILES information and corre-
sponding half-maximal inhibitory concentration (IC50) values
was obtained from the ChEMBL database40 (last accessed July
13, 2025). The IC50 was selected as the primary measure of
biological activity, representing the concentration of
a compound required to inhibit the target protein's activity by
50%. The initial data collection consisted of 4439 entries.
Specic reported IC50 values were used for each compound,
enabling the calculation of negative logarithmic scale, pIC50.
This transformation helps linearise the data range, reduces
skewness caused by orders-of-magnitude differences in
potency, and provides a robust, continuous training label that
directly correlates with binding affinity. The choice for IC50

metric in model development was so as unlike binary classi-
cations (active/inactive), IC50 provides a continuous, quantita-
tive gradient of bioactivity. For modeling purposes, these values
were normalized to pIC50, allowing the machine learning
Fig. 1 Distribution of pIC50 for the (A) full dataset and for each individu
distribution shapes across splits demonstrate that the stratified sampling
evaluation and enhancing model generalizability.

50946 | RSC Adv., 2025, 15, 50944–50962
algorithms to learn subtle structure–activity relationships
across the potency landscape. The dataset was then cleaned
(BAO lter, assay single protein) and prepared by removing the
compounds that were duplicated (based on structures of
SMILES) or lacked activity (null based on nM standard units)
information. A total of 1631 molecules (SI File S1) were used for
model building and validation. To ensure molecular diversity
and minimise overtting, the Tanimoto coefficient, also known
as the Jaccard index was employed to lter out highly similar
compounds based on their binary molecular ngerprints. It is
a widely used metric in cheminformatics that quanties pair-
wise molecular similarity on a 0 to 1 scale, with values $0.8
typically indicating high structural resemblance. It is particu-
larly well-suited for ngerprint-based similarity calculations in
virtual screening, quality structure activity relationship (QSAR)
modelling, and diversity analysis.41 To mitigate structural
redundancy, Morgan ngerprints (radius 2, 2048 bits) were
generated and employed to construct a similarity graph based
on the Tanimoto coefficient. Molecules exhibiting a Tanimoto
similarity $0.85 were dened as connected components. This
threshold was selected to strike a balance between maintaining
chemical diversity and preserving dataset size. For each con-
nected component (cluster of highly similar compounds), the
molecule with the highest pIC50 was retained. The representa-
tive chemotype with the lowest ChEMBL ID serves as a tie-
al data split, (B) training, (C) validation, and (D) test. The comparable
procedure preserved the underlying activity distribution, enabling fair

© 2025 The Author(s). Published by the Royal Society of Chemistry
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breaker, while other molecules were discarded. This keeps one
representative from each near-duplicate group while favouring
the most active chemotype.

This protocol reduced the dataset for the nal modelling
from 1631 compounds to 1342 molecules, providing enough
data while also avoiding redundancy. (SI File S2). To make sure
that every subset of our data represents the full range of pIC50

values fairly, we used a quantile-based stratied split instead of
a pure random splitting. The data was partitioned into training
(80%), validation (10%), and test (10%) sets to ensure that the
pIC50 values were divided into equal-sized bins (quantiles), and
samples from each bin were proportionally distributed into the
training, validation, and test sets preventing the bias oen
associated with simple random sampling (Fig. 1).

2.2 Molecular descriptors calculation

Molecular descriptors are mathematically encoded quantitative
representations of a molecule's chemical properties that form
numerical values, enabling their integration into machine
learning algorithms. These ngerprints represent the variety
and similarity across molecules by encapsulating chemical
structures in binary or continuous values. Here, we utilised
RDKit, an open-source toolkit for calculating molecular
descriptors using SMILES notation.42 208 features, such as
molecular weight, number of valence electrons, and radial
electrons, were computed to understand the relationship
between molecular structures and biological activity.

2.3 ML model development

This study employed three supervised regression algorithms –

Linear Regression (LR), Support Vector Regression (SVR) and
Random Forest (RF) to predict the pIC50 biological activity of
novel compounds and enable virtual screening of top candi-
dates. Variance threshold (VT) feature selection was rst
applied using Scikit-learn (threshold = 0.1) to remove low-
variance molecular descriptors that provide little discrimina-
tive power, reducing the dimensionality and mitigating over-
tting, followed by a pairwise Pearson correlation analysis
where one feature from each pair having a correlation coeffi-
cient $0.90 was removed. We evaluated several established
methods, including PCA, L1-based embedded selection (Lasso
regularisation), and Recursive Feature Elimination (RFE),
alongside the VT + correlation approach. While these advanced
methods were tested, they introduced additional complexity
and reduced the model's interpretability, as PCA converts
physical descriptors into abstract components and L1/RFE-
based selections depend heavily on algorithmic tuning. The
VT + correlation framework, in contrast, provided a transparent
and reproducible descriptor subset that effectively balanced
simplicity, diversity, and predictive performance.

LR served as a baseline model, estimating pIC50 as a linear
combination of selected descriptors. Its interpretability and
simplicity make it a valuable benchmark in cheminformatics.
The SVM regression was used to map features with kernel func-
tions into high-dimensional spaces, enabling it to capture non-
linear relationships between molecular descriptors and
© 2025 The Author(s). Published by the Royal Society of Chemistry
bioactivity. They are widely used in QSAR modelling, such as an
SVM-based ensemble predicted potent HMG-CoA reductase
inhibitors with high accuracy.43 The RF model was used to build
an ensemble of decision trees trained on randomised subsets of
descriptors and samples. It is effective at modelling complex
descriptor–activity relationships while being robust to overtting.
RFs have demonstrated strong performance in various pIC50

prediction tasks, including FLT3 kinase inhibitors.44

2.4 ML model evaluation and virtual screening

Aer training and hyperparameter tuning of each model, their
performance was assessed using mean absolute error (MAE),
mean squared error (MSE), Pearson correlation (R) and R2. The
model with the best predictive metrics was then applied to
screen compound libraries for new potential inhibitors. The RF
model was nally chosen for virtual screening as it performed
the best on the training and test datasets. To navigate the
extensive chemical space and identify promising compounds,
public database libraries such as CHEMBL FDA APPROVED
DRUGS, ZINC FDA APPROVED DRUGS and natural compound
databases such as INDOFINENP, SPECSNP, IBSNP, and
ACDISNP were employed against the RF model. Compounds
with predicted pIC50 $ 7 were prioritised as potentially high-
potent inhibitors. From these, we selected ve molecules for
further testing. These identied candidates were used for in
silico and in vitro validation experiments.

2.5 Molecular docking

Genetic optimisation for ligand docking (GOLD) was used in the
molecular docking study to gain a thorough knowledge of the
binding mechanism of the potential drug compounds.45 GOLD
uses a tness score algorithm to assess and rank different
binding modalities. The four main components of this function
are the intramolecular hydrogen-bond contribution of the
ligand, the intramolecular strain contribution inside the ligand,
the hydrogen-bonding score between the protein and ligand,
and the van der Waals interaction score between the protein
and ligand. Furthermore, GOLD uses a genetic algorithm as
a search algorithm to look into possible binding conformations
and tting sites to locate the ligand precisely in the binding site.
In the present study, we used the default parameters of GOLD
with the ChemPLP scoring function.

The structures of standard inhibitors, olutasidenib and a-
mangostin, inactive inhibitor, temozolomide and screened
inhibitors were downloaded from PubChem.46 For docking
analysis, the X-ray crystallographic structure for mutant IDH1
complexed with olutasidenib (PDB ID: 6U4J), a known MT-
IDH1 inhibitor was obtained from the Protein Data Bank.47 All
water molecules, ligands and other non-standard hetero atoms
were excluded from the protein structure including chains C
and D. Hydrogen atoms were added to the crystal structure. 3D
geometry optimisation of the ligand molecules was done by the
Schrodinger LigPrep module (Schrödinger Release 2025-4: Lig-
Prep, Schrödinger, LLC, New York, NY, 2025). The docking site
was specied by a sphere at the geometric centre of the native
ligand present in the crystal structure. For each independent
RSC Adv., 2025, 15, 50944–50962 | 50947
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algorithm, 3.5 Å maximum distance was set between hydrogen
donors and tting points. 4.0 Å cutoff was set for non-bonded
van der Waals energies. The ttest pose was subsequently
taken for a molecular dynamics (MD) simulation study.
2.6 MD simulation

MD studies were done to gain insight into the dynamic stability of
ligand molecules within the protein binding site. This study uti-
lised the GROMACS 2021.2 program.48 CHARMMGUI was used to
pre-process the protein molecule. CHARMM General Force Field
(CGenFF) server was used to build ligand topologies and
CHARMM36 force eld was employed during MD simulations.49

LINCS algorithm was used to constrain hydrogen bonds.
Particle Mesh Ewald method was used for electrostatic inter-
actions with a cutoff distance of 1.2 nm, and non-bonded
interactions with a 10 Å cutoff for calculations. The tempera-
ture of the system was maintained at 298 K with a V-rescale
thermostat, while a Berendsen barostat was used to keep pres-
sure constant at 1 bar. The systems were equilibrated through 2
ns of NVT and 2 ns of NPT simulations prior to the production
run. The production simulation was run for 250 ns, with
snapshots saved every 100 ps.
2.7 Binding free energy analysis and per-residue
decomposition studies

The binding free energy between protein-ligand complexes was
calculated for all the systems using the molecular mechanics/
Poisson–Boltzmann surface area (MM/PBSA) method.50 This
tool utilises the system's internal energy, electrostatic and non-
polar contribution to entropic and solvation contribution,
combining molecular mechanics and continuum solvent
models to compute free energy. The following equation can
used for the MM/PBSA approach, that calculates the binding
free energy (DGbind) between a protein and a ligand:

DGbind = DGMM + DGPB + DGSA − TDS (1)

Here, the total gas-phase energy (sum of the DEinternal +
DEelectrostatic + DEvdw) on the binding of interaction energy is
shown as DGMM, between protein and ligand, the free energy of
solvation is DGSA. DGPB and DGSA represent polar and nonpolar
solvation energies, respectively. 1000 snapshots from each
simulated trajectory of 250 ns were extracted from 150 ns to 250
ns. In the present study, entropy contributions were not
included in the MM/PBSA calculations. Nonetheless, the MM/
PBSA approach remains a robust and efficient method for
extracting qualitative insights into protein–inhibitor interac-
tions. In this work, the primary objective was to perform
a comparative evaluation of the binding affinities of the selected
lead molecules and to identify the key residues contributing to
the enthalpic component of binding. The method reliably
captures these relative trends and highlights the common and
energetically signicant residues involved in ligand stabiliza-
tion at the MT-IDH1 binding site. The electrostatic, van der
Waals and polar solvation energy components were computed
using Adaptive Poisson–Boltzmann Solver (APBS). Non-polar
50948 | RSC Adv., 2025, 15, 50944–50962
energy contributions were estimated using Solvent-accessible
surface area (SASA) with grid spacing and probe radius set to
a value of 0.5 Å and 1.4 Å respectively. The dielectric constant
was dened as 80 for the solvent, and 2 for the solute.

Per-residue decomposition analysis was done using the
g_mmpbsa tool to gain measurable description of the energetic
contribution for each amino acid with the inhibitors considered
in the study.50 This tool decomposes the overall binding energy
of the protein–ligand complex. Python scripts “MmPbSaStat.py”
and “MmPbSaDecomp.py” were employed for MM/PBSA calcu-
lations and individual contributions of different amino acids.

2.8 Materials

Substrates, ICT (#42615) and NADP (#55615) for wild-type IDH1
enzyme assay were purchased from SRL. a-KG (#ASK1593) was
procured from Avra, and NADPH (#99197) was acquired from
SRL for MT-IDH1 enzyme assay. The stock solutions for each
substrate were prepared in IDH1 assay buffer (20 mM Tris pH =

8.0, 10 mM NaCl, 10 mM MgCl2, 0.05% BSA). The standard
IDH1 inhibitors, olutasidenib (#HY-114226), a-mangostin (#HY-
N0328), and potential lead molecules, dacomitinib (#HY-
13272), duvelisib (#HY-17044), idelalisib (#HY-13026), and
vandetanib (#HY-10260), were purchased from MedChem
Express. 10 mM DMSO stock solutions were prepared for each
inhibitor and used for in vitro enzymatic assays.

2.9 Protein expression and purication

Human IDH1 (#S015804-01-A244736) and IDH1 R132H
(#S015803-01-A244637) cloned into the pET41a (+) vector were
purchased from Synbio Technologies, NJ, USA. The recombi-
nant protein was expressed in BL21(DE3) by adding 1 mM IPTG
for 6 hours at 4 °C in a bioreactor. Cells were resuspended in
lysis buffer with a nal concentration of 20 mM Tris (pH 8.0),
10 mM NaCl and passed through a homogeniser for efficient
lysis. The lysate was then loaded onto a Ni-NTA column. Aer
washing with 10 column volumes of wash buffer, the protein
was eluted with elution buffer from a 0–100% gradient using
ÄKTA Pure (Cytiva Life Sciences). The primary peak was
collected and concentrated, corresponding to IDH1 and IDH1
R132H. Protein purity for both was assessed by SDS-PAGE. The
protein estimation was done using the Bradford method, and
concentrations were determined to be 4.07 and 4.37 mg mL−1,
respectively (unpublished data). The puried enzymes were
used for in vitro enzyme-based inhibition assays for standard
and screened compounds.

2.10 Recombinant IDH1, and IDH1 R132H enzymatic assays

The IDH1 and IDH1 R132H biochemical assays were performed
as previously described.22 Generally, WT IDH1 utilises NADP+ as
a cofactor to catalyse the conversion of ICT to a-KG, while MT
IDH1 utilises NADPH to reduce a-KG to 2-HG. The inhibitory
potential of the compounds against IDH1 and IDH1 R132H can
be determined by the detection of NADPH production or
consumption. In a 1 mL reaction mixture, 880 ml assay buffer
(20 mM Tris pH = 8.0, 10 mM NaCl, 10 mM MgCl2, 0.05% BSA),
20 ml a-KG substrate and 80 ml NADPH solution (at nal
© 2025 The Author(s). Published by the Royal Society of Chemistry
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concentration 1 mM and 100 mM, respectively) were added. The
mixture was then incubated at 25 °C for 10 min, followed by
measuring the OD values at 340 nm in kinetic mode. Substrates,
ICT and NADP were added at a nal concentration of 100 mM
each for IDH1 WT assays. The change in absorbance over time
was recorded, and specic activity (Umg−1) was calculated for the
linear range and plotted against the substrate concentration.
10 mMDMSO stocks for each inhibitor were prepared to test and
screen the drugs. The desired inhibitor concentration was added
to a 1 mL reaction mixture before incubation with the enzyme.
Post incubation, the same steps were repeated, and percentage-
specic activity was plotted to assess the screened inhibitors.
3 Results and discussion
3.1 Development of ML models

Our study presents a novel drug design approach that integrates
machine learning methods and bioinformatics tools for evalu-
ating and screening the potential of known compounds as MT-
IDH1 inhibitors. The dataset from the ChEMBL database was
used against RDKit, an open-source molecular descriptors
calculator using the SMILES notation to construct three
machine learning predictive models – LR, SVR and RF, to
identify and screen MT-IDH1 inhibitors. The presented regres-
sion model can be used for further research on IDH1 inhibitors.
Fig. 1 highlights the distribution of pIC50 across the dataset
used for ML model development. To further understand the
diversity, Murcko scaffold (SI Fig. S1) and plain ring system (SI
Fig. S2) analysis for the dataset was performed which revealed
unique core combinations with frequencies of occurrence.

The LR model assumed a linear relationship between
molecular ngerprints and pIC50 using a straight line. It
involved multiple independent variables that minimise the sum
of squared differences between observed and predicted values.
Coefficients show how much the dependent variable changes
when the independent variable changes by one unit, and the
error terms capture the unexplained variability in prediction.
While the LR model trained on all features exhibited instability
and failed catastrophically with poor generalization on the test
set, the model utilising selected features showed better perfor-
mance and served as a benchmark. Nevertheless, it failed to
adequately capture more non-linear patterns within the data.
Therefore, we further explored nonlinear models such as SVR
and RF, which can capture complex descriptor–activity rela-
tionships and potentially yield better generalisation
Table 1 Performance and statistical evaluation of different machine lea

Model Dataset

RF (all features) Train
Test

RF (selected features) Train
Test

SVR (selected features) Train
Test

Linear regression (selected features) Train
Test

© 2025 The Author(s). Published by the Royal Society of Chemistry
performance. The SVR model was used to learn a nonlinear
mapping from molecular descriptors to pIC50 values by tting
a regression hyperplane in the high-dimensional feature space.
The RF algorithm, comprising multiple decision trees, each
constructed randomly from the training set data, was selected
and combined with their outputs to develop a more robust
model.

Although the RFmodel trained on the full feature set achieved
a marginally higher test R2 (∼0.68) compared with the feature-
selected RF (∼0.66), we prioritized the feature-selected model.
The reduction in dimensionality removes redundancy and mul-
ticollinearity, resulting in a more efficient, stable, and interpret-
able model without any meaningful loss in predictive accuracy.
This decision was further supported by the behavior of the linear
regression model. With all descriptors, the model achieved
reasonable ts on the training and validation sets (R2_train =

0.648, R2_val = 0.423) but collapsed on the test set (R2_test =
−7756.5), indicating extreme instability and overtting. In
contrast, aer VT + correlation-based feature selection, its
performance became stable and plausible across all splits
(R2_train = 0.568, R2_val = 0.388, R2_test = 0.392), behaving as
expected for a well-specied linear model. This contrast high-
lights how a highly collinear descriptor space can distort simpler
models and mask genuine structure–activity relationships.

Hyperparameters for both algorithms were tuned systemat-
ically. For RF, we explored variations in the number of trees,
maximum depth, maximum features per split, and minimum
leaf size. The nal conguration consisted of 600 trees, no
depth limit, max_features= 0.5, andmin_samples_leaf= 1. For
SVR, we evaluated RBF kernels across a broad grid of C, 3, and g,
and the optimal model (C = 10, 3 = 0.3, g = 0.01) performed
competitively but remained consistently inferior to RF on the
test set. Taken together, these ndings justify the selection of
the feature-ltered RF model as the nal model balancing
predictive performance with improved robustness, interpret-
ability, and reduced risk of variance ination due to redundant
or collinear descriptors. Summary of the performance metrics
for each developed model is shown in Table 1.
3.2 5-Fold cross validation and model generalization

To further validate generalisability, we performed 5-fold cross-
validation (CV) on the training data for the best-performing
models (RF and SVR) using the nal VT + corr feature subset
(98 descriptors). The mean cross-validated R2 values were 0.55±
0.04 for the RF model and 0.55 ± 0.05 for the SVR model,
rning models

MAE MSE R2 Pearsons' R

0.191 0.069 0.944 0.9794
0.456 0.374 0.679 0.8276
0.194 0.069 0.944 0.9798
0.472 0.394 0.663 0.8165
0.272 0.116 0.906 0.9538
0.475 0.413 0.646 0.8067
0.555 0.532 0.568 0.7535
0.647 0.710 0.392 0.6424

RSC Adv., 2025, 15, 50944–50962 | 50949
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Fig. 2 Scatter plots illustrating the predictive performance of machine learning models for pIC50 prediction. (A) Random Forest (RF) model
trained using all available descriptors. (B) Random Forest model trained using a feature subset selected via variance threshold and correlation
analysis (VT + Corr). (C) Support Vector Regression (SVR) model trained using the selected feature subset (VT + Corr). Eachmodel is evaluated on
both training (left column) and test sets (right column). The diagonal line denotes the ideal fit (y = x), where predicted values perfectly match
actual values. Model performance is summarized by R2 values, with the Random Forest model demonstrating the highest predictive accuracy
(R2 = 0.944 on training, 0.679 on test set) indicating superior generalizability and robustness of the Random Forest approach.
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demonstrating highly consistent predictive behaviour across
folds. The test-set R2 values (∼0.66–0.68) were slightly higher
than the cross-validation averages. This difference was expected
given the small dataset size and the inherent variability intro-
duced by random sampling, rather than indicative of over-
tting. Cross-validation evaluated performance across multiple
randomised partitions, while the test-set score reected the
50950 | RSC Adv., 2025, 15, 50944–50962
outcome of a single stratied split, which may occasionally
align more favourably with the learned patterns. The close
alignment between CV and test results indicated that both
models exhibit stable, generalizable performance within the
available chemical space. Although the modest dataset size
naturally limits statistical precision, the narrow CV standard
© 2025 The Author(s). Published by the Royal Society of Chemistry
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deviations and the absence of inated test performance support
the conclusion that the models are not learning noise.

Overall, the combined cross-validation and external test
results conrm that the nal RF and SVRmodels generalize well
and that their observed predictive performance is robust rather
than an artifact of a particular dataset partition. Fig. 2 illustrates
the correlation between actual and predicted values for both
training and test datasets across SVR and RF models.
Fig. 3 Feature importance and correlation analysis of molecular
descriptors used in Random Forest modelling. (A) Bar plot showing the
top 20molecular features ranked by importance in the Random Forest
model. The descriptor SlogP_VSA10 exhibits the highest predictive
contribution, followed by fr_halogen and MolLogP, indicating
a significant influence of hydrophobic surface patterns and haloge-
nation on the model's predictions, (B) Pearson correlation heatmap of
the top 10 most important features, illustrating the degree of linear
correlation between them. Strong positive correlations are observed
within the size/complexity cluster (e.g., MolWt and BertzCT) are
shaded in red, while negatively or weakly correlated pairs are shaded in
blue, indicating potential redundancy or complementarity in model
inputs.
3.3 Feature selection and analysis

The feature importance analysis was carried out to identify the
contribution of each feature. The RF model is inherently robust
to multicollinearity, and this analysis aids in interpretability
and reinforces the relevance of both clustered and non-
redundant features in driving the model performance. Among
the top 20 features (Fig. 3A) critical in determining the model's
accuracy, the SlogP_VSA10 type descriptor was the single most
inuential predictor in the model contributing over 10% to the
total feature importance. This suggests that the hydrophobic
distribution across the molecular surface plays a critical role in
the bioactivity prediction. The log P value is derived from
hydrophobic atomic constants that measures lipophilic contri-
bution of individual atoms within amolecule, each described by
adjacent atoms. Global physicochemical properties, specically
lipophilicity (MolLogP) and molecular size (MolWt), were also
ranked among the top ve features. The high ranking of Mol-
LogP reinforces the nding that hydrophobicity is a primary
driver of activity. The other essential features identied through
feature importance analysis were, BertzCT, VSA_EState4, and
VSA_EState2. The presence of halogens (fr_halogen) was the
second most important feature, indicating that halogen
bonding or specic steric effects may enhance potency. Addi-
tionally, nitrogen-containing fragments (fr_NH0, fr_NH1) and
topological complexity (BertzCT) were signicant, highlighting
the importance of hydrogen bond acceptors/donors and specic
molecular scaffolding. While these features were identied as
highly important, Random Forest can sometimes split impor-
tance among correlated variables.

To ensure that the selected features represent distinct
chemical information and to assess potential collinearity,
a correlation heatmap was constructed to assess the interde-
pendence among the most predictive molecular descriptors
(Fig. 3B) for the top 10 features ranked by importance. Several
descriptors exhibit moderate positive correlations, especially
between: MolLogP, SlogP_VSA10, and MolWt, BertzCT and
MolWt, and MaxEStateIndex and Chi0n. No pair of descriptors
was observed to show a correlation approaching unity, con-
rming that the variance thresholding and correlation ltering
(VT + Corr) approach effectively removed severe redundancy.
The analysis revealed that while SlogP_VSA10 and MolLogP
both characterize hydrophobicity, they exhibit negligible
correlation (r ∼0), indicating that the model successfully
distinguishes between specic hydrophobic surface patches
(SlogP_VSA10) and global lipophilicity (MolLogP). Additionally,
a distinct cluster of strong positive correlations (r > 0.8) was
observed among MolWt, BertzCT, and Chi0n, reecting the
© 2025 The Author(s). Published by the Royal Society of Chemistry
intrinsic collinearity between molecular weight, topological
complexity, and connectivity. Halogen content plays a critical
and independent role, indicating that specic substitution
patterns signicantly inuence the endpoint being predicted.
The presence of both highly correlated and relatively indepen-
dent descriptors indicates a balanced feature set capturing
diverse chemical properties relevant to the biological activity.

Collectively, the ML model development pipeline demon-
strated that the modelling workow yielded a robust and
chemically interpretable RF model. The model predicted well
for the training set (SI File S3) with the close agreement between
RSC Adv., 2025, 15, 50944–50962 | 50951
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Table 2 Docking score, important amino acids, and their individual contributions to ligand interactions for olutasidenib, a-mangostin, temo-
zolomide and mutant IDH1-inhibitor screened complexes

Compound
ChemPLP
score

Ligand interactions

Hydrogen bond
van der
Waals p–p p–alkyl

Olutasidenib 109.99 Arg109, Leu120, Pro127, Ile128,
Asp279

Arg119, Glu110, Val121, Lys126,
Ile129, Ala282, Tyr285, Met291

Trp267 Ala111, Ile113, Trp124, Ile130,
Val255, Ala258, Met259, Val281

a-Mangostin 63.59 Ser278, Asp279, Ser280 Leu120, Ile128, Ala258, Met259
Asp273, Asp279, Gln283, Ser287

— Val121, Trp124, Ile130, Val255,
Trp267, Val276, Val281, Ala282,
Tyr285, Leu288, Met291

Atogepant 44.84 Arg109, Ala111, Cys269, Asp279,
Ala282

Glu110, Leu120, Asp273, Gly274,
Asp275, Val276, Ser278, Ser280,
Met291

Trp267 Ile113, Trp124, Ile128, Pro127,
Ile130, HSD132, Ile251, Val255,
Val281, Tyr285

Dacomitinib 78.43 Arg109, HSD132, Ser280 Leu120, Pro127, Ile128, Lys126,
Gly131, Ile251, Asn271, Asp279,
Val281, Met291

Trp267 Ala111, Ile113, Trp124, Val255,
Ala258, Met259, Val276, Tyr285

Duvelisib 71.45 HSD132, Asp279 Trp124, Val255, Asn271, Gly274,
Asp275, Ser278, Ser280, Gln283,
Met291

Trp267 Ala111, Val121, Ile128, Ile130,
Ala258, Cys269, Val281, Ala282

Idelalisib 63.21 Pro127, Ile128, Ala282, Gly286 Ala111, Arg119, Ile130, Ala258,
Met259, Trp267, Asp279, Val281,
Tyr285, Ser287

— Ile113, Val121, Trp124, Val281

Vandetanib 88.00 Pro127, Ile128, Ser278 Arg109, Arg119, Lys126, Ile130,
Ile251, Val255, Gly263, Cys269,
Asp279, Ser280, Tyr285

Trp124 Ala111, Ile113, Als258, Met259,
Trp267, Val281

Temozolomide 45.41 Ile128 Arg109, Lys126, Ile129, Ile130,
Ala282, Tyr285, Met291

Trp124 Ala111, Ile113, Pro127, Val281

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/4
/2

02
6 

12
:0

9:
33

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
cross-validation and external test performance conrming
strong generalisation. With this framework in place, we
deployed the optimised model to virtually screen candidate
molecules for potential activity against MT-IDH1.
3.4 Screening of potential IDH1-MT inhibitors from public
libraries

The molecular databases, CHEMBL FDA APPROVED DRUGS,
ZINC FDA APPROVED DRUGS and natural compound
Fig. 4 3D representation of molecular docked poses showing the bindin
(A) olutasidenib, (B) a-mangostin, (C) atogepant, (D) dacomitinib, (E) duvel
as stick models, in green and ligand molecule as a default CPK colourin

50952 | RSC Adv., 2025, 15, 50944–50962
databases such as INDOFINENP, SPECSNP, IBSNP, and
ACDISNP were employed against the RF model to screen and
identify potential hit compounds against the MT-IDH1. The
screening from the RF model identied ve FDA-approved
drugs as possible candidates targeting IDH1 as described
below:

Atogepant: (PubChem CID: 72163100, molecular weight:
603.52 Da) is a small-molecule orally available agonist of
g site residues (up to 4 Å) in mutant IDH1 allosteric inhibitor binding site
isib, (F) idelalisib, (G) vandetanib (H) temozolomide. Residues are shown
g in stick. The protein backbone is displayed as a white cartoon.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 RMSD Plots showing structural dynamics upon binding with the inhibitors during 250 ns MD simulation (A) protein C-a, and (B) ligand, for
standard mutant IDH1 inhibitors, olutasidenib (black) and a-mangostin (red), screened inhibitors, atogepant (green), dacomitinib (blue), duvelisib
(yellow), idelalisib (brown), and vandetanib (turquoise), and inactive reference compound, temozolomide (orange).
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calcitonin gene-related peptide (CGRP) used in preventive
therapy for episodic migraine headaches.51

Dacomitinib: (PubChem CID: 11511120, molecular weight:
469.93 Da) is a highly selective irreversible small-molecule
inhibitor designed as (2E)-N-16-4-(piperidin-1-yl)but-2-
enamide and is used for treatment of non-small cell lung
cancer with epidermal growth factor receptor (EGFR) exon 19
deletion or exon 21 L858R substitution.52 It is a second-
generation tyrosine kinase inhibitor characterised by the irre-
versible binding via covalent bonding to the cysteine residues in
the catalytic domains of the HER receptors at the ATP domain of
the EGFR family.

Duvelisib: (PubChem CID: 50905713, molecular weight:
416.87 Da), also known as IPI-145 and INK-1197, is a potent,
reversible small molecule inhibitor targeting
© 2025 The Author(s). Published by the Royal Society of Chemistry
phosphatidylinositol 3-kinase (PI3K) delta and gamma for
treatment of relapsed or refractory chronic lymphocytic
leukaemia (CLL) or small lymphocytic lymphoma (SLL).53 The
delta isoform controls cell proliferation and survival, whereas
the gamma isoform is critical in cytokine signalling and
proinammatory response.

Idelalisib: (PubChem CID: 11625818, molecular weight:
415.43 Da) is an antineoplastic kinase inhibitor used for treat-
ing lymphocytic leukaemia (CLL), relapsed follicular B-cell non-
Hodgkin lymphoma (FL), and relapsed small lymphocytic
lymphoma (SLL) patients.54 Idelalisib targets the delta isoform
(P110d) of PI3K enzyme and induces the apoptosis of cancer
cells and inhibit several signal transduction pathways,
including B-cell receptor (BCR) signalling, and C-X-C chemo-
kine receptor signalling.
RSC Adv., 2025, 15, 50944–50962 | 50953
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Fig. 6 Hbond analysis during 250 ns MD simulation for standard mutant IDH1 inhibitors, (A) olutasidenib, (B) a-mangostin, screened inhibitors,
(C) atogepant, (D) dacomitinib, (E) duvelisib, (F) idelalisib, and, (G) vandetanib, and inactive reference compound, (H) temozolomide. Each
horizontal line on y-axis represents number of hydrogen bond formed simultaneously, with its duration shown along the time in (x) axis. A higher
and denser clustering of lines suggests stronger and more stable interactions throughout the simulation period.
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Vandetanib: (PubChem CID: 3081361, molecular weight:
475.35 Da) is an orally available small-molecule antineoplastic
kinase inhibitor of angiogenesis and cancer cell proliferation
for the treatment of progressive medullary thyroid cancer. It is
currently approved as an alternative to local therapies for
unresectable and disseminated diseases. The mechanism of
action involves selective inhibition of vascular endothelial
growth factor receptor (VEGFR) and EGFR, which are altered
during Transfection (RET) tyrosine kinases.55

All these screened molecules were studied for molecular
docking, simulation and free energy studies to understand the
molecular interactions and contributions in MT-IDH1 inhibi-
tion. Olutasidenib (PubChem CID: 118955396) and a-man-
gostin (PubChem CID: 5281650) were used as positive MT-IDH1
reference inhibitors. Temozolomide (PubChem CID: 5394)
a chemotherapy drug was used as an inactive inhibitor or
negative control for cross-validation and comparative analysis
for in silico study.

3.5 Molecular docking analysis

The hit molecules were docked with the MT-IDH1 R132H
protein (PDB ID: 6U4J) in the active site. Olutasidenib and a-
mangostin are known IDH1 R132H inhibitors that are used as
reference molecules in this study. The inhibitor olutasidenib
(redock RMSD: 0.2301 Å) was used as a standard that could
identify the near-native pose to compare and validate. Out of the
poses generated, the best-established pose was selected based
50954 | RSC Adv., 2025, 15, 50944–50962
on docking and interaction tests. The results for molecular
docking of ve molecules obtained from the screening and
three reference compounds are shown in Table 2. The 3D
representation of molecular docked pose with the MT-IDH1
protein for each compound are presented in Fig. 4. The 2D
interaction diagrams for each compound against MT-IDH1
depicting the interactions are presented in (SI Fig. S3).

Interaction analysis of protein–ligand complexes was done
using Biovia Discovery Studio visualiser (v21.1.0, San Diego:
Dassault Systèmes 2021) and PyMOL (The PyMOL Molecular
Graphics System, Version 3.1.3, Schrödinger, LLC). The MT-
IDH1 homodimer assumed the known open or inactive
conformation, characterised by partially ordered a10 helix or
the regulatory segment comprising residues from 271–286 in
each monomer. In this state, the helix cannot coordinate the
Mg2+ cofactor which is essential for enzymatic activity.56 The
atomic contacts Leu120, Asp279, Ile128, Arg109, Trp124, and
Val281 were identied as the most critical residues contributing
to the stability of the olutasidenib and MT-IDH1 complex in the
inhibitor binding pocket. These specic residues, such as those
interacting with the inhibitor, contribute to MT-IDH1 selec-
tivity.57 Temozolomide showed least interactions among the
reference compounds. Table 2 highlights the summary of key
interacting residues for olutasidenib, a-mangostin, temozolo-
mide and the ve screened molecules.

The potential screened drugs were also shown to form at
least two hydrogen bonds in the binding pocket, with the drug
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Plots illustrating post-MD (A) radius of gyration (Rg) analysis, and (B) Solvent Accessible Surface Area (SASA) analysis over 250 ns simulation
time for standard mutant IDH1 inhibitors, olutasidenib (black) and a-mangostin (red), screened inhibitors, atogepant (green), dacomitinib (blue),
duvelisib (yellow), idelalisib (brown), and vandetanib (turquoise), and inactive reference compound, temozolomide (orange). Consistent Rg values
indicate structural compactness and stability, whereas large fluctuations may reflect conformational flexibility or partial unfolding of the protein
structure. An increase or fluctuation in SASA reflects changes in protein surface exposure to the solvent, which indicates conformational
transitions or complex stability.
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stabilising each molecule. Atogepant formed three hydrogen
bonds with the protein using Ser280, Asp279, and Cys269 and
stabilised the complex using Trp267, Ile218, Ile130, Val281,
Ala111, van der Waals and non-polar interactions. Dacomitinib,
known to target catalytic domains of the HER receptors cova-
lently, also efficiently targeted the MT-IDH1 protein through
Ser278, Asp279, and Arg109 conventional hydrogen bond
formation. At the same time, the signicant non-polar interac-
tions that contributed to its stability were provided by Trp267,
Trp124, Ala111, Tyr285, Ala258, and Val281, signicantly
showing its potential to target MT-IDH1. Duvelisib, another
© 2025 The Author(s). Published by the Royal Society of Chemistry
promising screened inhibitor, showed signicant non-polar
contacts with Trp124, Leu120, Val281, Trp267, Ala258, and
Ile130, contributing to its stability in the inhibitor binding
pocket. Idelalisib and MT-IDH1 protein–ligand complex
showed similar interaction proles to other potential candi-
dates and known IDH1 mutant inhibitors, olutasidenib and a-
mangostin. Arg109 and Ile128 form conventional hydrogen
bonds, with idelalisib contributing to its stability. Further
structural stability was provided by non-polar contacts formed
by residues Val281, Ile113, Arg119, Lys126, Tyr285, Trp124, and
Ala282. Vandetanib was also shown to be a potential MT-IDH1
RSC Adv., 2025, 15, 50944–50962 | 50955
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Fig. 8 MM/PBSA graphs showing the top 30 per residue energy contributions for standard mutant IDH1 inhibitors, (A) olutasidenib and (B) a-
mangostin, screened inhibitors, (C) atogepant, (D) dacomitinib, (E) duvelisib, (F) idelalisib, (G) vandetanib, and reference non-inhibitor (H)
temozolomide. Residues on the x-axis are ranked based on their energetic contribution, with negative values on the y-axis indicating favourable
interactions (i.e., stronger binding affinity). Residues with themost negative energy values play key roles in stabilizing the ligandwithin the binding
pocket, highlighting potential hotspots for ligand interaction and optimization.
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target. It forms conventional hydrogen bond interactions
through Ile128 and Arg109, contributing to its inhibitor activity
against MT-IDH1. It forms a carbon–hydrogen bond to the
piperidine ring in vandetanib with Ser278. Further complex
stability was provided by various non-polar atomic contacts
50956 | RSC Adv., 2025, 15, 50944–50962
contributed by Trp267, Val281, Ile130, Trp124, Ala111, Arg119,
Ala282, and Tyr285.

Further, to enhance our understanding of the interactions
and binding stability of all the screened potential candidate
molecules in the active site of MT-IDH1, we performed molec-
ular dynamics simulations for 250 ns. We computed the root-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Summary of van der Waals, electrostatic, polar solvation, SASA and total binding energy (in KJ mol−1) for olutasidenib, a-mangostin,
temozolomide and IDH1 inhibitors screened complexes calculated using MM/PBSA

Compound Van der Waals energy Electrostatic energy Polar solvation energy SASA energy Binding energy

Olutasidenib −202.513 � 0.396 −106.120 � 0.302 204.082 � 0.283 −19.129 � 0.023 −123.676 � 0.360
a-Mangostin −186.833 � 0.397 −71.163 � 0.285 160.700 � 0.465 −22.423 � 0.026 −119.711 � 0.480
Atogepant −254.511 � 0.376 −64.192 � 0.385 267.726 � 0.486 −28.338 � 0.028 −79.307 � 0.467
Dacomitinib −258.427 � 0.382 −31.613 � 0.379 244.844 � 0.758 −26.768 � 0.028 −71.981 � 0.733
Duvelisib −191.166 � 0.385 −154.362 � 0.395 301.626 � 0.603 −20.715 � 0.023 −64.607 � 0.407
Idelalisib −176.730 � 0.332 −59.087 � 0.514 180.921 � 0.894 −21.010 � 0.037 −75.888 � 0.617
Vandetanib −230.756 � 0.375 −37.695 � 0.380 215.822 � 0.798 −23.998 � 0.031 −76.608 � 0.655
Temozolomide −109.193 � 0.251 −6.220 � 0.311 96.264 � 0.369 −12.200 � 0.018 −31.372 � 0.458

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/4
/2

02
6 

12
:0

9:
33

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
mean-square deviation (RMSD), radius of gyration (Rg) and
solvent-accessible surface area (SASA), which are valuable tools
for evaluating the dynamics within the protein–ligand
complexes.
3.6 MD simulation and MM/PBSA analysis

All screened inhibitors were studied to explore their atomic
behaviour within a solvent environment using a 250 ns MD
simulation for the best pose characterised by strong interac-
tions and lowest binding energy conformation as derived from
the molecular docking analysis. The 250 ns MD simulation was
performed using GROMACS to check for the dynamic stability
of these IDH1 inhibitor complex systems. To assess the
conformational stability within the receptor binding pocket,
protein Ca and ligand RMSD (Fig. 5) were measured with
respect to the initial frame at 0 ns. The average protein Ca
RMSD values of olutasidenib, a-mangostin, atogepant, daco-
mitinib, duvelisib, idelalisib, vandetanib and temozolomide
were calculated to be 2.53 ± 0.47 Å, 2.74 ± 0.52 Å, 1.90 ± 0.28 Å,
2.11 ± 0.27 Å, 3.15 ± 0.56 Å, 3.63 ± 0.95 Å, 2.80 ± 0.49 Å, and
2.30 ± 0.38 Å respectively. These values exhibit a consistent
trend throughout the study, indicating the stable behaviour of
these inhibitor complexes. Unlike idelalisib, all other inhibitors
appear to have attained stability early in the simulation and
maintained general conformational stability throughout the
simulation. Hbond analysis (Fig. 6) shows the number of
hydrogen bond contacts formed by each inhibitor with the
protein. Duvelisib was shown to form the highest and most
stable hydrogen bond contact throughout the simulation
Table 4 Individual energy contribution of specific mutant IDH1 amino
temozolomide and mutant IDH1-inhibitor-screened complexes. (A) an
contributions (in KJ mol−1) as calculated by MM/PBSA

Compound Ala111 Leu120 Trp124 Ile130

Olutasidenib −4.7862 −1.7938 −8.2386 −6.8002
a-Mangostin −0.2708 −4.7349 −1.7869 −3.7828
Atogepant −1.1642 −0.3025 −4.0537 −8.2272
Dacomitinib −0.2616 −0.614 (A) −7.7881 −7.453

−0.5075 (B)
Duvelisib −0.6687 −0.4661 (A) −0.6307 −5.4168

−0.5953 (B)
Idelalisib −3.1605 0.031 −9.3619 −2.5848
Vandetanib −2.276 −0.3682 (B) −10.5278 −6.2418
Temozolomide −3.4375 −3.3320 −4.0173 −2.3925

© 2025 The Author(s). Published by the Royal Society of Chemistry
followed by atogepant, and dacomitinib. However, other
inhibitors also maintained at least two polar contacts
throughout the simulation. Unlike the other compounds,
temozolomide exhibited rapidly declining and largely unstable
hydrogen-bond interactions across the simulation period,
consistent with weak, non-specic binding to IDH1, supporting
its known mechanism as a non-binding, indirect effector rather
than a true IDH1 inhibitor. The Rg studies for all the screened
molecules against the MT-IDH1 protein for 250 ns highlighted
the degree of compactness of the structure. The overall value of
Rg swings between 2.85 Å–3.05 Å, suggesting stable conforma-
tions throughout the simulation period, as shown in Fig. 7A.
The graphical results for ligand property SASA were also
computed to 250 ns, as illustrated in Fig. 7B. The relatively
higher uctuations in SASA and Rg were mainly observed for the
idealisib–IDH1 complex. The increased uctuations leading to
inconsistent SASA and Rg originate primarily from the C-
terminal region of the protein, which is inherently exible.
This behaviour was also visible in the RMSD plot and likely
contributes to the observed variations.

We further employed the MM/PBSA to compute the binding
free energy for all protein–ligand complexes. To access the
prediction, 1000 frames were extracted from the nal 100 ns
segment (150 ns–250 ns) to calculate the MM/PBSA binding free
energy along with standard deviation. These values are
comparative enthalpic estimates that offers quantitative
insights about the ligand binding potential within the inhibitor
binding site. Fig. 8 represents the graphs of the top 30 per-
residue contributions, and Table 3 summarises the MM/PBSA
binding values for each molecule to the MT-IDH1. The
acid residues involved in the binding of olutasidenib, a-mangostin,
d (B) represents the protein chain. The values represent total energy

Trp267 Asp279 Val281 X418 (inhibitor)

−3.5615 −1.2574 (B) −10.8654 −61.068 � 0.1878
−4.0508 −6.8398 (B) −5.738 −73.445 � 0.1794
−3.7948 −1.8633 (B) −9.8632 −56.258 � 0.2446
−6.9435 1.5275 (B) −7.9932 (A) −48.552 � 0.2897

−0.7338 (B)
−3.1199 −1.6969 (B) −7.4434 (A) −30.669 � 0.2064

−0.6598 (B)
−1.9535 −2.058 (B) −4.241 −28.601 � 0.3797
−5.1005 −0.9505 (B) −9.1531 −32.779 � 0.3037
−0.7619 11.3993 −4.2819 −4.5138 � 0.2435

RSC Adv., 2025, 15, 50944–50962 | 50957
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Fig. 9 Comparative in vitro enzyme-based assay of standard inhibitors, (A) olutasidenib and (B) a-mangostin, and screened inhibitors, (C)
dacomitinib, (D) duvelisib, (E) idelalisib, and (F) vandetanib, against IDH1 wild-type and mutant R132H. Enzymatic activity was quantified and
normalised to untreated control (blue bars), and the results are expressed as percentage enzyme activity. All data are presented as mean ± SEM
from triplicate experiments. Statistical analysis was performed using one-way ANOVA with significance *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.
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positive reference compounds, olutasidenib and a-mangostin,
had the highest binding free energy values of −123.67 kJ mol−1

and −119.71 kJ mol−1, respectively, suggesting and validating
their highest affinity to the MT-IDH1 protein, while the negative
50958 | RSC Adv., 2025, 15, 50944–50962
non-inhibitor compound temozolomide showed weakest
affinity score of −31.37 kJ mol−1 further affirming computa-
tional robustness. The relatively strong values of olutasidenib
reect the enthalpic nature of the calculation rather than an
© 2025 The Author(s). Published by the Royal Society of Chemistry
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absolute experimental DG. As shown, strong van der Waals
(−202.5 kJ mol−1) and electrostatic (−106.1 kJ mol−1) interac-
tions, partially offset by polar solvation (+204.1 kJ mol−1),
contribute to this total. This balance indicates that the strong
value reects the enthalpy-dominated nature of MM/PBSA
calculations noting that while such methods can yield more
negative values than experiment, the trend remains meaningful
for comparative analysis. The MM/PBSA analysis of the scre-
ened inhibitors revealed their binding energies in the range of
−70 kJ mol−1 to−80 kJ mol−1. These values suggest that there is
a scope for lead optimisation, and these molecules have the
potential to be an IDH1 target. Further, per-residue energy
decomposition studies using MM/PBSA reveal the contribution
of each amino acid residue in maintaining the stability of
protein–ligand complexes. Val281, Trp124, Ile30, and Ala111
signicantly contributed to the protein complexes' stability.
Table 4 summarises the contribution of specic amino acids in
sustaining the stability of the complexes in the inhibitor
binding pocket of MT-IDH1.
3.7 Biochemical analysis of potential compounds

The spectrophotometry-based IDH1 biochemical assay was
used to evaluate the ability of the screened candidates for
inhibitory enzyme activity against IDH1 R132H. The upstream
bioprocessing of recombinant wildtype and MT-IDH1 R132H
enzyme was done using a bioreactor and puried using Ni-NTA
column chromatography in AKTA Pure as described in the
methodology. Protein quality was assessed by SDS-PAGE, and
the optimal reaction conditions were determined, including Km

and Vmax values for the substrates (unpublished data, SI Fig. S4
and S5). Similar to in silico studies, in vitro enzyme-based assay
utilised olutasidenib, and a-mangostin as reference compounds
for comparative analysis. Four of ve screened compounds were
used for further in vitro enzyme-based screening (Fig. 9).

Olutasidenib, a highly potent MT-IDH1 inhibitor, at 1 mM, the
wildtype enzyme retains ∼60% activity but only ∼0.1% by the
mutant, demonstrating strong mutant selectivity. While olutasi-
denib is a nanomolar inhibitor, our assay (Fig. 9A) demonstrated
that complete inhibition of the mutant enzyme requires
a concentration of 1 mM, with partial activity retained at 0.1 mM
(100 nM). This establishes the dynamic range of our assay and
conrms that sub-micromolar potency results in dose-dependent
inhibition while retaining the IDH1 wild-type enzyme activity. a-
mangostin, a natural compound obtained from dietary xanthose,
known to inhibit MT-IDH1 was also used as another positive
control. The IDH1 wildtype enzyme activity for a-mangostin did
not decrease with changing concentration of the inhibitor.
However, the activity gradually reduced for MT-IDH1 with
increasing concentrations. At 100 mM, a-mangostin decreased
the MT-IDH1 activity by 80%, in contrast to 23% by the wild-type
IDH1. a-Mangostin exhibited a dose-dependent reduction in
activity (Fig. 9B) in the micromolar range (1–100 mM), consistent
with literature reports. These results conrm that the assay
system is specic and capable of detecting inhibition at sub-
micromolar concentrations.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The enzyme activity for screened compounds (Fig. 9C–F) in
our study showed a signicant reduction in MT-IDH1 enzyme
activity compared to wild-type IDH1, suggesting their potential
to be developed as potent MT-IDH1 therapeutics. Dacomitinib,
was shown to inhibit MT-IDH1 with increasing concentration
up to 100 mM, while acting as an agonist against wildtype IDH1.
Duvelisib, a small-molecule inhibitor against PI3K, also
exhibited a signicant decrease in the enzyme activity of MT-
IDH1 with increasing inhibitor concentration. At 100 mM
concentration, the enzyme activity was reduced to 38% while
there was no signicant change in activity for wild-type IDH1,
suggesting it as a potential candidate for IDH1 mutant therapy.
Idelalisib, an antineoplastic kinase inhibitor used for treating
CLL, also showed IDH1 inhibitory activity specic to MT-IDH1
compared to wild-type IDH1 in our assay. It reduced the
specic activity by only 20% at 100 mM concentration, high-
lighting the need for further optimisation to develop a potent
MT-IDH1 inhibitor for gliomas. Vandetanib, a classied orally
available small molecule antineoplastic kinase inhibitor tar-
geting VEGFR, did not show the expected results among all the
molecules screened. It showed a signicant decrease in IDH1
wildtype activity compared to insignicant changes in MT-IDH1
specic activity. The wildtype activity was reduced to 28% at 100
mM concentration, suggesting a strong binding affinity for
wildtype compared to MT-IDH1. This nding also aligns with
a recent study that proposed its therapeutic use in ACVR1-
mutant diffuse intrinsic high-grade pontine glioma, a subtype
typically lacking IDH1 mutations.58 The observed wildtype-
specic inhibition may reect its suitability in targeting meta-
bolic pathways active in IDH1 wildtype high-grade gliomas,
rather than MT-IDH1 lower-grade gliomas.

Although the screened inhibitors exhibited only micromolar
inhibition compared to the higher potency predicted in compu-
tational studies, they do not reect any issue with the specic
binding. This discrepancy between the absolute calculated
energies and the experimental IC50 values arises from method-
ological and physicochemical factors. Computational screening
oen overestimates inhibitor potency because it assumes rigid
protein conformations, ideal ligand poses and minimal solvent
or entropic effects.59,60 In vitro assays, however, use recombinant
IDH1 that displays natural exibility, variable loop dynamics and
differences in cofactor or post-translational state, all of which
reduce effective binding.Moreover, olutasidenib is the product of
extensive SAR-driven optimisation, whereas the compounds
identied in our study are early-stage hits with repurposing
potential, intended as starting points for future optimisation.
Additionally, common biochemical factors, such as compound
instability, aggregation in aqueous buffers, shis in inhibitor
protonation state, or nonspecic binding to assay components
can shi the apparent inhibitory concentration into the micro-
molar range, without compromising specicity. Although the
precise molecular mechanism by which these repurposed drugs
inhibit IDH1-mutant enzyme requires further characterisation,
their primary signicance lies in their established pharmaco-
logical history. Given that these compounds were originally
optimised for distinct therapeutic targets, their micromolar
activity against IDH1 represents a promising ‘off-target’ potential
RSC Adv., 2025, 15, 50944–50962 | 50959
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suitable for repurposing. Collectively, the inhibitors displayed
the expected kinetic behaviour typical of the MT-IDH1 mecha-
nism, substantiating that the observed activity arises from
specic and on-target enzyme inhibition rather than non-specic
effects, while providing a solid foundation for their further
development as targeted therapeutics.
4 Conclusions

In this study, we developed a machine learning-based algorithm
that could predict the potency of the chemical compounds
against IDH1. Among the three models trained, random forests
outperformed with best accuracy and generalisability. Further,
we screened a public library using computational approaches to
study and identify potential compounds targeting MT-IDH1
R132H in gliomas. The screening identied ve compounds,
atogepant, dacomitinib, duvelisib, idelalisib, and vandetanib
that are already known drug candidates for other targets. We
tested their efficacy against MT-IDH1 R132H using in silico drug
discovery approaches. The molecular docking, MD simulation
and free energy MM/PBSA calculations validated their potency
towards the MT-IDH1 target. Biochemical evaluations using in
vitro enzyme-based assays provide direct evidence that three of
the screened compounds disrupt MT-IDH1 function efficiently.
These ndings bridge the gap in predicting drug inhibitory
activity while providing a robust ML model to facilitate the
screening and development of potent IDH1-targeting therapeu-
tics. The identied compounds hold promise as inhibitors ofMT-
IDH1 R132H with their target interaction suggesting a signicant
potential for further exploration. Future work will focus on
detailed structural and functional analysis with chemical opti-
misation of of these scaffolds to enhance their efficacy and
selectivity. Additional studies are essential to determine their
potency, stability, and therapeutic potential. If successfully
developed, these inhibitors could contribute to novel treatment
strategies for malignancies driven by IDH1 mutations.
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